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Abstract. In this paper, we shall introduce the concepts of FG -contraction and  G -contraction
in uniform space endowed with graph to investigate the existence of a fixed point of mappings
satisfying these notions. We shall also introduce a common fixed point theorem for pair of
mappings satisfying the notion of  G -contraction in uniform space endowed with graph.
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1. INTRODUCTION

Very recently, Wardowski [19] categorized the family of mappings into a new fam-
ily, denoted by F or F, to introduce a new contraction condition, the F -contraction.
As it is expected, it extend the famous Banach contraction mapping principle. In-
spired the result of Wardowski, [19], a number of different approaches has been re-
ported, see [8, 13, 15–17] and related references therein.

On the other hand, Czerwik [9] extended the notion of metric by introducing a new
notion, b-metric. Indeed, Czerwik [9] modified the triangle inequality that causes to
several differences in the related topology, and hence in convergence of a sequence,
Hausdorffness of the topology etc. We also mention that Jachymski [10] success-
ively set-up the Banach contraction mapping principle in the frame of a complete
metric space endowed with a directed graph, Jachymski [10]. Later, this interesting
contribution has been appreciated by several authors [5, 6, 11, 12, 14, 18].

The purpose of this paper is to introduce and discuss some new fixed point theor-
ems and common fixed point theorems for mappings in uniform space endowed with
graph satisfying the FG-contraction, and  G-contraction. Further, we introduce and
use the notion of Es-distance in this paper.

Some basic definitions and fundamental results are recollected for the sake of com-
pleteness. Let X be a nonempty set. A nonempty family, # of subsets of X �X is
called the uniform structure of X , if it satisfies the following properties:
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(i) if G is in # , then G contains the diagonal f.x;x/jx 2Xg;
(ii) if G is in # and H is a subset of X �X which contains G, then H is in # ;

(iii) if G and H are in # , then G\H is in # ;
(iv) if G is in # , then there exists H in # , such that, whenever .x;y/ and .y;´/

are in H , then .x;´/ is in G;
(v) if G is in # , then f.y;x/j.x;y/ 2Gg is also in # .

The pair (X;#) is called a uniform space and the element of # is called entourage
or neighborhood or surrounding. The pair (X;#) is called a quasiuniform space (see
e.g. [20] ) if property (v) is omitted

Let�D f.x;x/jx 2Xg be the diagonal of a non-empty set X . For V;W 2X �X ,
we shall use the following setting in the sequel

V ıW D f.x;y/j there exists ´ 2X W .x;´/ 2W and .´;y/ 2 V g

and
V �1 D f.x;y/j.y;x/ 2 V g:

For a subset V 2 # , a pair of points x and y are said to be V -close if .x;y/ 2 V and
.y;x/ 2 V . Moreover, a sequence fxng in X is called a Cauchy sequence for # , if for
any V 2 # , there exists N � 1 such that xn and xm are V -close for n;m � N . For
(X;#), there is a unique topology �.#/ on X generated by V.x/D fy 2 X j.x;y/ 2
V g where V 2 # .

A sequence fxng in X is convergent to x for # , denoted by lim
n!1

xn D x, if for

any V 2 # , there exists n0 2 N such that xn 2 V.x/ for every n � n0. A uniform
space .X;#/ is called Hausdorff if the intersection of all the V 2 # is equal to � of
X , that is, if .x;y/ 2 V for all V 2 # implies x D y. If V D V �1 then we shall say
that a subset V 2 # is symmetrical. Throughout the paper, we shall assume that each
V 2 # is symmetrical. For more details, see e.g. [1–4]

Now, we shall recall the notions of A-distance and E-distance.

Definition 1. [2,3] Let .X;#/ be a uniform space. A function p WX�X �! Œ0;1/

is said to be an A-distance if for any V 2 # there exists ı > 0 such that if p.´;x/� ı
and p.´;y/� ı for some ´ 2X , then .x;y/ 2 V .

