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Abstract. In this paper, by using the limiting subdifferential we consider the well-posedness for
multi-valued variational inequalities and give some equivalence formulations for them. Moreover,
we show that the strong well-posedness for a multi-valued variational inequality is equivalent to
the existence and uniqueness of its solution.
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1. INTRODUCTION

The classical concept of well-posedness for a minimization problem, which has
been known as the Tykhonov well-posedness, was introduced by Tykhonov [7] in
1966. A minimization problem is Tykhonov well-posed if it has a unique solution and
every minimizing sequence of the problem converges to the unique solution. In the
last decades, various concepts of well-posedness such as o-well-posedness, Hadam-
ard well-posedness, Levitin-Polyak well-posedness and well-posedness by perturb-
ations have been presented and studied for optimization problems, see [3,4, 10, 12]
and references therein. The concept of well-posedness for hemivariational inequality
was first introduced by Goeleven and Mentagui [2] to provide some conditions guar-
anteing the existence and uniqueness of a solution for a hemivariational inequality.
Later, Xiao and Huang [ 10] considered a concept of well-posedness for a variational-
hemivariational inequality and obtained the equivalence of well-posedness between
the variational-hemivariational inequality and the corresponding inclusion problem.
Very recently, Xiao et al. [9] established two kinds of conditions under which the
strong and weak well-posedness for the hemivariational inequality are equivalent to
the existence and uniqueness of its solutions, respectively.

In this paper, by using the limiting subdifferential we extend the concept of well-
posedness to a class of multi-valued variational inequality which include as a special

(© 2018 Miskolc University Press



462 M. OVEISIHA

case the classical variational and hemivariational inequalities. Moreover, we estab-
lish some equivalence results for them. The paper is organized as follows: Section 2
prepares briefly some preliminary notions and results used in sequel. In Section 3, we
show that the strong well-posedness for a multi-valued variational inequality is equi-
valent to the existence and uniqueness of its solution. Also, a metric characterization
for the strong well-posedness of multi-valued variational inequality is obtained.

2. NOTATIONS AND PRELIMINARIES

Let X be a Banach space and X ™* its topological dual space. The norm in X and
X* will be denoted by |].||. We denote (.,.), [x, y] and ]x, y[ the dual pair between X
and X*, the line segment for x,y € X, and the interior of [x, y], respectively. Now,
we recall some concepts of subdifferentials that we need in the next section.

Definition 1 ([6]). Let X be a normed vector space, £2 be a nonempty subset of
X, x € £ and ¢ > 0. The set of e-normals to £2 at x is

* —
Ne(x;2):={x* € X*|limsupM <e).
u-x || — x|

Assume that X € §2, the limiting normal cone to §2 at X is
N(x;$2) := limsup 1/\76(x;.§2).

x—>x,el0
Let J : X — R be finite at X € X; the limiting subdifferential of J at X is defined as

follows
o J(X) :={x* e X*|(x*,—1) e N((x,J(x));epiJ)}.

Remark 1 ([6]). The set-valued mapping x > das J(x) has closed graph for locally
Lipschitz functions.

Definition 2. Let 7 : X — 2X" be a set-valued mapping. T is said to be relaxed
invariant monotone with respect to 7 if there exists a constant « such that for any
x,y€ X andany u € T(x),v € T(y), one has

(v, n(x, ) + (w.n(y.x)) < —a(llnCx, I+ (.l ).

Remark 2. (1) When T : X — X * is a single-valued operator, we obtain the
definition of a relaxed invariant monotone operator.
(2) If @ = 0, then the Definition 2 reduces to the definition of an invariant mono-
tone map.

Definition 3 ([11]). A mapping 7 : X — X ™ is said to be hemicontinuous if for
any x1,x2 € X, the function ¢ — (T (x1 + tx2),x2) from [0, 1] into | — oo, +o0[ is
continuous at O .

