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1. INTRODUCTION AND PRELIMINARIES

Recently, D. Wardowski ([7]) provided a new class of contractive mappings as
below.

Definition 1. Let F be the collection of all functions F W RC! R which satisfy
the following conditions:
.F1/ F is strictly increasing.
.F 2/ For each sequence f˛ngn2N of positive numbers ˛n! 0, F.˛n/!�1.
.F 3/ There exists k 2 .0;1/ such that lim˛!0C ˛

kF.˛/D 0.
For a given metric space .X;d/, a mapping T WX!X is said to be an F - contraction
if there exists � > 0 such that

d.T x;Ty/ > 0) �CF.d.T x;Ty//� F.d.x;y//; 8x;y 2X:

It is remarkable to note that every F - contraction self-mapping is continuous. The
following result is an extension of Banach contraction principe.

Theorem 1 ([7]). Let .X;d/ be a complete metric space and let T W X ! X be
an F -contraction. Then T has a unique fixed point x� 2X and for every x0 2X the
sequence fT nx0gn2N is convergent to x�.

Another generalization of Banach contraction principe was established in [4] as
follows.

Theorem 2. Let A and B be two nonempty closed subsets of a complete metric
space .X;d/. Suppose that T W A[B! A[B is a cyclic mapping, that is T .A/�
B and T .B/ � A, such that d.T x;Ty/ � ˛d.x;y/ for some ˛ 2 .0;1/and for all
x 2 A;y 2 B . Then T has a unique fixed point in A\B .

An interesting feature about the above observation is that the mapping T in The-
orem 2 may not be continuous.

It might be interesting to ask if in Theorem 1.1 A\B D¿, then what happens. It
is clear that the fixed point equation T x D x has no fixed point. In this case, we have
the following notion.
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Definition 2. Let A;B be two nonempty subsets of a metric space .X;d/ and
T WA[B!A[B be a cyclic mapping. A point p 2A[B is called a best proximity
point of T if d.p;Tp/D dist.A;B/, where dist.A;B/ WD inffd.x;y/ W x 2A;y 2Bg.

Indeed best proximity point theorems have been studied to find necessary condi-
tions such that the minimization problem

min
x2A[B

d.x;T x/;

has at least one solution, where T is a cyclic mapping defined on A[B .
Let A and B be two nonempty subsets of a metric space .X;d/. We will use the

following notations in our coming discussion.

d�.x;y/D d.x;y/�dist.A;B/; 8.x;y/ 2 A�B;

d.x;A/D dist.fxg;A/; 8x 2X;

PA.´/D fx 2 A W d.x;´/D d.´;A/g; 8´ 2X;

A0 WD fx 2 A W d.x;y/D dist.A;B/ for some y 2 Bg;

B0 WD fy 2 B W d.x;y/D dist.A;B/ for some x 2 Ag:

Note that if .A;B/ is a nonempty, weakly compact and convex pair of subsets of
a Banach space X , then A0 and B0 are also nonempty, closed and convex subsets of
X .

Definition 3. Let A and B be nonempty subsets of a metric space .X;d/. We say
that A is Chebyshev set w.r.t. B provided that PA.x/ is singleton for any x 2 B .

For instance, if A and B are two nonempty, weakly compact and convex sets in
a strictly convex Banach space X , then A is Chebyshev set w.r.t. B and B is also
Chebyshev set w.r.t. A.

In [6] Suzuki et al. introduced a notion of property UC on metric spaces as follows.

Definition 4. ([6]) Let A and B be nonempty subsets of a metric space .X;d/.
Then .A;B/ is said to satisfy the property UC provided if fxng and f´ng are se-
quences in A and fyng is a sequence in B such that limnd.xn;yn/D dist.A;B/ and
limnd.´n;yn/D dist.A;B/, then limnd.xn;´n/D 0:

Example 1.1.([2]) Let A and B be nonempty subsets of a uniformly convex Banach
space X . Assume that A is convex. Then .A;B/ satisfies the property UC.

After that a weaker notion of property UC was introduced in [3] as follows.

