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1. INTRODUCTION

Stirling’s formula
nl~ NV 2mn" e

is probably the most widely known and used result for approximation of the factorial
function. It was discovered by the French mathematician Abraham de Moivre (1667—
1754) as

n! ~ constant-n"*2e™"

’

while the Scottish mathematician James Stirling (1692-1770) discovered the constant
V27 (see, e.g., [2,21,25,27] for the proofs and further details)

Although such an approximation is satisfactory for the needs of the probability
theory, in pure mathematics, more precise estimates are necessary. The following

refined estimate
1

1 1 1 _ 1
V2an"T2e e 2nFT < pl < A/ 2an"t2e e 12n (1.1)

was first established by Robbins [23] and it can also be found, e. g., in [3,4, 6, 8,24].
Successively better results about the gamma and polygamma functions were obtained
in [5,9,12-18,20,26]. In fact, (1.1) is the initial form of the more accurate expression

n! = N2xn" 127" exp(

1 1 n 1
12n  360n3  1260n5 ")’
see, e. g., [8,19,24].
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In this paper, we study the complete monotonicity of the functions

f(x)=1nF(x+1)_ln«/E—(x—l—%)lnx—kx—i

12x
and
1 1
=InI" 1)—In~2m — — |1 —
gx)=InI"(x+1)—In+27 (x+2)nx+x T

associated with the approximations (1.1). More precisely, we show that — f and
g are completely monotonic. As direct consequences, we establish the following
double inequalities for x > 1:

1

1 1 1
wN2rx*T2e™e2x < (x4 1) < V2rx*T2e ¥eT2x,

11

where w = J%?e 12 =(0.99773... is the best possible and

1 1 1 1
N2 x*t2e e T FT < (x4 1) < pv2rx T 2e e T2xF1,

where 1 = ﬁe% = 1.004146965... is the best possible.
With this occasion, we state the following double inequalities for x > 1:

lnx—g—lzxz<w(x)§1nx—%—$+t, (1.2)
where T = —y + % = 0.0061177... is the best possible and
lnx—L—;—USW(x)<lnx—i—;, (1.3)
2 (et )’ 2 (v )
where v = % —y = 0.0062097... is the best possible. Estimates (1.2) and (1.3)
refine other known results [1,7, 10, 11,22] of the form

1 1
Inx—— <y <lnx——, x>1.
X 2x

2. THE RESULTS
The gamma I" and digamma i functions are defined by the equalities
I (x)
r(x)’

for an arbitrary positive real x. We also have the recurrence relation

F(x)z/oootx_le_’dt, w(x)zj—x(lnr(x))z

1
YD =)+
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valid for all x > 0. The gamma function is an extension of the factorial function
because, as is well-known, I (n + 1) = n! forn = 0,1,2,3,.... The derivatives ',
Y, ..., known as polygamma functions, admit the integral representations

oo tne—xt

(n) _ (_1\n—1
P () = (1) /0 <

forn =1,2,3,... (see, e.g., [2] for the proofs and other details). We also use the
following integral representation

dt 2.1

1 1 o n—1_—xt
i =D " remMdt, n>1. 2.2)
—D!'Jo

Recall that a function f is (strictly) completely monotonic in an interval / if f has
derivatives of all orders in I such that (—1)" £ (x) > 0 (resp., (=1)" f® (x) > 0)
forallx el andn =0,1,2,3,....

Completely monotonic functions involving InI" (x) are important because they
produce bounds for the polygamma functions. The famous Hausdorff—Bernstein—
Widder theorem states that f is completely monotonic on [0, 00) if and only if

£ () = /0 e du (1),

where u is a non-negative measure on [0, c0) such that the integral converges for all
x >0, see [27].

We are now in position to give the following

Theorem 1. Let the function f : (0,00) — R be given by the equality

1 1
f(x)=1nF(x+1)—1nv2n—(x+§)1nx+x_ﬁ_
X

Then — f is completely monotonic.

Proof. We have

, 1
fi(x)= 1//(x)+a—lnx+ 22

and . . |
Fr@ =y () -5g -

2x2  x  6x3°
Now, using (2.1) and (2.2), we have

oo te_tx 0 1 oo 1
£ (x) =/ dl—/ —te_x’dt—/ e_x’dt—/ —t2e7 My,
0 1—e™! 0o 2 0 o 12

or ;
o0 e—.x

14 — d ,

£ ) /0 o () di

l—e?
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where : |
—t —t 2 —t
()=t 2z(l e")—1+e ! (1—e™).
We have ¢ (1) = —% t?2e™" <0, for every t > 0, so ¢ is strictly decreasing. But
¢” (0) = 0, thus ¢” < 0 on (0,00). Now, ¢’ is strictly decreasing, with ¢’ (0) = 0, so
¢’ < 0. Finally, ¢ is strictly decreasing, with ¢ (0) = 0, so ¢ < 0 on (0,00).

