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Abstract. In this paper, using the Mellin transform of Airy function we present an integral addi-

. . —x3 .. . .
tion formula for the function e~ . In deriving this representation, we make use of the Hankel

functions of first kind and apply this representation to get the Green function of triharmonic heat
equation in terms of the Airy functions.
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1. INTRODUCTION

As we know for the harmonic heat equation
0
gu(x,y,t) = Au(x,y,t), t>0,x,y €R, u(x,y,0)=38x)5(), (1.1

2 2, . . .
where A = 8‘1—2 + aay_Z is the Laplacian operator, the associated Green function (fun-
damental solution) is given by [17]

_x2+y2
a4t

u(x,y,t) = e (1.2)

1
24/t
Also, the Green function of biharmonic heat equation [5]

ad

Eu(x,y,t)JrAzu(x,y,t) =0, 1>0,x,y€eR, u(x,y,0)=58x)(), (1.3)

has been recently presented in terms of the quartic Lévy stable function given by

[18,23]

1 o0
Lq(E,1) = —/ etrt cos(ré)dr. (1.4)
T Jo
This function is the Green function of generalized heat equation
d 9%
—u(x,t)+ —u(x,t)=0, r>0,xeR, u(x,0)=346x), (1.5)
ot dx*
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related to the following fractional exponential operator

u(x,t) = e"%(S(x) = Lu(x,1). (1.6)

The main strategy of obtaining the Green function of biharmonic heat equation is
applying the two dimensional fractional exponential operator
0% 4 22
u(x.y.1) = e A5(x0)8(y) = ¢ 2 T2l 5(x)5(y). (1.7)
which can be extended for the higher order harmonic heat equations. This is our main
motivation for showing the Green function of triharmonic heat equation

ad
gu(x,y,t) +A%ux,y,t)=0, t>0,x,yeR, u(x,y,0)=38x)8(), (1.8)
which its solution can be consequently derived as

u(x,y,1) = e A §(x)8(»). (1.9)

For obtaining the above solution which has been much less developed in the literature,
see for example [26], first we get an integral addition formula for the function e ™ .,
Next, we present the fundamental solution in terms of the Airy functions.

In this sense, we organize the paper as follows. In Section 2, we recall the defin-
itions of the gamma and reciprocal gamma functions along with its triplication for-
mula. We also mention some algebraic and operational properties of the Airy func-
tions of first and second kinds.

In Section 3, we state an integral relation between the function e  and Airy
function on the well-known Hankel contour and then we construct an integral addi-

x3

tion formula for function e=*". The obtained addition formula is given in terms of
the imaginary parts of products of Airy functions and can be simplified with respect
the products of Hankel functions of first kind.

In Section 4, using the exponential differential operators we get the Green function
of triharmonic heat equation (1.9) in terms of the Airy functions.

2. PRELIMINARIES
2.1. The Gamma functions

The gamma function and the reciprocal gamma function are defined as

o0
I'(s) :/ e ' e, M(s) >0, (2.1)
0
1 1 T_—S§
- d 2.2
TG) ~ ami Hae T T, (2.2)

where Ha is the Hankel contour in complex plane with a cut along the negative real
semi-axis argt = 7r and consisting of the following three parts

(1) argr =m, 7] >,
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(2) —w <argr <7, |t|=pF,
3) argr = —m, |T|>e.
For this function, the well-known triplication formula is given by [1, p. 256, 6.1.19]
1
2

s+ 1

I'(s)= 3

¥ )r(#), % (s) > 0. 2.3)

2.2. The Airy functions

The classical Airy functions of first and second kinds Ai(x) and Bi(x) are defined
as [ 2 2 2 b b ]

1 [ 3
Ai(x) = —/ cos(xt + —)dt, 2.4
T Jo 3
. 1 [°f o3 . 3
Bi(x) = —/ e 3 +sin(xt + ?) dt, (2.5)
T Jo

and the Mellin transform of function Ai(x) is given by [27, p. 96]

