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Abstract. The aim of this research paper is to establish the following summation formula for the
Clausen’s series 3F2:

3F2

�
�n;b�a�1;f C1

b;f
I1

�
D
.a/n.cC1/n

.b/n.c/n
;

where f D c.1Ca�b/=.a� c/, in three different ways. For c D 1
2a, we have

3F2

�
�n;b�a�1;2Ca�b

b;1Ca�b
I1

�
D
.a/n

�
1C 1

2 a
�
n

.b/n
�
1
2 a
�
n

;

which is already available in the literarute. Our formula is then applied to obtain two general
results, one is the Euler’s transformation for the series 2F2 and another is the Kummer–type first
transformation for the series 2F2 established recently by Paris by following a different method.
The results obtained generalize the related results by Exton.
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1. INTRODUCTION AND RESULTS REQUIRED

In 1997 Exton [3] derived four reduction formulæ for the Kampé de Fériet function
and from one of the results, he deduced the following two results:

.1�x/�h3F2

�
h;a;1C 1

2
a

b; 1
2
a
I�

x

1�x

�
D 3F2

�
h;b�a�1;2Ca�b

b;1Ca�b
Ix

�
(1)

and

e�x2F2

�
a;1C 1

2
a

1
2
a
Ix

�
D 2F2

�
b�a�1;2Ca�b

b;1Ca�b
I�x

�
: (2)
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It is of interest to compare these results with

.1�x/�˛2F1

�
˛; �ˇ


I�

x

1�x

�
D 2F1

�
˛;ˇ


Ix

�
(3)

known as Euler’s first transformation [8] and the confluent

e�x1F1

�
a

b
Ix

�
D 1F1

�
b�a

b
I�x

�
(4)

known as Kummer’s first theorem [8].
We remark in passing that the result (1) is also recorded in [10] where it is ob-

tained by other method. The result (2) has been obtained by Miller [4] by following
two different and transparent ways. On the other hand it should be remarked here
that whenever generalized hypergeometric functions reduce to gamma functions, the
results are very important from the applications point of view.

It is also well known that the generalized hypergeometric functions pFq appear
ubiquitously as solutions of plethora of problems in mathematics, statistics and math-
ematical physics. Thus, the results established in this paper should be eventually
useful in a wide range of applications.

The aim of this research article is to establish first, a summation formula for the
Clausen’s series 3F2 and then, as an application we derive two results which general-
ize (1) and (2).

In our present investigations we will require:

(i) Euler’s second transformation formula [1]

2F1

�
˛;ˇ


Ix

�
D .1�x/�˛�ˇ 2F1

�
 �˛; �ˇ


Ix

�
I (5)

(ii) the Beta-integral transform [2]Z 1

0

xc�1.1�x/e�c�12F1

�
a;b

d
Ix

�
dx D

� .c/� .e� c/

� .e/
3F2

�
a;b;c

d;e
I1

�
; (6)

provided <fcg> 0, <fe� cg> 0, <fd C e�a�b� cg> 0;
(iii) Bailey’s transform [10, Eq. (2.4.10), p. 60] in summing double series

1X
nD0

1X
mD0

A.m;n/D

1X
nD0

nX
mD0

A.m;n�m/: (7)

2. MAIN SUMMATION FORMULA

Theorem 1. Let n be a non-negative integer and let a;b;c 2C such that

f D
c.1Ca�b/

a� c
62Z�0 WD f0;�1;�2; : : :g:
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Then

3F2

�
�n;b�a�1;f C1

b;f
I1

�
D
.a/n.cC1/n

.b/n.c/n
; (8)

where .a/n D � .aCn/=� .n/D a.aC1/ � � �.aCn�1/ stands for the Pochhammer
symbol.

First proof. Denoting by S the left hand side of (8), expressing 3F2 as a series, we
get

S D

nX
rD0

.�n/r.b�a�1/r

.b/r rŠ

�
.f C1/r

.f /r

�
D

nX
rD0

.�n/r.b�a�1/r

.b/r rŠ

�
1C

r

f

�
:

Separate now S into two series, and after little adjusment in the second series, sum-
ming up the both expression, we arrive at

S D 1F2

�
�n;b�a

bC1
I1

�
:

Applying Vandermonde’s theorem in both hypergeometric series 2F1, we have

S D
.aC1/n

.b/n
C
n.a� c/

bc

.aC1/n�1

.bC1/n�1

which, upon a short algebraic simplification yields

S D
.a/n.cC1/n

.b/n.c/n
:

The proof is complete. �

Second proof. In a two-term transformation formula for the Clausen’s series 3F2,
popularly known as Kummer–Thomae–Whipple formula [1], which evidently origi-
nates back to Kummer [1] and states that

3F2

�
A;H;C

D;E
I1

�
D

B.E;DCE�A�H �C/
B.E�C;DCE�A�H/ 3

F2

�
C;D�A;D�H

D;DCE�A�H
I1

�
(9)

provided <fEg> 0, <fDCE�A�H �C g> 0. Here

B.s; r/D
Z 1

0

xs�1.1�x/r�1dx
�

min
˚
<fsg;<frg

	
> 0

�
(10)

stands for the Euler Beta function (Its connection to the familiar Euler Gamma func-
tion � .�/ one realizes by B.s; r/D � .s/� .r/=� .sC r/).

