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Abstract. Our goal is to create a propositional logic formula to model a directed graph and
use a SAT solver to analyse it. This model is similar to the well-know one of Aspvall et al.,
but they create a directed graph from a 2-SAT problem, we generate a 2-SAT problem from a
directed graph. In their paper if the 2-SAT problem is unsatisfiable, then the generated directed
graph is strongly connected, in our case, if the directed graph is strongly connected, then the
generated 2-SAT problem is a black-and-white 2-SAT problem, which has two solutions: where
each variable is true (the white assignment), and where each variable is false (the black one). If
we see a directed graph as a communication model of a network, then we can ask in our model
whether a node can send a message to another one through the network. More specifically we can
ask whether all nodes can send messages to all other ones, i.e., the graph is strongly connected
or not.
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1. INTRODUCTION

Propositional satisfiability is the problem of determining, for a formula of the pro-
positional logic, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional sat-
isfiability for formulas in conjunctive normal form (CNF). SAT is one of the most-
researched NP-complete problems [14] in several fields of computer science, includ-
ing theoretical computer science, artificial intelligence, hardware design, and formal
verification [1]. Modern sequential SAT solvers are based on the Davis-Putnam-
Logemann-Loveland (DPLL) [11] algorithm. This algorithm performs Boolean con-
straint propagation (BCP) and variable branching, i.e., at each node of the search tree
it selects a decision variable, assigns a truth value to it, and steps back when a conflict
occurs.
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By k-SAT we mean the problem of propositional satisfiability for formulas in CNF,
where each clause consists of at most k literals. While 2-SAT is solvable in linear
time [2], 3-SAT is NP-complete [9]. These days one of the most promising branch
of mathematics is the idea, that we try to unify different mathematical theories, like
in case of Langlands program [10], which relates algebraic number theory to auto-
morphic forms and representation theory. Another nice example is the modularity
theorem [16] (formerly called the Taniyama—Shimura—Weil conjecture), which states
that elliptic curves over the field of rational numbers are related to modular forms.
Without the modularity theorem Andrew Wiles could not prove Fermat’s Last The-
orem [17].

In this paper we show a link between directed graphs and propositional logic for-
mulas. We prove a theorem which allows to use an algorithm from the field of pro-
positional logic to check a graph property. Namely, we transform a graph into a SAT
problem to check whether the graph is strongly connected or not.

The most prominent graph representations are:

e Implication graph [2] is a is a skew-symmetric directed graph, where vertices
are literals (boolean variables, and their negation), edges represents implica-
tion. Note, that the binary clause x V y is represented by two implications in
the implication graph: —x D y, and —y D X, and so the implication graph is
skew-symmetric, i.e., it is isomorphic to its own transpose graph.

e AIG, And-Inverter Graph [7] is directed acyclic graph where vertices are
logical conjunction with two input edges, a marked edge means logical neg-
ation, the boolean variables are the input, the formula itself is the output.

e BDD, Reduced Ordered Binary Decision Diagram [5], which is a rooted, dir-
ected, acyclic graph consisting of vertices, which are boolean variables and
terminal vertices, called O-terminal, which terminates pathes where the for-
mula evaluates to false; and 1-terminal, which terminates pathes, where the
formula evaluates to true. Each non-terminal vertex has two child vertices
called low child, corresponding edge is called 0-edge; and high child, corres-
ponding edge is called 1-edge; which are possible values of the parent vertex.
One has to merge any isomorphic subgraph and eliminate any vertex whose
two children are isomorphic.

e 7DD (called also ZBDD in the literature), Zero-Suppressed Binary Decision
Diagram [12], is a kind of binary decision diagram, where instead of the rule
“eliminate any vertex whose two children are isomorphic” we use the rule
“eliminate those vertices whose 1-edge points directly to O-terminal”. If a
SAT problem has only a few solutions then ZDD is a better representation
than BDD.

