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Abstract. In this paper, we investigate the B-distances of infinite sequences. For this purpose
we use generalized neighbourhood sequences. The general neighbourhood sequences were in-
troduced for measuring distances in digital geometry (Zn). We extend their application to se-
quences, and present an algorithm which provides a shortest path between two sequences. We
also present a formula to calculate the B-distance of any two sequences for a neighbourhood
sequence B .

We also investigate the concept of k-convergent sequences for k 2N, that concept is generally
weaker than the convergence. We will use the term k-sequence which is a kind of generaliza-
tion of the concept of 0-sequence. We also show some connection between the B-distances of
sequences and the properties of their difference sequences.
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1. INTRODUCTION

The theory of sequences is widely used in mathematical analysis, calculus and in
various applications. A good old textbook in this topic is Knopp’s book [8].

One of the first used distance among finite sequences was the Hamming-distance
[1,3]: theH -distance of two same-length sequences over a finite alphabet is the num-
ber of places where they differ. We can extend this definition to infinite sequences
also, over infinite alphabets (Z, or R). Allowing infinite distances this extension is
natural.

There are other possibilities to measure the distances of finite and infinite se-
quences which contain numbers. The supremum norm is used for example in [9]. We
will call this metric as sup-distance. It is another possibility to use the inf-distance,
which is not a widely used distance function (due to some unpleasant properties).

In this paper, we investigate distances with integer values, they are based on vari-
ous neighbourhood sequences (B) and neighbouring relations among the sequences.

The theory of neighbourhood sequences comes from digital geometry. In digital
geometry the discrete space is used, i.e., points can have only integer co-ordinates.
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Two different points in Zm are k-neighbours .k;m 2N[f1g;k �m/, if their cor-
responding elements are equal up to at most k exceptions, and the difference of the
exceptional values are at most 1. While in digital geometry the elements of Zn or
Z1 were called points, we will call the elements of R1 sequences. Indeed, we can
use the same neighbourhood criteria for sequences.

After fixing the value of k, we may define the distance of two sequences as the
number of steps of the shortest path between these sequences, where a step means
a movement from a sequence to one of its k-neighbours. On can check that by this
definition we get a generalized metric on R1, for each k 2 f1;2; :::g, and that these
generalized metrics are different for the separate values of k.

To obtain these distances we fixed k in the beginning, in other words, we used
the same k in each step for walking from a sequence p to a sequence q in R1. The
situation is more complicated if we may change the value of k after every step. A
sequence .bi /

1
iD1 is called a neighbourhood sequence over the set of the sequences,

if bi 2N[f1g.i 2N/. The concept of distances based on neighbourhood relations
comes from [6, 13]. The periodic neighbourhood sequences were introduced in [5,
6, 14], while the general notion in [7, 10]. (We mention that the sequences in [5, 14]
were called “neighbourhood sequences” while in [7] “generalized neighbourhood
sequences”, but for simplicity we use the above definition.) Moreover in [7, 10, 11]
the authors investigated the1-dimensional space Z1.

By the help of an neighbourhood sequence .bi /
1
iD1 we may define the distance of

sequences p;q in the following way. We take the length of a shortest path from p

to q, but at the i -th step, now, we may move from a sequence to another if and only
if they are bi -neighbours. Certainly, this notion is a generalization of the original
one, as we may choose bi D k for each i 2N, with any k 2 f1;2; :::g. It is obvious,
that these so-called B-distances have only non-negative integer values based on their
definitions.

In [10] we have presented an algorithm which provides a shortest path between di-
gital points, both in case of finite and infinite dimensional spaces. As we mentioned,
the neighbourhood sequence .bi /

1
iD1 with bi D k .i 2 N/ generates a generalized

metric on R1 .m 2 N/ for any k. However, it is easy to find neighbourhood se-
quences, even periodic ones, such that the distances with respect to these neighbour-
hood sequences do not provide (generalized) metrics on the set of sequences. In [10]
we have proved a necessary and sufficient condition for distance functions based on
neighbourhood sequences to define a generalized metric in Z1. The purpose of this
paper is to generalize these concepts from Z1 to R1.