Definition 5. Let A and B be nonempty subsets of a metric space .X;d/. The
pair .A;B/ is said to satisfies the property WUC if for any sequence fxng in A such
that for every " > 0 there exists y 2 B satisfying that d.xn;y/ � dist.A;B/C " for
n�N , then it is the case that fxng is convergent.
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It was proved in [3] that if A and B are two nonempty subsets of a complete point-
wise uniformly convex geodesic metric space .X;d/ with monotone modulus of con-
vexity such that A is convex, then .A;B/ satisfies the property WUC (see Proposition
3.15 of [3]).

Here, we recall some notions in partially ordered metric spaces from [5]

Definition 6. Let .X;�/ be a partially ordered set. A self mapping T WX !X is
said to be monotone nondecreasing iff T .x/� T .y/ whenever x;y 2X;x � y.

Definition 7. Let .X;�/ be a partially ordered set and d be a metric on X . A
subsetA ofX is said to be a regular set provided that for any nondecreasing sequence
fxng in A so that xn! x 2 A, then xn � x for any n 2N.

The following best proximity point theorem is the main result of [1].

Theorem 3. (Theorem 3.5 of [1]) Let .X;�/ be a partially ordered set and d be
a metric on X . Let A; B be two nonempty subsets of X such that .A;B/ satisfies the
property UC. Suppose A is complete and is a regular set and let T W A[B! A[B

be a cyclic mapping such that T and T 2 are nondecreasing on A. Moreover,

d.T Kx;T 2x/� ˛d. Kx;T x/C .1�˛/dist.A;B/;

and
d.T Ky;T 2y/� ˛d. Ky;Ty/C .1�˛/dist.A;B/;

for some ˛ 2 Œ0;1Œ and for all .x; Kx/ 2 A�A;.y; Ky/ 2 B �B with x � Kx;y � Ky:
If there exists x0 2 A such that x0 � T 2x0 and xnC1 D T xn, then T has a best
proximity point p 2 A and x2n! p.

In the current paper, we prove some existence and convergence results of best
proximity points for a new class of mappings, called F - cyclic contractions in the
setting on ordered metric spaces. Our conclusions extend and improve some recent
results in the literature. We also provide some examples to illustrate our main results.

2. MAIN RESULTS

2.1. Fixed point results

In this section, we provide some new fixed point results in partially ordered metric
spaces for cyclic mappings which satisfy the Wardowski type contraction.

We begin our main results with the following auxiliary lemma.

Lemma 1. Let .A;B/ be nonempty pair of subsets of a metric space .X;d/ and
”�” be a partially ordered relation on A such that A is complete. Let T W A[B !
A[B be a cyclic mapping such that T 2 is nondecreasing on A and there exists � > 0
such that

d�.T Kx;T 2x/ > 0) �CF.d�.T Kx;T 2x/� F.d�.x0;T x//;
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for all x; Kx 2A with x � Kx. If there exists x0 2A with x0 � T 2x0 and if xnC1D T xn,
then d.xn;xnC1/! dist.A;B/.

Proof. Since T 2 is nondecreasing on A and x0 � T 2x0,

x0 � T
2x0 � � � � � T

2nx0 � � � � :

Put rn D d�.xnC1;xn/. By the fact that x0 � T 2x0,

F.d�.x3;x2//D F.d
�.T .T 2x0/;T

2x0//

� F.d�.T 2x0;T x0//� � D F.d
�.x1;x2//� �:

Also,
F.d�.x5;x4//D F.d

�.T .T 4x0/;T
2.T 2x0///

� F.d�.T 4x0;T
3x0//� � D F.d

�.T .T 2x0/;T
2.T 2x0///� �

� fF.d�.T 2x0;T
3x0//� �g� � D F.d

�.x3;x2//�2�

� F.d�.x2;x1//�3�:

Continuing this process and by induction, we obtain

F.d�.x2nC1;x2n//� F.d
�.x2;x1//� .2n�1/�; 8n 2N;

which deduces that limn!1F.d�.x2nC1;x2n// D �1. From the condition (F2),
d�.x2nC1;x2n/! 0 or d.x2nC1;x2n/! dist.A;B/. Similarly, we can see that

F.d�.x2nC2;x2nC1//� F.d
�.x2;x1//�2n�; 8n 2N;

which implies that d.x2nC1;x2nC2/! dist.A;B/. Hence, d.xn;xnC1/! dist.A;B/
and the result follows.