Definition 2. [2,3] Let .X;#/ be a uniform space. A function p WX�X �! Œ0;1/

is said to be an E-distance if

(i) p is an A-distance,
(ii) p.x;y/� p.x;´/Cp.´;y/; 8x;y;´ 2X:

Example 1. [2, 3] Let .X;#/ be a uniform space and let d be a metric on X . It
is evident that .X;#d / is a uniform space where #d is a set of all subsets of X �X
containing a ”band” U� D f.x;y/ 2 X2jd.x;y/ < �g for some � > 0. Moreover, if
# � #d , then d is an E-distance on .X;#/.
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Lemma 1. [2,3] Let .X;#/ be a Hausdorff uniform space and p be an A-distance
on X. Let fxng and fyng be sequences in X and f˛ng, fˇng be sequences in Œ0;1/
converging to 0. Then, for x;y;´ 2X; the following results hold:

(a) If p.xn;y/� ˛n and p.xn;´/� ˇn for all n 2N, then y D ´. In particular,
if p.x;y/D 0 and p.x;´/D 0, then y D ´.

(b) If p.xn;yn/� ˛n and p.xn;´/� ˇn for all n 2N, then fyng converges to ´.
(c) If p.xn;xm/ � ˛n for all n;m 2 N with m > n, then fxng is a Cauchy se-

quence in .X;#/.

Let p be an A-distance. A sequence in a uniform space .X;#/ with an A-distance
is said to be a p-Cauchy if for every � > 0 there exists n0 2N such that p.xn;xm/ < �
for all n;m� n0.

Definition 3. [2, 3] Let .X;#/ be a uniform space and p be an A-distance on X .
(i) X is S -complete if for every p-Cauchy sequence fxng, there exists x in X

with limn!1p.xn;x/D 0.
(ii) X is p-Cauchy complete if for every p-Cauchy sequence fxng, there exists

x in X with limn!1xn D x with respect to �.#/ .
(iii) T WX !X is p-continuous if limn!1p.xn;x/D 0 implies

limn!1p.T .xn/;T .x//D 0.

Remark 1. Let .X;#/ be a Hausdorff uniform space which is S -complete. If a
sequence fxng be a p-Cauchy sequence, then we have limn!1p.xn;x/ D 0. Re-
garding Lemma 1(b), We derive that limn!1xn D x with respect to the topology
�.#/ and hence S -completeness implies p-Cauchy completeness.

Cosentino et al: [7] modify the F-family introduced by Wardowski [19], in the
setting of b-metric spaces as follows:

Definition 4. [7] Let s � 1 be a real number. Denote by Fs the family of all
functions F W .0;1/! R satisfying the following conditions:
.F1/ F is strictly increasing, that is, for each a1;a2 2 .0;1/ with a1 < a2, we

have F.a1/ < F.a2/;
.F2/ for each sequence fdng of positive real numbers we have limn!1 dn D 0 if

and only if limn!1F.dn/D�1;
.F3/ for each sequence fdng of positive real numbers with limn!1 dn D 0, there

exists k 2 .0;1/ such that limn!1 dn
kF.dn/D 0.

.F4/ for each sequence fdng of positive real numbers such that � CF.sdn/ �
F.dn�1/ for each n 2N and some � > 0, then �CF.sndn/� F.sn�1dn�1/
for each n 2N.

Cosentino et al: [7] also showed that the following functions belong to Fs .
� F.x/D xC lnx, for each x > 0.
� F.x/D lnx, for each x > 0.
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2. MAIN RESULTS

We will start this section with the following definition:

Definition 5. Let .X;#/ be a uniform space. A function p W X �X �! Œ0;1/ is
said to be an Es-distance if

(i) p is an A-distance,
(ii) p.x;y/� sŒp.x;´/Cp.´;y/�; 8x;y;´ 2X and for some s � 1:

Example 2. Let .X;#/ be a uniform space and let d be a b-metric on X . Then
clearly, .X;#d / is a uniform space where #d is a set of all subsets of X �X contain-
ing a ”band” U� D f.x;y/ 2 X2jd.x;y/ < �g for some � > 0. Moreover, if # � #d ,
then d is an Es-distance on .X;#/.