As we can see a great effort has been done in the direction from formulas to graphs.
In this paper we study the other way, the direction from graphs to formulas. In our
model vertices are boolean variables, and edges are implications. This means that our
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model is similar to an implication graph, but in case of implication graphs vertices
are literals. The intuition behind our model comes from the field of wireless sensor
networks (WSN), where it is a relevant problem whether each sensor can commu-
nicate with all other ones through the network. If the network is represented by a
directed graph where vertices are the sensor, and an edge represents that a sensor can
send data to an other one, then this problem boils down to check whether the graph
is strongly connected.

We wanted to solve this problem by a SAT solver, so we had to convert the above
directed graph into a SAT problem. Since in our model each edge represents a logical
implication we can generate a 2-SAT problem where each clause contains exactly one
positive and one negative literal.

We have found that the graph is strongly connected if this 2-SAT problem has
exactly two solutions: the first is the one where each boolean variable is true (which
is called the white assignment), the second is the one where each boolean variable
is false (which is called the black assignment). We call such a SAT problem to be a
’black-and-white” SAT problem.

This means that if we add the negation of these two solutions (the black one and
the white one) to the generated SAT problem, then it will be unsatisfiable and will be
not 2-SAT any more.

In other words, a SAT problem is a black-and-white SAT problem if and only if it
is satisfiable and has only two solutions, the white assignment and the black one. So
it becomes unsatisfiable if we add the negation of these assignments, which are two
full length clauses, the clause which contains only negative literals (which is called
the black clause), and the clause which contains only negative literals (which is called
the white clause).

In the field of directed graphs the problem to check strongly connectedness is a
linear time problem [15]. The black-and-white 2-SAT problem is also a linear time
problem as we are going to show that later in this paper. The question arises, while
should we transform a graph into a SAT problem to check a property which can be
checked in linear time in both fields? We think that our model is a new link between
the two fields: We learned that black-and-white 2-SAT problems and strongly con-
nected graphs are equivalent. The black-and-white SAT problem appears also as a
special case of weakly nondecisive SAT problems, see Lemma 6. in [3] (in that pa-
per we did not use the term “’black-and-white SAT problem”, this term is introduced
in this paper). This suggests two things: the black-and-white SAT problem could
be an interesting problem in general, and since there are weakly nondecisive 3-SAT
problems, which are also black-and-white, there might be a 3-SAT representation of
directed graphs.
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2. LOGICAL MODEL OF A DIRECTED GRAPH

Let D = ('V, &) be a directed graph, where V is the set of vertices, and E is the
set of edges. We say that O is a communication graph if and only if the elements
of V are atomic formulas or each vertex is labeled by a different atomic formula.
Note, that any directed graph is a communication graph because we can label each
vertex by a different atomic formula. In this paper we assume that the elements of V
are atomic formulas. In other words, if x is an element of 'V, then for example —x
must not be an element of V. From a communication graph we create the following
model: We represent vertices by boolean variables, and edges by logical implication.
The conjunction of these formulas gives the logical model of the directed graph. For
example, if the vertex x; has edges to vertices x, and x3, then the logical model is:

(x1 D x2) A(x1 D x3). 2.1

This formula can be easily transformed to a 2-SAT problem by rewriting implications
by the rule x D y = —x Vv y. Note, that although each edge in D is interpreted
as logical implication, it is not an implication graph, because it does not contain
negative literals. In other words, our model is not the same used by Aspvall et al.
in [2]. They create a graph from a 2-SAT problem, we generate a 2-SAT problem
from a communication graph. In their directed graph each variable is represented
by a positive and a negative literal. In our case we have only positive literals in the
directed graph.
We give the definition of our model in a more formal way. The 2-SAT representa-
tion M of a communication graph D is defined as follows:
n
M= N\ Pix) (2.2)
i=1,j=1,i#]j

—xVy, ifxhas an edge toy

P(x,y) = (2.3)

True, otherwise

Note, that M is a 2-SAT problem and has a nice property, each clause in it has
exactly one positive and one negative literal, therefore, M is satisfiable. It has at least
two solutions: one where each variable is true which is called the white assignment,
and one where each variable is false which is called the black assignment.