The structure of this paper is as follows. In the next section, we give our notation
and we define basic concepts. In the third section, we present an algorithm to solve
the shortest path problem between any two sequences. In section four, we describe
some properties of B-distances. We compare the B-distances with other type of
distances. We also present a necessary and sufficient condition to a B-distance to
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give a generalized metric over the set (i.e., the space) of sequences. A formula to
calculate the B-distance between two arbitrary sequence with a given neighbourhood
sequence B is also derived.

Although some of the concepts corresponding to sequences and distances are well-
known we briefly recall them; we believe that this general overview will be helpful
to understand the subsequent parts of the paper. Some of the results may seem to be
simple to follow, but we have decided to include them here to have a self-contained
paper and to show a relatively complete picture about this field.

2. NOTATIONS AND DEFINITIONS

First, we recall and define some basic concepts about the sequences. Although
some of the concepts are well known from the literature mentioned earlier, we believe
that due to various relations of these concepts to our topic it is worth to recall them
in details. We start with the simplest concepts and we are going to the direction of
more complex concepts. Let us start with a notation. Throughout the paper R1 will
denote the set of all sequences. A sequence p D .p.i//1iD1 is periodic if there is a
value l 2N such that p.i/D p.iC l/ for each element of p (l is called the period of
p).

Definition 1. A sequence pD .p.i//1iD1 – where p.i/2R for all i – is convergent
if there exists x 2 R such that for all " > 0 there is an n."/ such that for all n 2 N
if n > n."/, then jp.n/�xj < ". We say that x is the limit of the sequence p. If a
sequence convergent and its limit is 0 then we call it 0-sequence.

In this paper, we investigate more general types of convergence: k-convergences.

Definition 2. A sequence p 2 R1 is k-convergent (for a fixed non-negative value
k), if there exists n 2N such that for all i;j with i > n and j > n we have jp.i/�
p.j /j � k.

Now we extend the definition of 0-sequence to k-sequence in the following way.

Definition 3. A sequence p 2 R1 is k-sequence (for a fixed positive value of k)
if there exists a natural number n such that for all i 2N if i > n then jp.i/j< k.

The next statements are evident about the relation of convergence, k-convergence
and k-sequence.

Proposition 1.
1.1 If a sequence p is k-convergent, then it is k0-convergent for all k0 > k.
1.2 The sequence p is convergent if and only if it is k-convergent for all k > 0.
1.3 The sequence p is 0-convergent if and only if its tail is constant. (In this case it is
convergent, also.)
1.4 If the sequence p is a k-sequence for some k > 0, then it is 2k-convergent.
Moreover, if p.i/� 0 for all i 2N, then p is also k-convergent.
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1.5 For each k-convergent sequence p there is a value j such that, p is j -sequence.
1.6 The (elementwise) sum and the (elementwise) difference of a k-convergent se-
quence p and a j -convergent sequence q are kCj -convergent.

Lemma 1. If the sequences p and q are convergent, then their sum- and their
difference-sequence are k-convergent for some k.

Proof. It is a simple consequence of the facts in Proposition 1 (and the previous
definitions). �

For periodic sequences we have the following facts.

Proposition 2.
2.1 Each periodic sequence p with period l is k-convergent for
k � max

1�i;j�l
.p.i/�p.j //.

2.2 Each periodic sequence p with period l is k-sequence for
k � max

1�i�l
.jp.i/j/.

From here we will use the terms k-convergence and k-sequence with arbitrary
non-negative integer values of k, however our definition works for all (not necessary
integer) non-negative value of k.

Now, we give some basic ideas about our distance functions.

Definition 4. A function d W R1�R1! R[f1g is called a generalized metric
on R1, if it satisfies the following conditions:

� a/ 8p;q 2 R1: d.p;q/ � 0, and d.p;q/D 0 if and only if p D q (positive
definiteness),
� b/ 8p;q 2 R1: d.p;q/D d.q;p/, (symmetry)
� c/ 8p;q;r 2 R1: d.p;q/Cd.q;r/� d.p;r/ (triangle inequality).