�

The following fixed point result is motivated by Theorem 2.

Theorem 4. Let .A;B/ be nonempty pair of subsets of a metric space .X;d/ and
”�” be a partially ordered relation onA. Let T WA[B!A[B be a cyclic mapping
such T jA is continuous and that T 2 is nondecreasing onA and there exists � > 0 such
that

d.T Kx;T 2x/ > 0) �CF.d.T Kx;T 2x/� F.d.x0;T x//;

for all x; Kx 2A with x � Kx. If there exists x0 2A with x0 � T 2x0 and if xnC1D T xn,
then A\B is nonempty and T has a fixed point in A\B . Moreover, fx2ng converges
to the fixed point of T .

Proof. We consider the following two cases:

Case 1. T 2x0 D x0. Now if d.x0;T x0/ > 0, then

F.d.x0;T x0//D F.d.T
2x0;T .T

2x0///D F.d.T .T
2x0/;T

2x0//

� F.d.T 2x0;T x0//� � D F.d.x0;T x0//� � < F.d.x0;T x0//;
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which is impossible. That is, x0 D T x0 and we are finished.

Case 2. T 2x0 ¤ x0. Put rn D d.xnC1;xn/. It now follows from a similar argu-
ment of Lemma 1 that

F.r2n/� F.r0/�2n�; F.r2n�1/� F.r1/�2.n�1/�:

Hence, maxfr2n�1; r2ng ! 0. From (F3) there exist k1;k2 2 .0;1/ so that

lim
n!1

r
k1

2nF.r2n/D 0; lim
n!1

r
k2

2n�1F.r2n�1/D 0:

We have
r
k1

2nF.r2n/� r
k1

2nF.r0/� r
k1

2n.F.r0�2n�//� r
k1

2nF.r0/

D�r
k1

2n2n� � 0; 8n 2N:

Thus limn!1nr
k1

2n D 0. Equivalently, we can see that limn!1nr
k2

2n�1 D 0. Let
N 2N be such that maxfnrk1

2n;nr
k2

2n�1g � 1 for all n � N . Now for all m > n � N
we have

d.x2m;x2n/�

mC1X
jDn

Œd.x2j ;x2jC1/Cd.x2jC1;x2jC2/�

D

mX
jDn

.r2j C r2jC1/�

1X
jDn

.r2j C r2jC1/

1X
jDn

.
1

j
1

k1

C
1

j
1

k2

/ <

1X
jD1

.
1

j
1

k1

C
1

j
1

k2

/ <1:

Therefore, the sequence fx2ng is a Cauchy sequence and hence is convergent to a
point p 2 A. In view of the fact that T is continuous on A, x2nC1 D T x2n! Tp

and so
d.p;Tp/D lim

n!1
d.x2n;x2nC1/D lim

n!1
r2n D 0;

that is, p is a fixed point of T in A\B .
�

Remark 1. The condition of continuity of the mapping T on A in Theorem 4 can
be replaced with the condition of regularity of the set A.

Proof. As in the proof of Theorem 4, the nondecreasing sequence fx2ng converges
to a point p 2 A. Since A is regular, x2n � p for all n 2N. We now have

F.d.Tp;x2n//D F.d.Tp;T
2x2n�2//� F.d.p;x2n�1//� �

� F.d.p;x2n/;d.x2n;x2n�1//� � !�1 .n!1/;

and this concludes that limn!1d.Tp;x2n/D 0 by (F2) and so, p D Tp.
�
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Next corollaries are the straightforward consequences of Theorem 4.

Corollary 1 (Theorems 2.2, 2.3 of [1]). Let .A;B/ be a nonempty pair of subsets
of a metric space .X;d/, such that A is complete, and let ”�” be a partially ordered
relation on A. Let T WA[B!A[B be a cyclic mapping and T 2 be nondecreasing
onA and d.T Kx;T 2x/� ˛d. Kx;T x/ for some ˛ 2 Œ0;1Œ and for all .x; Kx/2A�A with
x � Kx. Assume that T jA is continuous or A is a regular set. If there exists x0 2 A
with x0 � T 2x0, then A\B ¤¿, hence T has a fixed point p 2 A\B . Moreover,
if xnC1 WD T xn, then x2n! p.