If M has only these two solutions, and no other one, then £ has an interesting
property, namely it strongly connected. To check this we need the white-or-black
constraint, which is the disjunction of the white assignment and the black assignment,
that states that all vertices can be reached from all other ones. We denote the white-
or-black constraint by € in this paper, and we define it as follows:

n
€= /\ Xi DXj = (X1 AX2 A AXp) V(TX] ATX2 A ATXy,) (2.4)
i=1,j=1,i#]
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Its negation is called the black-and-white constraint, which is the conjunction of the
black clause and the white clause:

€ =(mx1 VX2V VX )A (X1 VX2 V-V Xy) (2.5)

By the formula € we state that there is a path from any vertex to any other one. To
show that D is strongly connected we have to show that the logical representation of
D, which is M, implies €. Now we can use the fact that SAT solving is the dual of
theorem proving. So instead of proving that ”D is strongly connected if M implies
€”, we prove that ”D is strongly connected if M A —€ is unsatisfiable”. This means
that we can use a SAT solver to check a property of a graph.

Motivated by this we define the following notion: F is a black-and-white SAT
problem if and only if F is satisfiable and has exactly two solutions, the white and
the black assignments, which implies that F' A =€ is unsatisfiable. F' is a black-and-
white 2-SAT problem if and only if F is a 2-SAT and a black-and-white SAT problem.
Lemma 6 in [3] suggests an alternative, more general definition: F is a black-and-
white SAT problem if and only if F is satisfiable and has exactly two solutions, A
and B such that A = —B. But we do not use this alternative definition in this paper.

First, we need an auxiliary lemma, which states that: there is a path from vertex
x; to x; if and only if x; D x; is subsumed by the logical model of the graph.

Lemma 1. Let O be a communication graph. Let M be the 2-SAT representation
of D. Then M implies the formula x; D x; if and only if there is path from vertex x;
to x; in graph D.

Proof. We know that M is a special SAT instance where each clause contains
exactly one positive and one negative literal, hence, each resolvent of clauses from
M is a binary clause with one positive and one negative literal. The main idea of the
proof is that if we have two clauses —vj V v and —v, V v3, i.e., there is a path in D
from v; to vs, then by resolution we can generate —v; V vs. ]

Based on this lemma we can prove the main theorem of this paper which states
that the notion of strongly connected graphs and the notion of black-and-white 2-
SAT problems are equivalent. This means that the 2-SAT representation of a strongly
connected graph is a black-and-white 2-SAT problem, and the other way around,
the directed graph representation of a black-and-white 2-SAT problem is a strongly
connected graph.

Theorem 1. Let D be a communication graph. Let M be the 2-SAT representation
of D. Then M is a black-and-white 2-SAT problem if and only if the graph D is
strongly connected.

Proof. Let D be a communication graph. Let M be the 2-SAT representation of
. We show that both directions hold.

(=): The main idea of the proof if the following, if a formula is satisfied by all
solutions of a SAT problem, then it is implied by this SAT problem. We know, that M
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has only two solutions, the white and the black assignments, both of them satisfy all
x; D x; shaped formulas, i.e., they are implied by M. From this and from Lemma 1.
we obtain that in D there is a path from any vertex to any other one, i.e., O is strongly
connected.

(«<): The main idea of the proof is the following, since D is strongly connected
we know that there is a path v; D v3,v2 D v3...,v;—1 D vz,v; D vy which is cyclic
and contains all vertices from D, the corresponding clause set is {(—v; V v2), (—v2 V
v3),...,(—vz—1 VVz), (—v; Vuy)}, which is a subset of M, and which can be satisfied
only by the white and the black assignments. From this and since each clause in M
is a binary clause, we obtain, that M is a black-and-white 2-SAT problem. U

To check whether a directed graph is strongly connected or not, we need linear
time [15]. We are going to show that its 2-SAT representation can be solved also in
linear time.