Moreover, if for every possible pair of p;q 2 R1 the distance d.p;q/ is finite, then
it is a metric.
If instead of point a/ we have only

� a0/ 8p;q 2 R1: d.p;q/� 0, and d.p;p/D 0,

then the function d W R1�R1! R[f1g is a semi-metric on R1.

For measuring distances of sequences, usually the so-called supremum norm is
used [9]. We can use also the Hamming-distance; it is finite only when the two
sequences differ in finitely many places. The H -distance is one of the first discrete
distances, it results always only non-negative integer values.

Definition 5. The sup-distance of the sequence p and q is given by

d.p;qIsup/D sup.jp.i/�q.i/j/:
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The Hamming-distance of p and q is

d.p;qIH/D
X

p.i/¤q.i/

1:

The inf-distances of p and q is

d.p;qI inf /D inf .jp.i/�q.i/j/:

The discrete metric over the set of sequences is the following:

d.p;qIdisc/D

�
0; if p D q
1; if p ¤ q:

It is well-known that d.p;qIsup/ and d.p;qIH/ are generalized metrics over R1.
For the inf-distance one can prove that the properties b) and a’) of Definition 4 hold
only, therefore it is an unusual distance. The discrete metric is the simplest metric,
but it is not practical for applications.

One of our most important investigations is introducing the neighbourhood relation
among sequences.

Definition 6. Let p and q be two sequences in R1. Let k be a non-negative
integer. The sequences p and q are k-neighbours, if the following two conditions
hold:

� jp.i/�q.i/j � 1 for all i 2N, and
�

P
i2N;p.i/¤q.i/

1� k.

Definition 7. The infinite sequenceB D .bi /
1
iD1 .bi 2N[f1g/ is called a neigh-

bourhood sequence. If for some l 2 N, bi D biCl holds for every i 2 N, then B is
called periodic (with period l).

For investigating distances of sequences, we will use their difference sequences in
the following way.

Notation 1. Let p and q be two sequences. Put w.i/D jp.i/�q.i/j for all i , and
w D .w.i//1iD1. The sequence w is called the (absolute) difference of p and q.

The up-integer-difference-sequence (uids) u of p and q is defined by the top (i.e.,
ceiling) of the elements of their absolute difference as u.i/ D dw.i/e D djp.i/�
q.i/je, where dxe is the upper integer part of the real number x, i.e. dxe D inffkjk 2
Z;k � xg.

Definition 8. Let p and q be two sequences andB D .bi /
1
iD1 be an neighbourhood

sequence. A finite sequence of sequences˘.p;qIB/ of the form pDp0;p1; : : : ;pmD

q, where pi�1;pi 2 R1 are bi -neighbours for 1 � i �m, is called a B-path from p

to q. We write mD j˘.p;qIB/j for the length of the path.
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Remark 1. It is possible that there are no B-paths between two sequences. For
example, if the set fjp.i/� q.i/j W i 2 Ng –, i.e. the set of elements of the dif-
ference sequence of them – is unbounded, then there are no neighbourhood se-
quence B , for which a B-path would exist between the sequences p D .p.i//1iD1
and q D .q.i//1iD1.

In the next section we will prove a necessary and sufficient condition for the exist-
ence of B-path between two sequences.

Now, we are ready to define the B-distance of any two sequences.

Definition 9. Let p;q 2 R1 and B be an neighbourhood sequence. If there is
no B-path between p and q, then we put d.p;qIB/ D 1. Otherwise, denote by
˘�.p;qIB/ a shortest path (i.e., a B-path with minimal length) from p to q, and set
d.p;qIB/ D j˘�.p;qIB/j. We call d.p;qIB/ the B-distance of the sequences p
and q.

It is evident that using the definition of B-distance above, it is positive definite
(point a) of Definition 4) for any neighbourhood sequence B .

Definition 10. Let B1 and B2 be two neighbourhood sequences. We say that B1

is faster than B2, if

d.p;qIB1/� d.p;qIB2/ for all p;q 2 R1:

We denote this relation by B1 w
� B2.

Originally, the relation w� was introduced by Das [4] in the two dimensional di-
gital space, and by Fazekas et al. in [7] for higher dimensions. We will use it for
infinite sequences (R1).

For later use we need to introduce some further notations.