In order to derive our summation formula (8), put A D b � a� 1, H D f C 1,
C D�n, D D f , and E D b in (9). So, we get after some reduction

S D
.a/n

.b/n
3F2

�
�n;f �bCaC1;�1

f;a
I1

�
D
.a/n

.b/n

�
1C

n.f �bCaC1/

af

�
:
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Using now f D c.1Ca�b/=.a� c/, the last expression transforms into

S D
.a/n

.b/n

n
1C

n

c

o
:

Finally, recalling that cCnD c.cC1/n=.c/n, we conclude

S D
.a/n.cC1/n

.b/n.c/n
;

such that completes the proof. �

Third proof. Consider the Beta-integral transform (6) in the slightly changed form:

3F2

�
˛;ˇ;s

;sC r
I1

�
D

1

B.�;�/

Z 1

0

xs�1.1�x/r�12F1

�
˛;ˇ


Ix

�
dx

provided <fsg> 0, <frg> 0, and <frC �˛�ˇg> 0. In this, if we take ˛ D�n,
ˇ D f C1, s D b�a�1,  D f , and sC r D b, that is, r D aC1, by (5) we get

S D
1

B.b�a�1;aC1/

Z 1

0

xb�a�2.1�x/a2F1

�
�n;f C1

f
Ix

�
dx

D
1

B.b�a�1;aC1/

Z 1

0

xb�a�2.1�x/aCn�12F1

�
�1;f Cn

f
Ix

�
dx

D
1

B.b�a�1;aC1/

Z 1

0

xb�a�2.1�x/aCn�1
�
1�

f Cn

f
x

�
dx :

Separating the last integral into two parts and calculating the values of both, we get

S D
1

B.b�a�1;aC1/

�
B.b�a�1;aCn/�

�
1C

n

f

�
B.b�a;aCn/

�
:

Now, straightforward calculations lead the asserted result (8). �

3. APPLICATIONS

In this section, as applications of our summation formula (8), we derive the fol-
lowing two general formulæ such that generalize Exton’s results (1), (2).

Theorem 2. Let f be the same as before. Then

.1�x/�h3F2

�
h;b�a�1;f C1

b;f
I�

x

1�x

�
D 3F2

�
h;a;cC1

b;c
Ix

�
(11)

and

ex2F2

�
b�a�1;f C1

b;f
I�x

�
D 2F2

�
a;cC1

b;c
Ix

�
: (12)
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Proof. Let us denote T the left-hand side of (11). First, expressing 3F2 as a series,
we conclude

T D

1X
nD0

.�1/n.h/n.b�a�1/n.f C1/n

.b/n.f /nnŠ
xn.1�x/�h�n:

Using the binomial expansion of .1�x/�h and applying the identity .h/n.hCn/n D
.h/nCm, we arrive at

T D

1X
nD0

1X
mD0

.�1/n.h/nCm.b�a�1/n.f C1/n

.b/n.f /nnŠmŠ
xnCm:

The consequence of the Bailey’s transform (7) of the double-indexed summand will
be

T D

1X
nD0

1X
mD0

.�1/n .h/m.b�a�1/n.f C1/n

.b/n.f /nnŠ.m�n/Š
xm:

Now, because of

.m�n/ŠD .�1/n
mŠ

.�m/n
; (13)

we get

T D

1X
mD0

.h/m

mŠ
xm

mX
nD0

.b�a�1/n.f C1/n.�m/n

.b/n.f /nnŠ
I

summing up the inner-most series, we have

T D

1X
mD0

.h/m

mŠ
3F2

�
�m;b�a�1;f C1

b;f
I1

�
xm :

By the Theorem 1, we deduce

T D

1X
mD0

.h/m

mŠ
xm

.a/m.cC1/m

.b/m.c/m
D 3F2

�
h;a;cC1

b;c
Ix

�
such that is the right-hand side expression in (11).