Theorem 2. Let F' be a black-and-white 2-SAT problem. Then we need linear
time to show that F A —C is unsatisfiable.

Proof. The main idea of the proof is that any SAT solver which uses variable
branching and BCP, can show that F' A —C is unsatisfiable by using 1 variable branch-
ing and 2 BCP steps as follows: Variable branching will result in a unit. Without lost
of generality let us assume that it is a positive one. Then BCP will generate other
positive units, because the binary clauses in F' contain exactly one positive and one
negative literal. BCP will finally result in a conflict, because —C contains the neg-
ation of the white assignment. Then the other branch will result in a negative unit.
This enables a BCP step which will generate negative units, and which will terminate
in a conflict because —C contains also the negation of the black assignment. Since
BCP is a linear time method [19] we need linear time to show that F* A —C is unsat-
isfiable. O

Note that DPLL algorithm is a suitable choice to solve the above problem because
it uses variable branching and BCP. The question arises, why should we transform a
graph into a SAT problem to check a property which can be checked in linear time
in both fields? We think that our model is a new link between the two fields which
might help to visualize SAT problems. This is not a problem in case of a 2-SAT
problem, but in case of 3-SAT it is a problem. This paper and Lemma 6. in [3]
together suggest that there might be a 3-SAT representation of directed graphs which
is a black-and-white 3-SAT problem. If one finds that representation, then this could
help to visualize 3-SAT problems as a directed graph.

3. OUR MODEL AND THE ASPVALL MODEL

In this section we show that the constraint used by our model is more general than the
one used by the model of Aspvall et al. Fist we show some examples. In Figure 1.
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we see a directed graph with 5 vertices. This graph is also a communication graph,
since there is no negation sign in the vertices. A directed graph is strongly connected
if there is a path between all pairs of vertices. A strongly connected component of
a directed graph is a maximal strongly connected subgraph. There are 2 strongly
connected components ([1,2,3,5],[4]) in the following graph.

& ko

FIGURE 1. A directed graph with 5 vertices

The model of this graph is:

M= (—x1 V) A(mX1 VX3)A(mX2 VX)) A (X3 VX3)A G.1)

(—x3V X2) A (X3 V X5) A (—x4 V x2) A(—X5 V X3) '
From M we can create D (M) by following the construction defined in [2] by Aspvall
et al. Construction steps are the following:

i. For each variable x;, we add two vertices named x; and —x; to D(F ).
ii. For each clause (x; Vv x;) of M, we add edges —x; — x; and =x; — X; to
D(M).

In Figure 2. we see the transformed D (M) graph. Aspvall et al. [2] (Theorem I.)
shows that M is satisfiable if and only if in D (M) there is no vertex x; such that it
is in the same strong component as its complement —x;. We can be sure that this
property holds for our model M, because it is always satisfiable.

FIGURE 2. D(¥), where ¥ = M
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We define the so-called Aspvall kind constraints.

Let €4sp(i,j) = (xi D xj)A(x; Dx;),where 1 <i,j <nandi # j. From
this we obtain after simplification that =€4sp (i, j) = (x; VX;) A (—x; V —x;). We
can add these clauses to the model to check whether there is a directed path from x;
vertex to x; and vice versa: D(M A —Cysp(i,])).

We add two constraints to the example shown in Figure 1. The first one is
Casp(1,4) = (x1 D xq4) A (x4 D x1). Let F = MA—-Cys5p(1,4). So we add these
two clauses (x1 V x4) A (—x1 VvV —x4) and these 4 edges, see the red arrows in Fig-
ure 3. We see on Figure 3. that in graph O (F) there exists no vertex x; which is in
the same strong component as its complement —x;, hence, ¥ is still satisfiable.

