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Abstract. In this paper, by using the limiting subdifferential we consider the well-posedness for
multi-valued variational inequalities and give some equivalence formulations for them. Moreover,
we show that the strong well-posedness for a multi-valued variational inequality is equivalent to
the existence and uniqueness of its solution.
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1. INTRODUCTION

The classical concept of well-posedness for a minimization problem, which has
been known as the Tykhonov well-posedness, was introduced by Tykhonov [7] in
1966. A minimization problem is Tykhonov well-posed if it has a unique solution and
every minimizing sequence of the problem converges to the unique solution. In the
last decades, various concepts of well-posedness such as ˛-well-posedness, Hadam-
ard well-posedness, Levitin-Polyak well-posedness and well-posedness by perturb-
ations have been presented and studied for optimization problems, see [3, 4, 10, 12]
and references therein. The concept of well-posedness for hemivariational inequality
was first introduced by Goeleven and Mentagui [2] to provide some conditions guar-
anteing the existence and uniqueness of a solution for a hemivariational inequality.
Later, Xiao and Huang [10] considered a concept of well-posedness for a variational-
hemivariational inequality and obtained the equivalence of well-posedness between
the variational-hemivariational inequality and the corresponding inclusion problem.
Very recently, Xiao et al. [9] established two kinds of conditions under which the
strong and weak well-posedness for the hemivariational inequality are equivalent to
the existence and uniqueness of its solutions, respectively.
In this paper, by using the limiting subdifferential we extend the concept of well-
posedness to a class of multi-valued variational inequality which include as a special
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case the classical variational and hemivariational inequalities. Moreover, we estab-
lish some equivalence results for them. The paper is organized as follows: Section 2
prepares briefly some preliminary notions and results used in sequel. In Section 3, we
show that the strong well-posedness for a multi-valued variational inequality is equi-
valent to the existence and uniqueness of its solution. Also, a metric characterization
for the strong well-posedness of multi-valued variational inequality is obtained.

2. NOTATIONS AND PRELIMINARIES

Let X be a Banach space and X� its topological dual space. The norm in X and
X� will be denoted by jj:jj:We denote h:; :i; Œx;y� and �x;yŒ the dual pair between X
and X�, the line segment for x;y 2 X , and the interior of Œx;y�, respectively. Now,
we recall some concepts of subdifferentials that we need in the next section.

Definition 1 ([6]). Let X be a normed vector space, ˝ be a nonempty subset of
X , x 2˝ and "� 0. The set of "-normals to ˝ at x is

bN ".xI˝/ WD fx
�
2X�j limsup

u!̋ x

hx�;u�xi

jju�xjj
� "g:

Assume that x 2˝, the limiting normal cone to ˝ at x is

N. NxI˝/ WD limsup
x!Nx;"#0

bN ".xI˝/:

Let J W X ! NR be finite at Nx 2 X ; the limiting subdifferential of J at Nx is defined as
follows

@MJ. Nx/ WD fx
�
2X�j.x�;�1/ 2N.. Nx;J. Nx//IepiJ /g:

Remark 1 ([6]). The set-valued mapping x 7! @MJ.x/ has closed graph for locally
Lipschitz functions.

Definition 2. Let T W X ! 2X�

be a set-valued mapping. T is said to be relaxed
invariant monotone with respect to � if there exists a constant ˛ such that for any
x;y 2X and any u 2 T .x/;v 2 T .y/; one has

hv;�.x;y/iChu;�.y;x/i � �˛.jj�.x;y/jj2Cjj�.y;x/jj2/:

Remark 2. (1) When T W X ! X� is a single-valued operator, we obtain the
definition of a relaxed invariant monotone operator.

(2) If ˛D 0, then the Definition 2 reduces to the definition of an invariant mono-
tone map.

Definition 3 ([11]). A mapping T W X ! X� is said to be hemicontinuous if for
any x1;x2 2 X , the function t 7! hT .x1C tx2/;x2i from Œ0;1� into ��1;C1Œ is
continuous at 0C.