Denote U the expression on the left in the relation (12) and express both the func-
tions involved, in series. After some little simplification we get

U D

1X
nD0

1X
mD0

.�1/m.b�a�1/m.f C1/m

.b/m.f /mmŠnŠ
xmCn:

Making use of the Bailey’s transform and the indetity (13), we have

U D

1X
nD0

nX
mD0

.�1/m.b�a�1/m.f C1/m

.b/m.f /mmŠ.n�m/Š
xn
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D

1X
nD0

xn

nŠ

nX
mD0

.�n/m.b�a�1/m.f C1/m

.b/m.f /mmŠ
:

Now, it remains to summing up the inner-most series getting

U D

1X
nD0

xn

nŠ
3F2

�
�n;b�a�1;f C1

b;f
I1

�
such that, by means of Theorem 1, clearly becomes

U D

1X
nD0

xn

nŠ

.a/n.cC1/n

.b/n.c/n
D 2F2

�
a;cC1

b;c
Ix

�
that is, Theorem 2 is proved. �

Another proof of (11). Having in the mind the earlier convention that T denotes
the left side expression of (11), we conclude

T D .1�x/�h 3F2

�
h;b�a�1;f C1

b;f
I�

x

1�x

�

D .1�x/�h
1X
nD0

.h/n .b�a�1/n

.b/nnŠ

.f C1/n

.f /n

�
�

x

1�x

�n
D .1�x/�h

1X
nD0

.h/n .b�a�1/n

.b/nnŠ

�
1C

n

f

��
�

x

1�x

�n
:

Separating the sum into two parts and summing the first series, we get

T D .1�x/�h 2F1

�
h;b�a�1

b
I�

x

1�x

�

C
1

f
.1�x/�h

1X
nD1

.h/n.b�a�1/n

.b/n.n�1/Š

�
�

x

1�x

�n
:

Now, changing n into nC1 the remaining series T2, say, becomes

T2 D
1

f
.1�x/�h

1X
nD0

.h/nC1.b�a�1/nC1

.b/nC1nŠ

�
�

x

1�x

�nC1
D�

h.b�a�1/x

f b.1�x/hC1

1X
nD0

.hC1/n.b�a/n

.bC1/nnŠ

�
�

x

1�x

�n
;

that is

T D .1�x/�h 2F1

�
h;b�a�1

b
I�

x

1�x

�
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�
h.b�a�1/x

f b.1�x/hC1
2F1

�
hC1;b�a

bC1
I�

x

1�x

�
:

Using (3) and mentioning that f D c.1Ca�b/
a�c

, we deduce

T D 2F1

�
h;aC1

b
Ix

�
�
h.b�a�1/x

f b
2F1

�
hC1;aC1

bC1
Ix

�

D 2F1

�
h;aC1

b
Ix

�
C
h.a� c/x

bc
2F1

�
hC1;aC1

bC1
Ix

�

D

(
2F1

�
h;aC1

b
Ix

�
�
hx

b
2F1

�
hC1;aC1

bC1
Ix

�)

C
hax

bc
2F1

�
hC1;aC1

bC1
Ix

�
:

But it can be easily seen that(
2F1

�
h;aC1

b
Ix

�
�
hx

b
2F1

�
hC1;aC1

bC1
Ix

�)
D 2F1

�
h;a

b
Ix

�
:

Hence,

T D 2F1

�
h;a

b
Ix

�
C
hax

bc
2F1

�
hC1;aC1

bC1
Ix

�
D 3F2

�
h;a;cC1

b;c
Ix

�
such that coincides with the right hand expression in (11). �

Remark 1. Since the result (12) is a confluent limiting case of the (11), so it can
be easily deduced by (11).

Remark 2. In (11), if we take c D 1
2
a, we get

.1�x/�h 3F2

�
h;b�a�1;2Ca�b

b;1Ca�b
I�

x

1�x

�
D 3F2

�
h;a;1C 1

2
a

b; 1
2
a
Ix

�
which reduces to (1) by replacing x by �x=.1�x/.

Remark 3. In (12), taking c D 1
2
a, we get (2).

4. CONCLUSION

We mention below a result similar to (8) given by Miller [5]

3F2

�
�n;cC1

b;c
I1

�
D
.b�a�1/n.f C1/n

.b/n.f /n
; (14)

f being the same as before.
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For c D 1
2
a, this reduces to

3F2

�
�n;a;1C 1

2
a

b; 1
2
a

I1

�
D
.b�a�1/n.2Ca�b/n

.b/n.1Ca�b/n
;

which is a known result in the literature [7].
The result quoted in Remark 2 belongs to Paris [6] who obtained this relation

by a different method. Actually, the results mentioned in Remarks 2 and 3 have
been also obtained very recently by Rathie and Paris [9] by utilising the summation
formula (14) due to Miller [5].

We conclude the paper by remarking that the result (8) and Miller’s result (14) are
special cases of the following general result given already in the literature [7]

3F2

�
a;b;d C1

c;d
I1

�
D
� .c/� .c�a�b�1/

� .c�a/� .c�b/

�
c�a�b�1C

ab

d

�
such that can be easily transformed into Beta function expression, reads as follows:

3F2

�
a;b;d C1

c;d
I1

�
D

B.c;c�a�b�1/
B.c�a;c�b�1/

�
1C

a.b�d/

d.c�b�1/

�
:
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