FIGURE 3. D(¥), where ¥ = M A—Cys5p(1,4)

Now we add €45p(1,5) = (x1 D x5) A (x5 D x1). Let F/ = M A—=Cys5p(1,5).
So we add these two clauses (x1 V x5) A (—x1 V —x5) and these 4 edges, see the red
arrows in Figure 4. We can see on Figure 4. that in the graph D (F”) there exists a
vertex x; which is in the same strong component as its complement —x;, hence, ¥’
is unsatisfiable.

In our approach C is

(x1 D) X2)/\(X1 D) X3)/\(X1 D) X4)/\
(x2 Dx1)A(x2 D x3)A(x2 D Xxg)A

(X3 D X1) A (X3 D x2) A (33 D Xa)A G2
(x4 Dx1) A (x4 D x2) A(Xg D X3)
(mx1 VX2) A(mx1 VX3) A (X1 VX4) A (mX] V X5)A
(mx2 VX)) A(mx2 VX3) A(mx2 VXg) A (mx2 V xs)A
(=x3 VX1) A(=x3V X2) A(—X3 V X4) A (X3 V X5)A (3.3)

(mxa VX1) A (2x4 V X2) A (Tx4 VX3) A (TX4 V X5)A
(—'X5 \% xl) A (—'XS \% )Cz) A (—'X5 \% X3) A (—')Cs \% X4)
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FIGURE 4. D(¥"’), where F' = M A—=C45p(1,5)

After simplification —C is the following:
(x1 VX2VX3VX4V X5) AN (—1)61 VX V-ox3V-oxgV —'Xs) (3.4)

For any i and j we have that =€45p (i, j) implies =€, thus €4 sp (i, j) subsumes
—'€. This means that =€45p (i, j) defines a stronger constraint to the model, thus
—'€ defines a more general constraint than =€4sp (i, j) to check whether a graph is
strongly connected or not.

4. AN APPLICATION
4.1. Wireless sensor networks

Ad hoc wireless sensor networks (WSN) are used widely (for example, in military
to observe environment). They have the advantage that they consist of sensors with
low energy consumption, which can be deployed easily in a cheap way on areas
which are out-of-the-way. These sensors are the nodes of WSN. They are capable of
processing some limited information and using wireless communication. A big effort
has been to do research on how to deploy them in an optimal way to keep efficient
energy consumption and communication. Although there are many WSN solutions,
the deployment of a WSN is still an active research field [S].

One of the important property of an ad hoc wireless network is node density. The
dense layout makes the following properties available: high fault tolerance, high-
coverage characteristics, but also cause some problems. The interference is high near
dense node areas, and there are a lot of collisions in the case of messaging, which
requires complicated operations of a MAC protocol. Because of too many possible
routes, routing needs lots of resources [4].

The aim of monitoring techniques is reducing the cost of the distributed algorithms
interpreted on the network. The graph, which represents the network, has to be
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thinned because of cost-reduction by techniques like disconnecting of nodes, remov-
ing links, changing scopes, etc., but the network-quality characteristics (like scalab-
ility, coverage, fault tolerance, etc.) must not fall below a required level. The overall
aim is to create a scalable, fault-tolerant rare topology, where the degree of the nodes
are low, the maximum load is low, energy consumption is low and the paths are short.
The following techniques are used to create an optimal topology: reducing the scope
of nodes, removing some nodes, introducing a dominating set of nodes, clustering,
and adding some new nodes to gain all-all communication [13, 18].

4.2. Connectivity test by SAT representation

If we have a WSN, then we can redefine communication graph as follows, we
say that D is a communication graph if and only if the elements of V, the vertices,
represent the sensor nodes of the WSN, and elements of &, the edges, represent a one
way communication between two nodes.