Throughout this section, we assume that G D .V;E/ is a directed graph such that
the set of its vertices V coincides with X (i.e., V D X ) and the set of its edges
E is such that E � 4, where 4 D f.x;x/ W x 2 Xg. Further, assume that G has
no parallel edges. A mapping T W X ! X is pG-continuous if for each sequence
fxng � X with .xn;xnC1/ 2 E for all n 2 N and limn!1p.xn;x/ D 0, then we
have limn!1p.T xn;T x/D 0.

Definition 6. Let .X;#/ be a uniform space endowed with the graphG and p is an
Es-distance on X . A mapping T WX !X is a FG-contraction, if there exist F 2 Fs
and � > 0, such that, for each .x;y/ 2E, we have

�CF.sp.T x;Ty//� F.p.x;y//; (2.1)

whenever minfp.T x;Ty/;p.x;y/g> 0.

Theorem 1. Let .X;#/ be a S -complete Hausdorff uniform space endowed with
the graph G and p is an Es-distance on X . Let T WX !X is an FG-contraction
satisfying the following conditions:

(i) T is edge preserving, that is, for .x;y/ 2E, we have .T x;Ty/ 2E;
(ii) there exists x0 2X such that .x0;T x0/ 2E and .T x0;x0/ 2E;

(iii) T is pG-continuous, or, for any sequence fxng � X such that xn ! x as
n!1 and .xn;xnC1/ 2 E for each n 2 N, we have .xn;x/ 2 E for each
n 2N.

Then T has a fixed point.

Proof. By hypothesis (ii), there exists x0 2X such that .x0;x1/D .x0;T x0/ 2E.
From (2.1), we have

�CF.sp.x1;x2//D �CF.sp.T x0;T x1//� F.p.x0;x1// (2.2)

As T is edge preserving, for .x0;x1/ 2E, we have .x1;x2/ 2E, From (2.1), we have

�CF.sp.x2;x3//D �CF.sp.T x1;T x2//� F.p.x1;x2// (2.3)
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Continuing in the same way, we get a sequence fxng �X such that

xn D T xn�1; xn�1 ¤ xn and .xn�1;xn/ 2E for each n 2N:

Furthermore,

�CF.sp.xn;xnC1//� F.p.xn�1;xn// for each n 2N: (2.4)

By using the property F4, we have

�CF.snp.xn;xnC1//� F.s
n�1p.xn�1;xn//:

Letting pn D p.xn;xnC1/, for each n 2N and after some simplification, we have

F.snpn/� F.p0/�n� for each n 2N: (2.5)

Letting n!1 in (2.5), we get limn!1F.snpn/D �1. Thus, by property .F2/,
we have limn!1 snpn D 0. From .F3/ there exists k 2 .0;1/ such that

lim
n!1

.snpn/
kF.snpn/D 0:

From (2.5) we have

.snpn/
kF.snpn/� .s

npn/
kF.p0/� �.s

npn/
kn� � 0 for each n 2N: (2.6)

Letting n!1 in (2.6), we get

lim
n!1

n.snpn/
k
D 0: (2.7)

This implies that there exists n1 2N such that n.snpn/k � 1 for each n� n1. Thus,
we have

snpn �
1

n1=k
; for each n� n1: (2.8)

To show that fxng is a p-Cauchy sequence, consider

Sn D

nX
iDn1

1

i1=k
:

Since
P1
iD1

1
i1=k is convergent series. Thus, there exists S 2 Œ0;1/ such that

limn!1Sn D S . Consider m;n 2 N with m > n > n1. By using the triangular
inequality and (2.8), we have

p.xn;xm/� s
np.xn;xnC1/C s

nC1p.xnC1;xnC2/C�� �C s
m�1p.xm�1;xm/

D

m�1X
iDn1

sipi �

n�1X
iDn1

sipi

� Sm�1�Sn�1:

Thus, limn;m!1p.xn;xm/D 0. In a similar way, we show that limn;m!1p.xm;xn/
D 0. Thus, fxng is a p-Cauchy sequence. As .X;#/ is S-complete, there exists x� 2
X such that limn!1p.xn;x�/ D 0. By condition (iii), when T is pG-continuous,
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we have limn!1p.xnC1;T x�/D 0. As limn!1p.xn;x�/D 0 and
limn!1p.xn;T x�/D 0. Thus by Lemma 1-(a) we have x� D T x�. By condition
(iii), when we have .xn;x�/ 2E for each n 2N. From (2.1), we have