Condition C ([5]). Let � WX �X !X . Then, for any x;y 2X;� 2 Œ0;1�

�.y;yC��.x;y//D���.x;y/; �.x;yC��.x;y//D .1��/�.x;y/:
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Remark 3. By some computation, we can see that if Condition C holds, then for
any x1;x2 2X and � 2 Œ0;1�

�.x1C��.x2;x1/;x1/D ��.x2;x1/:

Now, suppose that J W X ! R, � W X �X ! X , A W X ! X� is a mapping and
f 2X� is some given element. Consider the following multi-valued variational-like
inequality associated with .A;f;J /:
MVLI.A;f;J /: Find Nx 2X such that for any x 2X , there exists � 2 @MJ. Nx/; that

hA Nx�f C �;�.x; Nx/i � 0:

Definition 4. A sequence fxng � X is said to be an approximating sequence for
the MVLI.A;f;J /, if there exists f�ng with �n # 0 such that for any x 2 X there
exists x�n 2 @MJ.xn/, that

hAxn�f Cx
�
n ;�.x;xn/i � ��njj�.x;xn/jj:

Definition 5. The multi-valued variational-like inequality MVLI.A;f;J / is said
to be strongly well-posed if it has a unique solution Nx on X and for every approxim-
ating sequence fxng, �. Nx;xn/ converges strongly to 0.

3. MAIN RESULTS

In this section, we establish some conditions under which the well-posedness for
the multi-valued variational-like inequality is equivalent to the existence and unique-
ness of its solution. Theorems in this section extend theorems in [8,9] from hemivari-
ational inequalities with Clarke’s subdifferential which is convex to multi-valued
variational-like inequalities with limiting subdifferential which is not necessarily con-
vex.

Theorem 1. Assume that operator A W X ! X� is hemicontinuous and relaxed
invariant monotone with constant c and J is locally Lipschitz such that @MJ satisfies
relaxed invariant monotonicity condition with constant ˛. Consider the following
assertions:

(i) Nx is a solution of the MVLI.A;f;J /.
(ii) Nx is a solution of the following associated multi-valued variational-like in-

equality:
AMVLI.A;f;J /: Find Nx 2 X such that for any x 2 X there exists x� 2
@MJ.x/ such that hAx�f Cx�;�.x; Nx/i � 0:

If cC˛� 0 and � is skew, then .i/) .i i/. If � satisfies Condition C, then .i i/) .i/.

Proof. .i/) .i i/. Let Nx 2 X be a solution of MVLI.A;f;J /. Hence, for any
x 2X there exists � 2 @MJ. Nx/ such that

hA Nx�f C �;�.x; Nx/i � 0: (3.1)
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By the relaxed invariant monotonicity of @MJ , for any x 2X and x� 2 @MJ.x/, one
has

hx�;�. Nx;x/iCh�;�.x; Nx/i � �˛.jj�.x; Nx/jj2Cjj�. Nx;x/jj2/: (3.2)

It follows from relaxed invariant monotonicity of the operator A, (3.1) and (3.2), that

hAx�f Cx�;�.x; Nx/i � hAxCx�;�.x; Nx/i�hA NxC �;�.x; Nx/i

D �ŒhAx;�. Nx;x/iChA Nx;�.x; Nx/iChx�;�. Nx;x/iCh�;�.x; Nx/i�

� .cC˛/.jj�.x; Nx/jj2Cjj�. Nx;x/jj2/;

which shows that Nx is a solution of AMVLI.A;f;J /.
.i i/) .i/. Conversely, let Nx be a solution to the AMVLI.A;f;J /. Hence, for any
x 2X there exists x� 2 @MJ.x/ such that

hAx�f Cx�;�.x; Nx/i � 0: (3.3)

For any ´ 2X and t 2 Œ0;1�, set x.t/D NxC t�.´; Nx/ in inequality (3.3), we have

hA. NxC t�.´; Nx//�f Cx�t ;�. NxC t�.´; Nx/; Nx/i � 0;

that x�t 2 @MJ.x.t//. It follows Condition C, that

hA. NxC t�.´; Nx//�f Cx�t ;�.´; Nx/i � 0:

Since J is locally Lipschitz, we deduce that @MJ is locally bounded (Corollary 1.81
in [6]). Hence, there exists a neighborhood of Nx and a constant ` > 0 such that for
each ´ in this neighborhood and x� 2 @MJ.´/, we have jjx�jj � `: Since x.t/! Nx
when t ! 0 for t to be sufficiently small jjx�t jj � `, without loss of generality we
may assume that x�t ! x� in weak�-topology. Now, hemicontinuity of the operator
A on X implies that

hA Nx�f Cx�;�.´; Nx/i � 0:

By the arbitrariness of ´ 2 X , we conclude that Nx is a solution of MVLI.A;f;J /.
�

Proposition 1. Let C � �X� be nonempty, closed, convex and bounded, ' WX !
R be proper, convex and lower semi-continuous and y 2X be arbitrary. Assume that
� is continuous and affine with respect to the first argument and for each x 2X , there
exists x�.x/ 2 C � such that

hx�.x/;�.x;y/i � '.y/�'.yC�.x;y//:

Then, there exists y� 2 C � such that

hy�;�.x;y/i � '.y/�'.yC�.x;y//; 8x 2X:

Proof. With some minor modification in the proof of Proposition 3.3 in [1], we
can deduce the proof. �



CHARACTERIZATIONS OF STRONG WELL-POSEDNESS 465

Theorem 2. Let A W X ! X� be relaxed invariant monotone with constant c and
J a l.s.c. function that its limiting subdifferential satisfies relaxed invariant mono-
tonicity condition with constant ˛. If ˛C c > 0 and � is continuous and affine with
respect to the second argument and skew, thenMVLI.A;f;J / is strongly well-posed
if and only if it has a unique solution on X .

Proof. The necessity is obvious. For the sufficiency, suppose thatMVLI.A;f;J /

has a unique solution Nx. Since Nx is the unique solution of MVLI.A;f;J /, for any
x 2X , there exists x� 2 @MJ. Nx/ such that

hA Nx�f Cx�;�.x; Nx/i � 0: (3.4)

Suppose that fxng is an approximating sequence for MVLI.A;f;J /. It follows that
there exists �n # 0 such that for any x 2X , there exists �n.x/ 2 @MJ.xn/ that

hAxn�f C �n.x/;�.x;xn/i � ��njj�.x;xn/jj:

Now, consider the nonempty, convex and bounded set cofAxn�f C�nj�n 2 @MJ.xn/g.
Hence, it follows from Proposition 1 with '.x/ D �njjx � xnjj that there exists �n
which is independent on x, such that

hAxn�f C �n;�.x;xn/i � ��njj�.x;xn/jj; 8x 2X:

By choosing �n, we can set �n D
Pm

iD1�i�
i
n that m 2 N,

Pm
iD1�i D 1 and � i

n 2

@MJ.xn/. Hence,
mX

iD1

�i hAxn�f C �
i
n;�.x;xn/i � ��njj�.x;xn/jj; 8x 2X:

Now, set x D Nx in above inequality, yields
mX

iD1

�i hAxn�f C �
i
n;�. Nx;xn/i � ��njj�. Nx;xn/jj:

Hence, it follows from relaxed invariant monotonicity of the operator A, relaxed
invariant monotonicity of the @MJ , the skewness of � and above inequality that

��njj�. Nx;xn/jj �

mX
iD1

�i hAxn�f C �
i
n;�. Nx;xn/i

�

mX
iD1

�i ŒhAxnC �
i
n;�. Nx;xn/i�hA NxC �

i
n;�. Nx;xn/i�

D

mX
iD1

�i Œ�hA Nx�AxnC �
i
n� �

i
n;�. Nx;xn/i

� �

mX
iD1

2�i .cC˛/jj�. Nx;xn/jj
2
D�2.cC˛/jj�. Nx;xn/jj

2;
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where �i
n 2 @MJ. Nx/ is obtained from (3.4) by setting x D xn. Since cC˛ > 0, it

follows that
jj�. Nx;xn/jj �

�n

2.cC˛/
:

Taking limit at both sides of the above inequality, implies that �. Nx;xn/ converges
strongly to 0. �

Example 1. Let X D R;f D 0, A be the identity map and J be defined as

J.x/D

�
x2C2x if x > 0;
x2�x if x � 0:

The limiting subdifferential of J is

@MJ.x/D

8<: 2xC2 if x > 0;
[-1,2] if x D 0;
2x�1 if x < 0:

Let � be defined as �.x;y/ WD k.x�y/, such that 0 < k � 1. Then by some compu-
tation we can see that @MJ;A are relaxed invariant monotone with constants ˛ D 1,
c D 1

2
; respectively. Hence, all assumptions of Theorem 2 are fulfilled and Nx D 0 is a

unique solution of .MVLI/ and therefore it is strongly well-posed.