We intend to examine which sensors can communicate with which ones, thus we
can create the communication graph and its 2-SAT representation. In this approach
it can be checked fairly quickly in a given state of a randomly distributed sensor
network (assuming all sensors are awaken) whether it can be ensured that each sensor
can communicate with every other one [6].

For example let us model a randomly distributed heterogeneous sensor network
which has 10 nodes. For representing the input clause set for a SAT solver, the

FIGURE 5. Heterogeneous sensor nodes with their communication graph
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DIMACS CNF! format is commonly used, which references a Boolean variable by
its (1-based) index. A negative literal is referenced by the negated reference to its
variable. A clause is represented by a sequence of the references to its literals termin-

ated by a 70",
DIMACS CNF format is the following: p cnf 10 20
¢ model
-1 60
-6 10
-2 60
-6 20
-6 30
-340
-4 60
-560
-6 70
=760
-5 70
=750
=780
-8 90
-980
-9 10 0
-10 8 0
-950

c constraint
123456789100
-1 -2 -3-4-5-6-7-8-9-100

Our main goal is to examine the produced DIMACS CNF file with MiniSat
2.2.0°, whichis a complete SAT solver, which returns unsatisfiable (UNSAT). Thus
the model fulfills the requirements, namely communication is ensured between any
two nodes. In this example the result is UNSAT, thus the represented communication
graph is strongly connected.

This model can also give a more detailed analysis. For example, if we take the
sensors out of the model one by one, and with the remaining we test the communic-
ation problem again between any two nodes. If the solver returns satisfiable (SAT)
for the reduced model, then the currently removed node is extremely important to the
sensor network, as its removal breaks the requirement of unhindered communication
between any two sensors. The significance of this in graph theory is that the removal

Lwww. satlib.org/Benchmarks/S AT/satformat.ps

2http://minisat.se
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of this node makes the graph not connected anymore. In our example the removal
of nodes 3, 4, 5, 6, 7, 8 and 9 would return with SAT, thus the malfunction of those
sensors means the communication in that sensor network is inadequate.

It is generally true that if the graph is strongly connected, then a DPLL-based SAT
solver returns the following values.

number of solutions : 0

number of conflicts : 2

number of decisions : 1

number of unit propagations : u = 2n , where n the number of literals (num-
ber of vertices)

These results also show that the black-and-white 2-SAT problem with the black-
and-white constraint can be solved in linear time since the number of decisions is 1,
and the number of unit propagations is 2n.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a SAT representation that can be used for mod-
eling directed graphs. The only restriction is that the names of the vertices should be
boolean variables. This model, which is a 2-SAT problem, makes it possible to check
whether a graph is strongly connected by adding two clauses, the black and the white
ones, to the model and asking a SAT solver whether this formula is unsatisfiable. The
two clauses are a constraint which state that it is not true that there is a path from
any vertex to any other one. This constraint is more general than the one used by
Aspvall et al. We have shown that the representation of a strongly connected graph is
a black-and-white 2-SAT problem. The black-and-white SAT problem appears also
as a special case of weakly nondecisive SAT problems, see Lemma 6. in [3]. This
suggests two things: the black-and-white SAT problem could be an interesting prob-
lem in general, and since there are weakly nondecisive 3-SAT problems, which are
also black-and-white, there might be a 3-SAT representation of directed graphs. Our
model can be applied also in a natural way to networks of sensors, such as wireless
sensor networks. If we use a SAT solver to solve our model, then it gives back not
only the solution but also lots of numbers. An interesting question is that how one can
use these metrics, like number of solutions, conflicts, decisions, unit propagations, to
say something about the topology of the graph.

It seems the the following generalized notion is also interesting: F' is a generalized
black-and-white SAT problem if and only if F is satisfiable and for any assignment
A: if A is a solution of F, then F has another solution B such that A = —B. For
example, the empty clause set is a generalized black-and-white SAT problem. An-
other interesting example is the set of black and the white clauses. We are going to
investigate this notion in a future study.
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