Definition 11. Let m 2N and B D .bi /
1
iD1 an neighbourhood sequence. Put

b
.m/
i Dmin.bi ;m/ and B.m/

D

�
b

.m/
i

�1
iD1

:

The sequence B.m/ is called the m-limited sequence of B . Denote by fk.i/ the i -th
subsums of the k-limited sequence of B , i.e., put

fk.i/D

8<:
iP

jD1

b
.k/
j ; if i � 1;

0; if i D 0:

Definition 12. Let B D .bi /
1
iD1 be an neighbourhood sequence. The sequence

B.j /D .bi /
1
iDj is called the j -shifted neighbourhood sequence of B .
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3. MINIMAL PATH

In this section, we give an algorithm which provides a shortest path between arbit-
rary two sequences, if such a path exists. As we mentioned in Remark 1, it is possible
that there is no path between two given sequences with a given neighbourhood se-
quence. The following lemma provides a criterion for the existence of a path between
two sequences.

Lemma 2. A finiteB-path exists between the sequences p and q, i.e. their distance
is finite, if and only if the difference sequence of them (w) has a supremum and the
neighbourhood sequence B contains the symbol1, at least k times, where k is the
maximal element of the uids (u) of the sequences p and q, which occurs infinitely
many times.

Proof. First, we prove the case when the distance is infinite.
If the difference sequence w of p and q has not got a supremum (like the sequence

of natural numbers .1;2;3; :::/), then it is impossible to reach q from p (or from p

to q) in finitely many steps, because if we want to take number m steps from p, for
every m 2N, we can find an element i of the sequence w, such that w.i/ > m.

If the sequence B contains the symbol 1 less times than k, then after the step
with bi , for which 8j � i;bj <1, we have infinite number of non-zero values in the
difference sequence of q and the reached sequence. Thus, it is impossible to reach the
sequence q in finitely many steps, with steps which are changing only finite number
of elements.

Now, we are proving the sufficiency of the conditions to have a finite distance:
If the uids u of the sequences (p;q) has a largest element, then we denote this

value by m. Let the sequence B contain the symbol1 at least k times. Then after
the step with bj D1, where bj is the k-th value1 in B , we have only finite number
of non-zero elements in the difference sequence of q and the reached sequence r .
Forasmuchm was the largest element of the w, then after the j -th step, each element
of the difference sequence of q and r is less or equal to m. Thus, we have finitely
many finite numbers in the difference of q and r , then the sum of them is also finite.
Therefore, we need only finitely many steps to reach q from p. (Our proof is same
from q to p.) �

Remark 2. If the neighbourhood sequence B is periodic, and it contains the ele-
ment1, then B contains1 at infinitely many positions.

The following algorithm provides one of the shortest B-paths between two arbit-
rary sequences, if such a path exists. This algorithm is based on the algorithm in [10],
which works in finite and infinite dimensional digital spaces. (For algorithm works
in finite dimensional digital space with only periodic neighbourhood sequences see
[5].)
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Algorithm 1
Input: An neighbourhood sequenceBD .bi /

1
iD1 and p;q 2R1, such that d.p;qIB/<

1.

� step 1. Let w.0/ be the absolute difference of p and q, t .i/ D sgn.p.i/�
q.i//, .i 2N/, and put j D 0 and ˘ D .p/.
� step 2. If w.j /.i/D 0 for every i then goto step 8, else set j D j C1.
� step 3. Put w.j / D w.j�1/.
� step 4. If bj is finite, then select the largest bj entries ofw.j /. If bj is infinite,

then select all the entries of w.j /.
� step 5. For each selected w.j /.i/ if w.j /.i/� 1, let w.j /.i/Dw.j�1/.i/�1

else let w.j /.i/D 0 .
� step 6. Append to the path ˘ the sequence xj defined by xj .i/ D q.i/C

w.j /.i/t.i/ for all i .
� step 7. Goto 2.
� step 8. Output ˘ as a minimal B-path between p and q, and j as the length

of this path.