Corollary 2 ([5]). Let .X;�/ be a partially ordered set and let there exists a metric
d in X which makes .X;d/ into a complete metric space. Suppose T W X ! X is a
nondecreasing mapping on X such that either T is continuous or X is a regular set.
Assume there exists ˛ 2 Œ0;1Œ such that d.T x;Ty/ � ˛d.x;y/ for each y � x. If
there exists x0 2X with x0 � T .x0/, then T has a fixed point.

The following example illustrates Theorem 4.

Example 1. Let .X;�/ be a partially ordered, where X D Œ0;3� is complete metric
space with metric d W X �X ! Œ0;1/ defined as d.x;y/ D jx�yj, x;y 2 X , and
x � y, x 6 y, for each x;y 2X . Let AD Œ0;1�[ Œ2;3��X , and B D .1;3��X .
Of course � is a partially ordered relation on A. Let T W A[B! A[B be defined
as follows

T .x/D

(
15
8

if x 2 Œ0;1�
2 if x 2 .1;3�.

(2.2)

Of course T jA is continuous, and iteration T 2 is nondecreasing on A.
Let F W RC! R be given by the formula F.t/D ln.t2C t /, where t > 0. It is easy

to see, that the map F satisfies the conditions (F1)-(F3).

We show that T satisfies the condition (2.1). Let � D ln.2/ > 0. Let x; Kx 2 A with
x � Kx (i.e. x 6 Kx). We consider the following three cases:

Case 1. If x; Kx 2 Œ0;1�, then, by (2.2), we obtain T .x/ D T . Kx/ D 15
8

, T 2.x/ D
T 2. Kx/D 2. Hence d.T . Kx/;T 2.x//D d.15

8
;2/D 1

8
> 0. Moreover, since Kx 6 1, by

simply calculations, we have 15
8
� Kx > 7

8

Œd.T . Kx/;T 2.x//�2Cd.T . Kx/;T 2.x//D
1

64
C
1

8
D

9

64

6
1

2
Œ
49

64
C
56

64
�6

1

2
Œ.
15

8
� Kx/2C .

15

8
� Kx/�D

1

2
.Œd. Kx;T .x//�2Cd. Kx;T .x///

6 .Œd. Kx;T .x//�2Cd. Kx;T .x///e� ln.2/.

In consequence,

Œd.T . Kx/;T 2.x//�2Cd.T . Kx/;T 2.x//6 .Œd. Kx;T .x//�2Cd. Kx;T .x///e� ln.2/.
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Hence,

eln.Œd.T . Kx/;T 2.x//�2Cd.T . Kx/;T 2.x/// 6 eln.Œd. Kx;T .x//�2Cd. Kx;T .x///e� ln.2/

and next

eF.d.T . Kx/;T
2.x/// 6 eF.d. Kx;T .x///e� ln.2/

D eF.d. Kx;T .x///�ln.2/

Finally, we obtain

F.d.T . Kx/;T 2.x///6 F.d. Kx;T .x///� ln.2/

thus
�CF.d.T . Kx/;T 2.x///6 F.d. Kx;T .x///

Case 2. If x 2 Œ0;1� and Kx 2 Œ2;3�, then, by (2.2), we obtain T .x/D 15
8

, T . Kx/D
T 2.x/D T 2. Kx/D 2. Hence d.T . Kx/;T 2.x//D d.2;2/D 0.

Case 3. If x; Kx 2 Œ2;3�, then, by (2.2), we obtain T .x/ D T . Kx/ D T 2.x/ D

T 2. Kx/D 2. Hence d.T . Kx/;T 2.x//D d.2;2/D 0.
In consequence of considerations of each cases, we obtain that T satisfies the

condition (2.1).
Of course, there exists x0 2 A (for example x0 D 1) such that x0 6 T 2.x0/. All

assumption of Theorem 2.2 are satisfied. There exists a fixed point wD 2 of the map
T in A. Moreover if we define the sequence .xn W n 2N/ as xnC1 D T .xn/, n 2N,
then limn!1x2n D w.