For any � > 0, consider the following two sets:

˝.�/D f Nx W 8x 2X; 9x� 2 @MJ. Nx/ s.t. hA Nx�f Cx�;�.x; Nx/i � ��jj�.x; Nx/jjg;

	.�/D f Nx W 8x 2X; 9x� 2 @MJ. Nx/ s.t. h�Ax;�. Nx;x/iCh�f Cx�;�.x; Nx/i �
��jj�.x; Nx/jjg:

Lemma 1. Suppose that A WX!X� is invariant monotone and hemicontinuous.
Then ˝.�/D 	.�/ for all � > 0.

Proof. Taking into account the invariant monotonicity of mapping A, it is easy to
obtain that ˝.�/ � 	.�/. For the other side suppose that Nx 2 	.�/. Then, for any
x 2X , there exists x� 2 @MJ. Nx/ such that

h�Ax;�. Nx;x/iCh�f Cx�;�.x; Nx/i � ��jj�.x; Nx/jj: (3.5)

Set x D NxC t�.´; Nx/ in (3.5), that ´ 2X and t 2 Œ0;1�, yields

h�A. NxC t�.´; Nx//;�. Nx; NxC t�.´; Nx//iCh�f Cx�;�. NxC t�.´; Nx/; Nx/i �

��jj�. NxC t�.´; Nx/; Nx/jj:

By using Condition C, we obtain

h�A. NxC t�.´; Nx//;��.´; Nx/iCh�f Cx�;�.´; Nx/i � ��jj�.´; Nx/jj:

Now, it follows from the hemicontinuity of mapping A that

hA Nx�f Cx�;�.´; Nx/i � ��jj�.´; Nx/jj;

which shows that Nx 2˝.�/. This completes the proof. �
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Lemma 2. Suppose thatA WX!X� is a hemicontinuous mapping. If J is locally
Lipschitz and � is continuous with respect to the second argument, then ˝.�/ is
closed in X for all � > 0.

Proof. Let fxng�˝.�/ be a sequence such that xn! Nx inX . Then for any x 2X ,
there exists x�n 2 @MJ.xn/ such that

hAxn�f Cx
�
n ;�.x;xn/i � ��jj�.x;xn/jj: (3.6)

Since J is locally Lipschitz, there exists a subsequence of x�n that convergent to a
x� 2 @MJ. Nx/ in weak�-topology. Consider (3.6) with this subsequence, taking limit
at both sides of it and using this fact that A is hemicontinuous and � is continuous
with respect to the second argument, we obtain

hA Nx�f Cx�;�.x; Nx/i � ��jj�.x; Nx/jj;

which implies that Nx 2˝.�/. This completes the proof. �

Theorem 3. Suppose thatA WX!X� is hemicontinuous and invariant monotone
with respect to � that � is continuous with respect to the second argument, satisfies
Condition C and skew. Then MVLI.A;f;J / is strongly well-posed if and only if

˝.�/¤¿;8� > 0 and diam.˝.�//! 0 as �! 0:

Proof. “Necessity” follows similarly from the first part of Theorem 3.1 in [8].
Hence, we prove the “Sufficiency”. Suppose that fxng � X is an approximating
sequence for MVLI.A;f;J /. Then there exist a nonnegative sequence �n! 0 such
that for any x 2X , there exists �n 2 @MJ.xn/ such that

hAxn�f C �n;�.x;xn/i � ��njj�.x;xn/jj; (3.7)

it means that xn 2 ˝.�n/. It follows from diam.˝.�//! 0, that fxng is a cauchy
sequence and so converges strongly to some point Nx 2X . Since J is locally lipschitz,
there exists a subsequence of �n .e.g. f�ni g/ that is convergent to a � 2 @MJ. Nx/ in
weak�-topology. Taking limit at the both side of (3.7) and using this fact that A is
monotone and � is skew and continuous with respect to the second argument, we
obtain

hAx�f C �;�.x; Nx/i D lim
i!1
hAx�f C �ni ;�.x;xni /i

� lim
i!1
hAxni �f C �ni ;�.x;xni /i

� lim
i!1

��ni jj�.x;xni /jj D 0:

Now, by using Theorem 1, Nx is a solution of MVLI.A;f;J /. Since, diam.˝.�//!
0 when �! 0, MVLI.A;f;J / has a unique solution. This completes the proof. �
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