Lemma 3. The B-distance of the sequences p and q is invariant to the shift, i.e.
for arbitrary r 2 R1 the following statement is true:

d.p;qIB/D d
��
p.i/C r.i/

�1
iD1

;
�
q.i/C r.i/

�1
iD1
IB
�
:

Proof. If d.p;qIB/ is finite, then let˘�.p;qIB/ W .pD p0/;p1; : : : ; .pm D q/ be
a shortest path from p to q.

It is easy to check that ˘.p0;q0IB/ with sequences p0j D
�
pj .i/C r.i/

�1
iD1

(0 �
j � m) is also a shortest B-path between p0 D

�
p.i/C r.i/

�1
iD1

and q0 D
�
.q.i/C

r.i/
�1
iD1

.
Otherwise, suppose that d.p;qIB/D1. Our aim to show that d.p0;q0IB/D1

also with a shift by the sequence r . Contrary suppose that it is not. Then, we have a
shortest path between p0 and q0. Now it is finite distance therefore using the previous
part of the proof we have the same distance between p00 and q00 where we use a shift
by an arbitrary r 0. We choose r 0 as the sequence

�
� r.i/

�1
iD1

, therefore p00 D p and
q00 D q. But it is a contradiction, because a distance is finite or infinite, but it is not
both of them. �

Observe that the algorithm is a greedy algorithm. The following theorem is about
the correctness of our algorithm. We use the term step as step of the algorithm,
however some steps are complex.

Theorem 1. Algorithm 1 terminates after finitely many steps and provides a B-
path with minimal length between the sequences p and q.
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Proof. We will deduce the statement to the case of sequences over Z1, for which
similar theorem was proved in [10].

Using Lemma 3, without loss of generality, we can assume that the sequence p D
.0/1iD1 and q is an arbitrary element of R1.

It is evident that our distance is based on the number of steps, independently how
much is the change of the values in a step (i.e., they are 1, or may be less than 1).
Substituting the values which changes less than 1 via the values are changing exactly
1, we get the same distance.

Therefore, the distance of arbitrary two sequences can be calculated by

d.p;qIB/D d.o;uIB/;

where oD .0/1iD1 and u is the uids of p and q.
The sequences o and u contain only integer values, therefore the correctness of

the algorithm follows from the correctness of the algorithm working on sequences in
Z1 [10]. �

Lemma 4. The B-distance is symmetric.

Proof. Our proof is based on the algorithm. In the case when at step 6 we append
the sequence xj .i/D p.i/�w

.j /.i/t.i/ for all i we get a shortest path from q D x0

to p, which has the same length as the shortest path from p to q. In the case of infinite
distance: if there is no shortest path between two sequences, then it does not exist in
any directions. �

Consequence 1. The B-distance of two sequences p and q depends only on the
neighbourhood sequence B and the up-integer-difference-sequence u of p and q.

Using Consequence 1 we can adopt some properties from [10], where only the
sequences with integer values was studied. In the next section we analyse some
properties of the B-distances.

4. PROPERTIES OF B -DISTANCES OF SEQUENCES

In this section, first we state the relation between the sup-distance and the B-
distances.

Proposition 3. For any two p;q 2 R1,

d.p;qI.1/1iD1/D dd.p;qIsup/e:

Remark 3. Using a variation of Algorithm 1 and the definition of B-distances
with B D .1/1iD1 we get exactly the same value for this, .1/-distance, as for the
sup-distance. The difference should be at the last step by reaching q. Increasing the
path length by sup.w.j�1/.i// instead of 1 in step 2 of the algorithm the provided
minimal path-length will be exactly the same as the sup-distance of p and q.
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Proposition 4. Using the neighbourhood sequence .1/1iD1 the distance (we will
use the notation .1/-distance) of any two sequences p and q is at least the number of
elements in which they differ, i.e.

d
�
p;qI.1/1iD1

�
�

X
p.i/¤q.i/

1D d.p;qIH/:

Moreover, we have the following statement among the values of B-distances.

Lemma 5. For any two sequence p and q the distances are in the following rela-
tion:X

du.i/e D d
�
p;qI.1/1iD1

�
� d.p;qIB/� d

�
p;qI.1/1iD1

�
Dmax.du.i/e/;

where B is an arbitrary neighbourhood sequence.