In consequence, — f” is completely monotonic. Furthermore, f” is strictly de-
creasing, since f” < 0. But we have limy_ o f'(x) =0, so f’(x) > 0 and con-
sequently, f is strictly increasing. Using the fact that limy_ o0 f (x) = 0, we deduce
that f < 0. Finally, — f is completely monotonic. (]

Corollary 1. The following assertions hold:

(1) Forall x > 1, we have
a)v271xx+%e_xeﬁ <I'(x+1)< v2nxx+%e_xeﬁ,

where w = —\_e1> = 0.99773... is the best possible.

V2w
(i) Forall x > 1, we have
1 ! ! <y(x)<l ! ! +
nx————— X nx—————+4r,
2x  12x2 - 2x  12x2

where T = —y + % = 0.0061177... is the best possible.

Proof. (i) The function f is strictly increasing, so for x > 1, we have
f(H<fkx)< lim f(x)=0.
X—>00

As f(1)= % —In+/27, we get, by exponentiating
1 1 '(x+1)

——e12 < <1,

2w T V2nx*tie—Xem®

or
V2 x T ie X e T2w <I'x+1)< v2nxx+%e_xeﬁ,
1 1 . .
where w = Nerhi 12 =(0.99773... is the best possible.

(ii) The function f” is strictly decreasing, so for x > 1, we have
0= lim f'(x) < f'(x) < f'(1).
xX—>00

As f/(l):—)/—i-%,weget

1 Lo cvw= Lo,
nx———— X nx—————5-+4rt,
2x  12x2 - 2x  12x2
where T = —y + % = 0.0061177... is the best possible. (]

In order to prove the next result, we need the following
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Lemma 1. Let
an=(6n—13)13""146n+1-12""'n(n—1), n=>4.
Then ay, > 0 for every n > 4.

Proof. Since we have a4 = 3456, as = 70848, ag = 1074816, a7 = 14566176,
ag = 189616896, a9 = 2486277504, a9 = 34031238912, a1; = 495590003424,
a1z = 7660358317440, it suffices to show that a, > 0, for every n > 13. We prove
moreover that

6n—13)13""1> 12" 'h(n—1), n=>13.

This follows immediately from the inequalities

1B\ ' n o onm-1)
— >—>—
12 5 6n-13
because the first inequality can be easily proved by induction, with respect ton > 13,

using
13n n+1 n—12

125 5 60
and for the second inequality, we have
n nn-1) nm-—y)

- — = > 0.
5 6n-—13 5(6n—13)

>0,

O
Theorem 2. Let the function g:(0,00) — R be given by the equality
1 1
=Inl" 1)—Inv2m — -1 — .
gx)=Inl"(x+1)—Inv27 (x+2) nx+x T

Then g is completely monotonic.

Proof. We have

€)=Y ()45 —lnxt -
2x

2t )’

and . . :
Vi /
2x x 6 (x 112)

Now, using (2.1) and (2.2), we have
oo te_’x S 1 o0 [ele] 1
g" (x) =/ dt—/ —te_xtdt—/ e_x’dt—/ —t%e7Mdt,
o l—e™ o 2 0 T

o0 e—xt
¢o= [ Ernan

or
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where | |
_ _ 1 _
U(l‘):l—it(l—e t)—l-i—e t—Etze 12t(1_e f)_

Now, v > 0 on (0, 00), since straightforward computations lead us to the following

power series expansion:

o0
— dn .n
v() =Y. >0,
n=4
where the sequence (an),> 4 is defined in Lemma 1.

As a consequence, g” is completely monotonic. Furthermore, g’ is strictly in-
creasing because g” > 0. However, we have limy_, o g’ (x) = 0, so g’ (x) < 0 and,
consequently, g is strictly decreasing. Using the fact that limy_o g (x) = 0, we

deduce that g > 0. Finally, g is completely monotonic.

Corollary 2. The following assertions hold:
(1) Forall x > 1, we have

1 . 1 1 _, 1
V2ax*T2e ™ e ™4 T < [(x + 1) < v/ 2nx*¥ T 2e X T2x7T1

where n = «/;276% = 1.004146965... is the best possible value.
(i1) For all x > 1, we have

1 1 1 1
Inx——-——> - v=yx)<nx———-——,

2 12(x+5) 2 12(x+5)
where v = % —y =0.0062097... is the best possible value.

Proof. (i) The function g is strictly decreasing, so for x > 1, we have
0= lim g(x) <g(x) =g(l).
X—>00

Asg(l) = % —In+/27 =0.0041384..., we get, by exponentiating
I'(x+1) 1 12

1< < AER

1 1 - /
4/27-[xx+§e_xe12x+l 2]'[

or
V2xX e X T <I'x+1)< n«/2nxx+%e_xe 2T ,
where 7 = ﬁe% = 1.004146965 ... is the best possible.
(ii) The function g’ is strictly increasing, so for x > 1, we have
(1) =g (x)< lim ¢'(x)=0.
X—>00

As g'(1) = —y + 323 = —0.0062097..., we get
1

O



INEQUALITIES FOR THE FACTORIAL AND DIGAMMA FUNCTION 85

where v = % —y = 0.0062097... is the best possible. U
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