2.2. Best proximity point results

Motivated by Theorem 3, we establish an existence result of best proximity points
for F - cyclic contractions under weaker assumptions.

We begin our main conclusions of this section with the following theorem.

Theorem 5. Let .A;B/ be nonempty pair of subsets of a metric space .X;d/ and
”�” be a partially ordered relation on A such that A is complete. Let T W A[B !
A[B be a cyclic mapping such that T 2 is nondecreasing on A and there exists � > 0
such that

d�.T Kx;T 2x/ > 0) �CF.d�.T Kx;T 2x/� F.d�.x0;T x//;

for all x; Kx 2 A with x � Kx. Suppose there exists x0 2 A with x0 � T 2x0 and define
xnC1 D T xn. If A is a regular set and boundedly compact, then T has a best prox-
imity point.

Proof. Since T 2 is nondecreasing, the sequence fx2ng is increasing and by the fact
that A is boundedly compact, there exists a subsequence fx2nk

g of fx2ng converging
to some p 2 A. Thus

dist.A;B/� d.p;x2nk�1/� d.p;x2nk
/Cd.x2nk

;x2nk�1/:
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Now if k!1, then by Lemma 1 we have d.p;x2nk�1/! dist.A;B/. In view of
the fact that A is a regular set, x2nk

� p for all k 2N. We have

F.d�.x2nk
;Tp//D F.d�.Tp;T 2x2nk�2//

� F.d�.p;T x2nk�2//� � D F.d
�.p;x2nk�1//� � !�1 .k!1/:

Therefore, d�.x2nk
;Tp/! 0 and so d.p;Tp/D dist.A;B/. �

Remark 2. It is worth noticing that if in Theorem 5 PA.y/ is singleton for any
y 2 B0, then T 2p D p, that is, p is a fixed point of T 2.

Proof. Since d.p;Tp/D dist.A;B/, we have PA.Tp/D fpg. If d�.Tp;T 2p/ >
0, then

F.d�.Tp;T 2p//� F.d�.p;Tp//� �;

which is impossible by the fact that F 2 F and so the domain of F is .0;1/.
Thereby, d.Tp;T 2p/D dist.A;B/ and so T 2p 2PA.Tp/ and this turns that T 2pD
p.

�

Definition 8. Let A and B be nonempty subsets of a partially metric space .X;d/.
The pair .A;B/ is said to have monotone proximally property if for any increasing
sequence fxng in A such that for every " > 0 there exist y 2 B and N 2N satisfying
that d.xn;y/� dist.A;B/C" for n�N , then it is the case that fxng has a convergent
subsequence.

Next example shows that the monotone proximally property does not imply prop-
erty WUC in general.

Example 2.2. Consider X D R with the usual metric and with the natural partially
ordered relation �. Suppose AD .�1;0�[f2g and B D f1g. Then dist.A;B/D 1
and A0 D f0;2g; B0 D f1g. Let " > 0 be given. We have the following two cases:

Case 1. Consider the nondecreasing sequence fxng defined with xn D �1n . Then
for y D 1 we have limn!1d.xn;y/ D 1 and so, there exists N 2 N such that
d.xn;y/� dist.A;B/C " for all n�N . We note that xn! 0.

Case 2. Let fxng be a sequence in A for which xn D 2 for all n 2N except perhaps
finite numbers. In this case we have xn! 2 and that limn!1d.xn;y/D 1.
Therefore, .A;B/ has the monotone proximally property.
We now claim that .A;B/ does not satisfy the property WUC. To this end, define the
sequence f´ng in A as

´n D

(
�
1
n

if n is odd;
2 if n is even:
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The we have limn!1d.´n;y/D dist.A;B/ but the sequence f´ng is not convergent.

Example 2.3. Suppose X D R2 and define the metric d on X by

d..x1;y1/; .x2;y2//D jx1�x2jC jy1�y2j; 8 .x1;y1/; .x2;y2/ 2 R2:

Consider the partially ordered relation onX with .x1;y1/� .x2;y2/, x1� x2; y1�

y2. We define

AD f.0;1�
1

2n
/ W n 2Ng[f.0;n/ W n 2Ng; B D f.2;y/ W 0� y � 1g.