Proof. It is easy to show by using the algorithm. �

Using neighbourhood sequences for calculating distances between sequences we
have wide a variety of distances between the distances using .1/1iD1 and .1/1iD1.
These two distances are the ceiling (i.e., top) of the distances L1 and L1, respect-
ively (see [2]). Although the L-distances (also known as Minkowski distances)
were originally introduced for points, we can define and use them for infinite se-
quences also: d.p;qIL1/D

P
w.i/ and d.p;qIL1/D sup.w.i//, the distances Lj

is defined by
�P

.w.i//j
� 1

j , the distanceL2 is the usual Euclidean distance. The dis-
tance L1 is given by the limit of distances Li with i !1 and it is the same as the
sup-distance. These L-distances are not pleasant in many cases because for infinite
sequences the sum

P
i

�
w.i/

�j is usually infinite. Hence calculating the L-distances

we have some difficulties. (In [12] we return to this problem.) For these reasons
we recommend the B-distances which have more pleasant properties in this point of
view.

The previous lemma is about the values of B-distances. We will study more pre-
cisely the relation ‘faster’ of neighbourhood sequences later.

Lemma 6. The following statements are equivalent.
� The B-distance of p;q 2 R1 is finite for every neighbourhood sequence B .
� The sequences p and q have the same tail (i.e. 9j;8k > j , p.k/D q.k/).
� The difference sequence w of p and q is 0-convergent and 0-sequence.

Proof. It is evident from the definitions that a sequence has only finitely many non-
zero elements if and only if it is 0-convergent and 0-sequence. (And the difference
sequence of the sequences p and q has this property if and only if they have the
same tail.) Otherwise, from Lemma 5 we know that the .1/-distance is the greatest
among theB-distances. Moreover the .1/-distance of two sequences – for which their
difference sequence has only finitely many non-zero element – is finite. Therefore
everyB-distance of them is finite, thus the equivalence of the statements follows. �
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Moreover, we generalize the fact above in the following theorem.

Theorem 2. The B-distance of two arbitrary sequences p and q is finite with the
neighbourhood sequence B including the symbol 1 at least k times if and only if
the difference w of p and q is a k-sequence. (And their B-distance is infinite if the
number of1 is k in B , and the difference w is not a k-sequence.)

Proof. If the difference sequence w of p and q is a k-sequence, then it does not
contain greater values than k infinitely many times (its tail does not contain such
elements). Obviously, applying the algorithm to obtain a shortest path, after the k-th
step by the elements1, w contains only finitely many non-zero elements, and their
sum is finite, hence each of them is finite. Therefore, after the step by the k-th 1,
we need only finitely many steps to reach q. Thus, it is proven that if B contains
at least k-times the symbol 1, then the B-distance of p and q is finite when their
difference is a k-sequence. In the other way around, if w is not a k-sequence, then
it must contain infinitely many elements which are not less than k. In this case, after
the last (k-th) step with the symbol 1, the sum

P
w.j /.i/>0

1 is infinite, therefore we

cannot decrease it to 0 with finitely many ‘finite’-steps. Therefore, in that case, the
B-distance of p and q is infinite. �

Now we present a formula to calculate theB-distance of any two sequences. Using
Consequence 1 we adopt the B-distance on Z1, which can be found in [11]. For this
calculation we will use the sequence v which has the same elements as the uids u,
sorting by non-decreasing order (i.e., the multiset of elements u is the same as the
multiset of elements of v and v.i/ � v.j / for i < j ). We also use the j -limited
sequence B.j / of the neighbourhood sequence B from Definition 11.

Proposition 5. The B-distance of any two sequences p and q is given by

d.p;qIB/Dmax
i2N
fd .i/.p;q/g;

where

d .i/.p;q/Dmax

8<:hj
iX

kD1

v.k/ >

h�1X
kD1

b
.i/

k

9=; :
The following lemma is very useful if we would like to decide numerically whether

an neighbourhood sequence is faster or not than another one. Here the subsums of
neighbourhood sequences of Definition 11 are also used.