Condition C ([5]). Let n: X x X — X. Then, for any x,y € X, A € [0, 1]
N,y +An(x.y)) = =An(x.y). 0.y +An(x.y)) = A=)nx,y).
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Remark 3. By some computation, we can see that if Condition C holds, then for
any x1,x2 € X and A € [0, 1]

n(x1 4+ An(xz,x1),x1) = An(xz,x1).

Now, suppose that J : X - R, n: X xX — X, A: X — X™* is a mapping and
f € X* is some given element. Consider the following multi-valued variational-like
inequality associated with (4, f, J):

MVLI(A, f,J): Find X € X such that for any x € X, there exists £ € dps J(X), that

(AX—f +&.1(x.%)) = 0.

Definition 4. A sequence {x,} C X is said to be an approximating sequence for
the MVLI(A, f,J), if there exists {¢,} with €, | 0 such that for any x € X there
exists x, € dpr J(xp), that

(Ax,,—f+x;:,77(X,xn)) > —en||n(x,xn)||.

Definition 5. The multi-valued variational-like inequality M VLI(A, f,J) is said
to be strongly well-posed if it has a unique solution x on X and for every approxim-
ating sequence {x,}, n(x, x,) converges strongly to 0.

3. MAIN RESULTS

In this section, we establish some conditions under which the well-posedness for
the multi-valued variational-like inequality is equivalent to the existence and unique-
ness of its solution. Theorems in this section extend theorems in [8,9] from hemivari-
ational inequalities with Clarke’s subdifferential which is convex to multi-valued
variational-like inequalities with limiting subdifferential which is not necessarily con-
vex.

Theorem 1. Assume that operator A : X — X* is hemicontinuous and relaxed
invariant monotone with constant ¢ and J is locally Lipschitz such that dyg J satisfies
relaxed invariant monotonicity condition with constant o. Consider the following
assertions:

(1) X is a solution of the MVLI(A, f,J).
(1) x is a solution of the following associated multi-valued variational-like in-
equality:
AMVLI(A, f,J): Find x € X such that for any x € X there exists x* €
dpar J(x) such that (Ax — f +x*,n(x,x)) > 0.
If c + o > 0and n is skew, then (i) = (ii). If n satisfies Condition C, then (ii) = (i).

Proof. (i) = (ii). Let X € X be a solution of MVLI(A, f,J). Hence, for any
x € X there exists £ € dps J(X) such that

(Ax — f +&,n(x,X)) = 0. 3.1
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By the relaxed invariant monotonicity of dpsJ, for any x € X and x* € dps J(x), one
has

(. 0(X.20) + (En(x. D) < —a(nC DI +|InE 0. G2
It follows from relaxed invariant monotonicity of the operator A, (3.1) and (3.2), that
(Ax — [ +x%.n(x. X)) Z (Ax +x".n(x, X)) = (AX + £, 7(x. X))
= —[(Ax.n(x.x)) + (AX.n(x. %)) + (x*, n(X, X)) + (£.n(x,5))]
> (c+a)(|InGx. D)1 + [In(x.0)[?).

which shows that x is a solution of AMVLI(A, f,J).
(ii) = (i). Conversely, let X be a solution to the AM VLI(A, f,J). Hence, for any
x € X there exists x* € dps J(x) such that

(Ax — f +x*,n(x,%)) > 0. (3.3)
Forany z € X and ¢ € [0, 1], set x(¢) = X +7(z,X) in inequality (3.3), we have
(AX+1n(z,%)— f +xf.n(x +1tn(z,%),%)) >0,
that x; € dpr J(x(¢)). It follows Condition C, that
(A(X +1n(z. %) = f +x7.n(2.%)) > 0.