By simply calculations, we obtain dist.A;B/ D 2. By definition of A, we see that
there exists only one increasing sequence fxng in A such that for every " > 0 there
exist y 2B andN 2N satisfying that d.xn;y/� dist.A;B/C" for n�N . The above
assumption satisfies the sequence fxn D .0;1� 1

2n
/ W n 2Ng for y D .2;1/. Then, of

course fxng has a convergent subsequence (for example fxk D .0;1� 1
4k
/ W k 2Ng).

The following theorem is the main result of this section.

Theorem 6. Let .A;B/ be nonempty pair of subsets of a metric space .X;d/ and
”�” be a partially ordered relation on A such that A is complete. Let T W A[B !
A[B be a cyclic mapping such that T 2 is nondecreasing on A and there exists � > 0
such that

d�.T Kx;T 2x/ > 0) �CF.d�.T Kx;T 2x/� F.d�.x0;T x//;

for all x; Kx 2 A with x � Kx. Suppose there exists x0 2 A with x0 � T 2x0 and define
xnC1 D T xn. If A is bounded and a regular set and .A;B/ has the monotone prox-
imally property, then T has a best proximity point.

Proof. From Lemma 1 d.xn;xnC1/! dist.A;B/. Since A is bounded, the se-
quence fx2ng and so the sequence fx2n�1g are also bounded. Consider n 2N. Then
for all k 2N by the fact that the sequences fx2n�1g and fx2ng are nondecreasing and
bounded, we have

F.d�.x2nC2k;x2nC1//

D F.d�.T 2nC2kx0;T
2nC1x0//D F.d

�.T .x2nC2k�1/;T
2.x2n�1///

� F.d�.x2nC2k�1;x2n//� � .since x2n�1 � x2nC2k�1/

D F.d�.T x2nC2k�2;T
2x2n�2//� �

� F.d�.x2nC2k�2;x2n�1//�2� .since x2n�2 � x2nC2k�2/

� :::� F.d�.x2k;x1//�2n� � F.M/�2n�;

where M WD supfd�.x2k;x1/ W k 2Ng. Thus for all " > 0 there exists n0 2N such
that d�.x2n0C2k;x2n0C1/� " which implies that

x2n0C2k 2B.x2n0C1; "Cdist.A;B//; 8k 2N:



748 M. GABELEH, O. OLELA OTAFUDU, AND R. PLEBANIAK

By the fact that .A;B/ has the monotone proximally property, we conclude that the
sequence fx2ng has a convergent subsequence to a point p 2 A. It now follows from
an equivalent argument of Theorem 5 that p is a best proximity point of T and the
result follows.

�

Let us illustrate Theorem 6 with the following example.

Example 2.4. Suppose X D R2 and define the metric d on X by

d..x1;y1/; .x2;y2//D jx1�x2jC jy1�y2j; 8 .x1;y1/; .x2;y2/ 2 R2:

We know that X is not strictly convex. Consider the partially ordered relation on X
with

.x1;y1/� .x2;y2/, x1 � x2; y1 � y2:

Let

AD f.0;1�
1

2n
/ W n 2Ng[f.0;n/ W n 2Ng; B D f.2;y/ W 0� y � 1g:

Then dist.A;B/D 2 and A0D f.0;1� 1
2n
/ W n 2Ng[f.0;n/ W n 2 f1;2;3gg;B0DB .

Also, it is easy to see that .A;B/ has the monotone proximally property. Define the
cyclic mapping T W A[B! A[B by formula

T .x/D8<: .2;1/ for x 2W WD f.x1;y1/ 2X W x1 D 0^y1 2 f1;2g[f1� 1
2n
W n 2Ngg

.2;0/ for x 2 V WD f.x1;y1/ 2X W x1 D 0^y1 2 fn 2N W n > 2gg

.0;1/ for x D .x1;y1/D .2;k/, k 2 Œ0;1�

where x 2 A[B . Then, we calculate

T 2.x/D

�
.0;1/ for x 2W [V
.2;1/ for x D .x1;y1/D .2;k/, k 2 Œ0;1�

, x 2 A[B .