. ® 1. (s I(s)
M{Ai(x); s} =/0 LAl (x)dx = 37 +2)/3@, N(s)>0. (2.6

Also, for |arg(a)| < 5 and |arg(h)| < 5 some integral addition formula have been
derived in the literature, see [12,25]

) o . b d§

A1(a+b):/0 Ai (g%)Al((l—g)é)gﬁ(l—g)? 2.7)
. b (! . b dé§
A1(a+b)=aib/0 Al(é)Al((l_s);)sg(l_s)g. (2.8)

Moreover, the following identities hold for the Airy functions of first and second
kinds [27, p. 8], [1, p. 447, 10.4.28]

Ai/(xe—%") _ Ai’(—xe%’”> _¢ 23 (A (—x) —i Bi' (=x)]., (2.9)
A¥'(—x) —iBi'(=x) = e~ % g ) (%x%) (2.10)
- ﬁ 2/3 3 ’ .

where the Hankel function of first kind H,El)(x) is defined as [19, p. 914, 8.421(1)]

_vmi

2e” 2

Tl

o0
HV (x) = / exeosh vy | o)y <1, x>0. (2.11)
—0oQ
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3. INTEGRAL ADDITION FORMULA

Lemma 1. For 0(s) > 0, the Mellin transform of function e™* * s given by
M{e™ s} =2 [3—<4S+1>/6—1 |[3e*/ s L) |
regh res?)
1

— [3—(4s+1)/6
regh

]M{Ai(x);s}. 3.1)

x3

Proof. According to [19, p. 1131], for the Mellin transform of the function e™

3

1
Mie™ 15} = gf(g), (3.2)

and taking into account the relations (2.3) and (2.6), we get the result.
g

Lemma 2. The following representation holds for the function e=** and the Airy
function

e* = —i3_1/6/ ETT_1/3Ai(32/3T1/3X)d‘[, (3.3)
Ha

where Ha is the Hankel contour.

Proof. Taking into account the relation (2.2) for the reciprocal gamma function
F(++l) and considering the representation (3.1), we can present a simple comparison

3
between the Mellin transform of the Airy function and e™* *. After a little algebra
and using the following property of Mellin transform

M{ f(ax);s} = aisF(s), a>0, (3.4

we obtain the result. O

Theorem 1. For |arg(a)| < § and |arg(b)| < %, the following integral addition
formulas hold

atb _ b 1/00 e_r“[e?Ai’(32/3fl/3e_3a) i,(32/3r1/3e_3b)]

3176 Jo Jo It 51/3 (1_%-)1/3
1
x 5———ddg, (3.5)
£3(1-8)3
1 poo 2/3.1/3,~% 2/3_1/3 ,—%L
—(a+b) _ ab e3Pt Pem3ay 377 PeT 3D
e _Zﬁa—l—b/o /0 e J[Al( £1/3 )Al( (1_6)i )]
1
X ————duds§. (3.6)
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Proof. First, we use the relation (3.3) to present an addition formula for the func-
tion e™*" with respect to the addition formula of Airy function. Next, we compute

the remaining integral on the Hankel contour in three parts by applying Titchmarsh

theorem for the inverse Laplace transforms of multi-valued functions [&, 10,21]
2/3.1/3 2/3.1/3
_(a+b)3 _i3-1/6 e . 1/3A1 345t a>Ai,(3 T b)]
Ha gL/3 (1—§)1/3
—d d§
E’(l—é')3
2/3.1/3 2/3.1/3
—i371/e er —1/3 7 3/T/a)Ai/(3/r/b)]
g1/3 (1—&)1/3) Jerein
—d d§
£3(1-6)3
32/3.1/3, 32/3,1/3p
1/6 -1/3 .
—i3 / / e't Al( 51/3 )Al (—(1_5)1/3)]1481_9
—d d§
£3(1-6)3
32/3.1/3, 32/3,1/3p
1/6 -1/3 .
—i3 / f e't Al( 51/3 )Al (—(1—5)1/3)]r=re—in
gdrds. 3.7)
Y