Since J is locally Lipschitz, we deduce that dps J is locally bounded (Corollary 1.81
in [6]). Hence, there exists a neighborhood of X and a constant £ > 0 such that for
each z in this neighborhood and x* € dps J(z), we have |[x*|| < €. Since x () — X
when ¢ — 0 for ¢ to be sufficiently small ||x}|| < £, without loss of generality we
may assume that x; — x* in weak™-topology. Now, hemicontinuity of the operator
A on X implies that

(AX— f +x",n(z,%)) > 0.
By the arbitrariness of z € X, we conclude that x is a solution of MVLI(A, f,J).
O

Proposition 1. Let C* C X™* be nonempty, closed, convex and bounded, ¢ : X —
R be proper, convex and lower semi-continuous and y € X be arbitrary. Assume that
n is continuous and affine with respect to the first argument and for each x € X, there
exists x*(x) € C* such that

(x*(x),n(x,y)) = o(y) —@(y +n(x,y)).
Then, there exists y* € C* such that
(" .nx.») = e(y)—e(y +n(x.y)). VxeX.

Proof. With some minor modification in the proof of Proposition 3.3 in [1], we
can deduce the proof. O
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Theorem 2. Let A: X — X ™ be relaxed invariant monotone with constant ¢ and
J a Ls.c. function that its limiting subdifferential satisfies relaxed invariant mono-
tonicity condition with constant o. If a + ¢ > 0 and n is continuous and affine with
respect to the second argument and skew, then MV LI(A, f,J) is strongly well-posed
if and only if it has a unique solution on X.

Proof. The necessity is obvious. For the sufficiency, suppose that M VLI(A, f,J)
has a unique solution X. Since X is the unique solution of M VLI(A, f,J), for any
x € X, there exists x* € dps J(X) such that

(AX— f +x",n(x,X)) > 0. (3.4
Suppose that {x,} is an approximating sequence for M VLI(A, f,J). It follows that
there exists €, | 0 such that for any x € X, there exists &, (x) € dpr J(xp,) that

<Axn - f + En(x), n(xaxn)) Z _€n||77(xaxn)||-
Now, consider the nonempty, convex and bounded set co{Ax, — f + &, & € Opr J (xn) }.
Hence, it follows from Proposition 1 with ¢(x) = €,||x — xp|| that there exists &,
which is independent on x, such that
(Axp — [ +En,n(x,xn)) = —€nlIn(x, xn)|l, VxeX.

By choosing £,, we can set & = > 1r  A;& thatm e N, Y7 A; = 1 and & €
dar J (xn). Hence,

m
D Aildxn— [ +En(x.xn) = —enllnCrn)ll. Vx € X.
i=1

Now, set x = X in above inequality, yields

m

D il A — f 4 £ (X, x0)) = —€nl (X, x0)].

i=1
Hence, it follows from relaxed invariant monotonicity of the operator A, relaxed
invariant monotonicity of the dps J, the skewness of 1 and above inequality that

—enl[N(E.x0)|| <D Ai(Axn — f +EL.1(X.xn))
i=1

<D hillAxn + £, (%, X)) — (AX 48 1(%, )]

i=1

= 3" Mil—(AT — Axy + L —EL n(Fxn)

i=1

m
< =Y 2%l +a)|In(E.xn)l]> = =2(c + )| [n(E. xa) [,
i=1
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where ﬁ, € dprJ(X) is obtained from (3.4) by setting x = x,. Since ¢ +a > 0, it

follows that c

[In(x, xn)| Sm-

Taking limit at both sides of the above inequality, implies that n(x,x,) converges

strongly to 0. ]
Example 1. Let X = R, f =0, A be the identity map and J be defined as
x2 +2x if x > 0,
Ix) = x2—x if x <0.

The limiting subdifferential of J is

2x +2 if x >0,
oy J(x) = [-1,2] if x =0,
2x —1 if x <O.

Let n be defined as n(x,y) := k(x — y), such that 0 < k < 1. Then by some compu-
tation we can see that dps J, A are relaxed invariant monotone with constants & = 1,

c= %, respectively. Hence, all assumptions of Theorem 2 are fulfilled and x =0 isa

unique solution of (M VLI) and therefore it is strongly well-posed.