Lemma 7. Let B1 and B2 be two neighbourhood sequences. Then,

d.p;qIB1/� d.p;qIB2/; for all p;q 2 R1,

if and only if
f

.1/

k
.i/� f

.2/

k
.i/; for all i;k 2N;
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where f .1/

k
.i/ and f .2/

k
.i/ correspond to B1 and B2, respectively.

Proof. This statement is given by a simple calculation from the previous propos-
ition. In Proposition 5 we use the values fi .h� 1/ on the right hand side of the
inequalities of the calculation of the values d .i/.p;q/. Substituting it to the form for
calculating B-distance, one can easily check the statement of this lemma. �

Remark 4. As a simple consequence of the previous lemma we obtain that if B1

andB2 are two neighbourhood sequences withB1w
�B2, then for every i 2N among

the first i elements of B1 there are at least as many1 symbols as among the first i
elements of B2.

Based on the previous lemma we study the relation ‘faster’ among the neighbour-
hood sequences.

Lemma 8. The faster relation is not a complete ordering, i.e., there are neigh-
bourhood sequences which are non-comparable.

Proof. Let B1 D .1;1;1;1; :::/ (where each element is 1 after the first) and B2 D

.10;10;1;1; :::/ (each element is 1 after the second). Let p D
�

1
i

�1
iD1

and q D�
2
i

�1
iD1

; then d.p;q;B1/ D 1 and d.p;q;B2/ D 3. Let r D
�
max

�
6
i
; 1

2

��1
iD1

, then
d.r;q;B2/D 4 and d.r;q;B1/D 6. �

Remark 5. It is clear that w� is a reflexive, antisymmetric, transitive relation on
the set of neighbourhood sequences, i.e., it is a a partial order. However, it does not
form a lattice. (It can be proven in the same way as in [7].)

Now, we want to know whether a B-distance is a generalized metric above the set
of sequences R1. The distance based on an arbitrary neighbourhood sequence, in
general, does not satisfy the conditions of a (generalized) metric. However, in geo-
metry those distances are the most useful (e.g., have more practical interest), which
have this property. In the next part of this section we give a necessary and sufficient
condition for a distance based on a neighbourhood sequence to be a (generalized)
metric (and we continue this analysis in [12], too).

Lemma 9. Let p and q be arbitrary sequences in R1, and let the neighbourhood
sequence B1 be faster than the neighbourhood sequence B2 (i.e., B1 w

� B2). If there
is no B1-path between p and q, then there does not exist any B2-path between them.

Proof. From Definition 10, if d.p;qIB1/ D 1 and B1 is faster than B2, then
d.p;qIB2/D1. �

We show a property in which the distances based neighbourhood sequences differ
in Z1 and in R1.
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Proposition 6. Let p;q;r 2R1 such a way that p.i/ < r.i/ < q.i/. If p;q;r con-
tain only integer elements, then the following statements hold (with their difference-
sequences):

upr.i/Curq.i/D upq.i/;

because
wpr.i/Cwrq.i/D wpq.i/;

and wpr.i/D upr.i/;wrq.i/D urq.i/ and wpq.i/D upq.i/ for all i , since

.p.i/� r.i//C .r.i/�q.i//D p.i/�q.i/:

For non integer valued sequences it is easy to show a counterexample.

The next theorem is the extension of the results about metrical properties of [10]
(for previous results, see [5], concerning periodic neighbourhood sequences in finite
dimension), to the arbitrary sequences. To formulate our result we need only the
simple concepts of the faster relation and the shifted sequence (similarly to the case
of Z1, as it is shown in [10]). We have to care only the triangle inequality, which is
a statement for three sequences and we showed in Proposition 6 that the case of Z1

is not the same as R1. (There is no problem with the symmetry by Lemma 4) Based
on the proof of the case Z1 using the properties of uids sequences the next theorem
can be established.

Theorem 3. The distance function based on an neighbourhood sequence B gen-
erates a generalized metric space on the set R1, if and only if B.i/ is faster than B
for all i 2N.

(This theorem is proven in a more general form in the second part of the paper, see
[12].)