. . . . 3. .
Taking € — 0, we obtain the addition formula of function ™" in terms of the ima-

ginary part of products of Airy functions as mentioned in (3.5). The result (3.6) is
obtained by the same procedure. U

Remark 1. For simplicity of the imaginary part of products of Airy functions in
(3.5), we employ the relations (2.9) and (2.10), respectively, and present two repres-
entations as follows

;“s[ejgiAi/(y/%;ji_?a )Ai/(32/(3]fi/;el_/:3ib )]
Pl i (S (- (]

T4 £1/3 - (1—§)1/3 - £1/3 - (1—§)1/3
(3.8)
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i 32/3‘51/36_%& 32/3T1/3€_%ib
~ LE ./ ./ —
‘S[e TAI ( £1/3 )Al ( (1 _5)1/3 )]
5/6 2 3 2.3/2 1 21,3/2
8%‘1/3(1—5)1/3 31/2 é§-1/2 v 31/2 (1 5)1/2 :

4. THE GREEN FUNCTION OF TRIHARMONIC HEAT EQUATION

In this section, using the exponential differential operators and the obtained ad-
dition formula in previous section, we intend to obtain the Green function of trihar-
monic heat equation in terms of the Airy functions. For knowing more applications
of the exponential differential operators in the applied mathematics see [2,4,7, 11,

- ) s ]

At the beginning, we show a fundamental lemma for the Green function of gener-
alized heat equation of third order and state a theorem for the Green function of trihar-
monic heat equation. Although the obtained solution in very formal, but it presents
an analytical form for the structure of Green function.

Lemma 3 ([7, 1 1]). The Green function of generalized heat equation

0 93
—u(x,t) = —u(x,t), t>0,xeR, u(x0) =35x), 4.1
ot dx3
is obtained by applying the following exponential operator on the Dirac delta func-
tion

93 1 . X
u(x,t) = e a3§(x) = %Al(— %) 4.2)

Theorem 2. The Green function of triharmonic heat equation

d
5u(x,y,t)+A3u(x,y,t)=0, t>0,x,yeR, u(x,y,0)=8x)5(y), 4.3)

is given by
e e~ Tr—1/3 —2(u+v)/3
u(x,y.t) = S4/3-2 [ / / / 2/3 2/3
2413 00 E (1- g) \/Coshz (u) cosh? (v)

+ 6/38 -~ 6/3(1—¢) —mi
xAi(—tr—)Ai<—L)dudvdrd$
/2 cosh(u) 3/2cosh(v)

Proof. We begin with the following formal solution of triharmonic heat equation

.2 .2
u(x.y.0) = e 25030 = e T2 (08 (0), (4.4)
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2 2 . . .
and seta = /1 8—2 andb = It 8—2 in relation (3.5) to get the solution as

—t[> ()2] = 1
5 5060) = S / / VrEi—g

<[ (5rs 1/2;1//22 i )5(0)]
X[H(l)( 2 1 1/2 3 )S(y)}drdé
2/3\31/2 (1_5)1/2

4.5)

We now apply the integral representation (2.11) and identity (4.1), and simplify the
above solution using the following relations

/2. 1/2 _zi e
[ (1)( 2t )5( )] 3 /oo eZl\/%COSh(u)%_zuBS(x)du,
—00

2/3\31/2 51/2 i
6
:__/ —2u/3 tT
3/2cosh(u)
6/3& _%l
xAif — L2 du,
( \3/2005h(u))
4.6)
1/2,1/2 83 a

2% [ 2i [ §E cosh(v) 25 —20/3
S 3t 3 3(y)dv,
)()] — f_ >V (y)dv
6/3(1—§)

— __/ —2v/3 14
Y2 cosh(v)

6/3(1—¢) ,—ZL

eni( TR,
Y/2cosh(v)

t
(2
[H2/3(31/2 (1— 5)1/2

4.7)

Finally, by substituting the above relations into (4.5) we obtain the result.
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