For any € > 0, consider the following two sets:

R()={x:VxeX, Ix*edyl() st (Ax—f+x*,n(x,%)) > —¢||n(x, %)},

Ue)={x:VxeX, Ix*edyJ() st (—Ax,n(x,x))+{(—f +x*,n(x, %)) >
—€|ln(x. X[}

Lemma 1. Suppose that A : X — X* is invariant monotone and hemicontinuous.
Then $2(€) = W (¢) for all € > 0.

Proof. Taking into account the invariant monotonicity of mapping A, it is easy to
obtain that §2(¢) C W(¢). For the other side suppose that X € ¥(¢). Then, for any
x € X, there exists x* € dps J(¥) such that

(—Ax,n(X,x)) + (= f +x*,1(x, X)) = —€|[n(x,3)][. 3.5)

Set x = X +1n(z,x) in (3.5), that z € X and ¢ € [0, 1], yields
(—AX +1n(z,%), (X, X +1n(z,%)) + (= f +x* n(x +1n(z,%),X)) >
By using Condition C, we obtain
(A +10(z,%), —n(2, %)) + (= f +x".1(z. X)) = —€||n(z. X)]l.
Now, it follows from the hemicontinuity of mapping A that
(A% — f+x%,1(2,%)) = —elIn(z. ]I,

which shows that x € §2(¢). This completes the proof. O
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Lemma 2. Suppose that A : X — X* is a hemicontinuous mapping. If J is locally
Lipschitz and n is continuous with respect to the second argument, then §2(¢) is
closed in X for all € > 0.

Proof. Let{x,} C §2(¢) be a sequence such that x,, — X in X. Then for any x € X,
there exists x,; € dasJ(x,) such that

(Axn — f +x5.00x.x0)) = —€l[n(x, xn)|]. (3.6)

Since J is locally Lipschitz, there exists a subsequence of x; that convergent to a
x* € dpr J(X) in weak*-topology. Consider (3.6) with this subsequence, taking limit
at both sides of it and using this fact that A is hemicontinuous and 7 is continuous
with respect to the second argument, we obtain

(A)_C - f +X*v T’(X’)_C)) = —€||77(x7?3)||’
which implies that X € §2(¢). This completes the proof. O

Theorem 3. Suppose that A : X — X* is hemicontinuous and invariant monotone
with respect to n that 1 is continuous with respect to the second argument, satisfies
Condition C and skew. Then MV LI(A, f,J) is strongly well-posed if and only if

() #,Ye >0 and diam(2(e)) >0 as € —0.

Proof. “Necessity” follows similarly from the first part of Theorem 3.1 in [8].
Hence, we prove the “Sufficiency”. Suppose that {x,} C X is an approximating
sequence for MVLI(A, f,J). Then there exist a nonnegative sequence €, — 0 such
that for any x € X, there exists &, € dpr J(x,) such that

(Axn — f +En.n(x,xn)) = —€nln(x, xn)ll, 3.7

it means that x, € £2(e,). It follows from diam(§2(¢)) — 0, that {x,} is a cauchy
sequence and so converges strongly to some point X € X . Since J is locally lipschitz,
there exists a subsequence of &, (e.g. {£y;}) thatis convergentto a § € dp J(X) in
weak*-topology. Taking limit at the both side of (3.7) and using this fact that A is
monotone and 7 is skew and continuous with respect to the second argument, we
obtain

(Ax = f +E0(x, D) = Jim (Ax— £+, 105 %))
> lim (Axn; — f +&n; n(x, Xn;))
I—>00
> lim —ey,; |[n(x,xs;)|| = 0.
1 —>00
Now, by using Theorem 1, X is a solution of M VLI(A, f,J). Since, diam(£2(¢)) —
0 whene — 0, MVLI(A, f,J) has a unique solution. This completes the proof. [J
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