By Lemma 7 one can decide, whether an neighbourhood sequence give a general-
ized metric space or not:

Proposition 7. The B-distance is a generalized metric if and only if

d.p;qIB.i//� d.p;qIB/; for all p;q 2 R1 and i 2N , i.e.,
mX

jD1

bk
iCj �

mX
jD1

bk
j ; for all i;k;m 2N:

By using the definition of the k-limited sequence it is equivalent to the condition
mCiX

jD1Ci

min.bj ;k/�
mX

jD1

min.bj ;k/; for all i;k;m 2N:

Now we study the structure of the set of neighbourhood sequences based on an-
other kind of partial ordering (see [7]).
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Definition 13. For B D .bi /
1
iD1;B

0 D .b0i /
1
iD1 we write B w B 0 if and only if

bi � b
0
i for every i 2N.

It turns out that w has much more pleasant properties than w�. Actually, this rela-
tion is proper part of the relation ‘faster’ (and in a certain sense, it is much stricter).

Remark 6. Let B be an neighbourhood sequence. Then for the limited neighbour-
hood sequences of B the following relations hold: B wBk wBm for every k;m 2N
with k > m.

We will use this new partial ordering relation to get lattice on the set of neighbour-
hood sequences, as the next statement shows.

Theorem 4. The set of neighbourhood sequences is a distributive lattice using
the relation w, with greatest lower bound .1/1iD1 and least upper bound .1/1iD1.
Moreover, this lattice is complete.

Proof. The proof goes in the same way as in [7] for1D neighbourhood sequences
in Z1. �

See [7] for other results using the relation w and w� among special subsets of the
neighbourhood sequences. Their properties are independent of their using conditions,
therefore we do not give more details on them here. Instead of it, we are going to
show another type of extensions of these distances in [12] as a continuation of this
paper.
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[3] I. Csiszár and J. Körner, Information theory. Coding theorems for discrete memoryless systems.

Probability and Mathematical Statistics. New York, London: Academic Press, 1981.
[4] P. Das, “Lattices of octagonal distances in digital geometry.” Pat. Recog. Let., vol. 11, pp. 663–

667, 1990.
[5] P. Das, P. Chakrabarti, and B. Chatterji, “Distance functions in digital geometry.” Inform. Sci.,

vol. 42, pp. 113–136, 1987.
[6] P. Das, P. Chakrabarti, and B. Chatterji, “Generalized distances in digital geometry.” Inform. Sci.,

vol. 42, pp. 51–67, 1987.
[7] A. Fazekas, A. Hajdu, and L. Hajdu, “Lattice of generalized neighbourhood sequences in nD and
1D.” Publ. Math. Debrecen, vol. 60, no. 3-4, pp. 405–427, 2002.

[8] K. Knopp, Theory and application of infinite series. London: Blackie & Son Ltd., 1928, (trans-
lation: 1951).



GENERALISED DISTANCES OF SEQUENCES I: B-DISTANCES 411

[9] B. Levitan and V. Zhikov, Almost periodic functions and differential equations. Cambridge, New
York: Cambridge University Press, 1982.

[10] B. Nagy, “Distance functions based on neighbourhood sequences.” Publ. Math. Debrecen, vol. 63,
no. 3, pp. 483–493, 2003.

[11] B. Nagy, “Distances with generalized neighbourhood sequences in nD and 1D.” Disc. Appl.
Math., vol. 156, pp. 2344–2351, 2008, doi: 10.1016/j.dam.2007.10.017.

[12] B. Nagy, “Generalized distances of sequences II: B-distances with weight sequences,” (submitted
for publication).

[13] A. Rosenfeld and J. Pfaltz, “Distance functions on digital pictures.” Pat. Recog., vol. 1, pp. 33–61,
1968.

[14] M. Yamashita and T. Ibaraki, “Distances defined by neighborhood sequences.” Pat. Recog.,
vol. 19, no. 3, pp. 237–246, 1986.

Author’s address

Benedek Nagy
Eastern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Famagusta,

North Cyprus, Mersin-10, Turkey
E-mail address: nbenedek.inf@gmail.com

http://dx.doi.org/10.1016/j.dam.2007.10.017

	1. Introduction
	2. Notations and definitions
	3. Minimal path
	4. Properties of B-distances of sequences
	Acknowledgement
	References