It is easy to observe that the map T is continuous on A, and T 2 is nondecreasing on
A.

Next, we show that, for F.t/D ln.t/, t > 0, there exists � > 0 such that

d�.T Kx;T 2x/ > 0) �CF.d�.T Kx;T 2x/� F.d�.x0;T x//;

for all x; Kx 2 A with x � Kx.
Indeed, let x; Kx 2 A with x � Kx and � D ln.2/ > 0. Since x � Kx, we may consider

three cases:
Case 1. If x; Kx 2W , then we have the following: T .x/D .2;1/, T 2.x/D .0;1/,

T . Kx/D .2;1/, T 2. Kx/D .0;1/, thus d.T . Kx/;T 2.x//D d..2;1/; .0;1//D 2, and
d�.T . Kx/;T 2.x//D d.T . Kx/;T 2.x//�dist.A;B/D 0. In consequence the contrac-
tion conditions is trivial satisfies.
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Case 2. If x; Kx 2 V , then we have the following: T .x/D .2;0/, T 2.x/D .0;1/,
T . Kx/D .2;0/, T 2. Kx/D .0;1/, thus d.T . Kx/;T 2.x//D d..2;0/; .0;1//D 3,
and d�.T . Kx/;T 2.x//
D d.T . Kx/;T 2.x//�dist.A;B/D 1>0. Moreover, d. Kx;T .x//D d..0;m/;.2;0//D
mC2, and d�. Kx;T .x//D d. Kx;T .x//�dist.A;B/Dm, for some m> 2, such that
Kx D .0;m/ 2 V . On the other hand, we have m� 3, so 1

m
�
1
3
< 1
2

. In consequence,
since 1

2
D e� ln.2/ D e�� , we obtain

d�.T . Kx/;T 2.x//D 1�me�� D d�. Kx;T .x//e�� .

Therefore
e�d�.T . Kx/;T 2.x//� d�. Kx;T .x//,

and next
e�eln.d�.T . Kx/;T 2.x///

� eln.d�. Kx;T .x///.

Finally, we obtain

�CF.d�.T . Kx/;T 2.x///� F.d�. Kx;T .x///.

Hence, the contraction conditions is satisfies in this case.
Case 3. If x 2W and Kx 2 V , then we have the following: T .x/D .2;1/, T 2.x/D

.0;1/, T . Kx/ D .2;0/, T 2. Kx/ D .0;1/, thus d.T . Kx/;T 2.x// D d..2;0/; .0;1// D 3,
and d�.T . Kx/;T 2.x//D d.T . Kx/;T 2.x//�dist.A;B/D 1 > 0. Moreover,
d. Kx;T .x//D d..0;m/;.2;1//DmC1, and d�. Kx;T .x//D d. Kx;T .x//�dist.A;B/
D m� 1, for some m > 2, such that Kx D .0;m/ 2 V . On the other hand, we have
m � 3, so m� 1 � 2 and next 1 � 1

2
.m� 1/. In consequence, since 1

2
D e�� , we

obtain
d�.T . Kx/;T 2.x//D 1� .m�1/e�� D d�. Kx;T .x//e�� .

Therefore
e�d�.T . Kx/;T 2.x//� d�. Kx;T .x//,

and next
e�eln.d�.T . Kx/;T 2.x///

� eln.d�. Kx;T .x///.

Finally, we obtain

�CF.d�.T . Kx/;T 2.x///� F.d�. Kx;T .x///.

Hence, the contraction conditions is satisfies in this case.
In consequence, for the map T there exists � > 0 such that

d�.T Kx;T 2x/ > 0) �CF.d�.T Kx;T 2x/� F.d�.x0;T x//;

for all x; Kx 2 A with x � Kx. We observe that exists x0 2 A with x0 � T 2x0 (for
example x0 D .0; 12/ and then T 2x0 D .0;1/). Ofcourse, the set A is bounded and
a regular set and .A;B/ has the monotone proximally property (see Example 3.2).
Finally, the point .0;1/ is the best proximity point of T (we recall T .0;1/D .2;1/,
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so d..0;1/;T .0;1//D 2D dist.A;B/).
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