�CF.sp.T xn;T x
�//� F.p.xn;x

�//:

This implies that sp.xnC1;T x�/ < p.xn;x�/. Letting n!1, we have
limn!1p.xnC1;T x�/D 0. Again, by Lemma 1-(a) we have x� D T x�. �

Let 	 be the family of functions  W Œ0;1/! Œ0;1/ satisfying the following
conditions:

(	1)  is nondecreasing;

(	2)
C1X
nD1

sn n.t/ <1 for all t > 0, where  n is the nth iterate of  .

Definition 7. Let .X;#/ be a uniform space endowed with the graph G and p is
an Es-distance on X . A mapping T W X ! X is a  G-contraction mapping if for
each .x;y/ 2E, we have

p.T x;Ty/�  .p.x;y// (2.9)

where  2 	 .

Theorem 2. Let .X;#/ be a S -complete Hausdorff uniform endowed with the
graphG and p is anEs-distance onX . Let T WX!X is a G-contraction mapping
satisfying the following conditions:

(i) T is edge preserving, that is, for .x;y/ 2E, we have .T x;Ty/ 2E;
(ii) there exists x0 2X such that .x0;T x0/ 2E and .T x0;x0/ 2E;

(iii) T is pG-continuous, or, for any sequence fxng � X such that xn ! x as
n!1 and .xn;xnC1/ 2 E for each n 2 N, we have .xn;x/ 2 E for each
n 2N.

Then T has a fixed point.

Proof. By hypothesis (ii) of theorem we have x0 2 X such that .x0;T x0/ 2 E.
Define the sequence fxng in X by xnC1 D T xn for all n 2N[f0g. If xn0

D xn0C1

for some n0, then xn0
is a fixed point of T . So, we can assume that xn ¤ xnC1 for

all n. Since T is edge preserving, we have

.x0;x1/D .x0;T x0/ 2E) .T x0;T x1/D .x1;x2/ 2E:

Inductively, we have

.xn;xnC1/ 2E; for all n 2N[f0g: (2.10)

From (2.9) and (2.10), it follows that for all n 2N[f0g, we have

p.xnC1;xnC2/D p.T xn;T xnC1/�  .p.xn;xnC1//: (2.11)
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Iteratively, we get

p.xn;xnC1/�  
n.p.x0;x1//; for all n 2N:

Since p is an Es-distance then for m> n, we have

p.xn;xm/� s
np.xn;xnC1/C s

nC1p.xnC1;xnC2/C�� �C s
m�1p.xm�1;xm/

� sn n.p.x0;x1//C s
nC1 nC1.p.x0;x1//C�� �C s

m�1 m�1.p.x0;x1//:

To show that fxng is a p-Cauchy sequence, consider

Sn D

nX
kD0

sk k.p.x0;x1//:

Thus from (2) we have
p.xn;xm/� Sm�1�Sn�1: (2.12)

Since  2 	 , there exists S 2 Œ0;1/ such that limn!1Sn D S . Thus by (2.12) we
have

lim
n;m!1

p.xn;xm/D 0: (2.13)

Since p is not symmetric then by repeating the same argument we have
limn;m!1p.xm;xn/D 0:Hence the sequence fxng is a p-Cauchy in the S -complete
space X . Thus, there exists x� 2 X such that limn!1p.xn;x�/D 0. By condition
(iii), when we have T is pG-continuous, we get limn!1p.T xn;T x�/ D 0 which
implies that limn!1p.xnC1;T x�/ D 0. Hence we have limn!1p.xn;x�/ D 0
and limn!1.xn;T x�/D 0. Thus by Lemma 1-(a) we have x�D T x�. By condition
(iii), when we have .xn;x�/ 2E for each n 2N, then from (2.9)

p.xnC1;T x
�/D p.T xn;T x

�/�  .p.xn;x
�// < p.xn;x

�/: (2.14)

Letting n!1 in the above inequality, we have limn!1p.xnC1;T x�/D 0. Thus
by repeating the same arguments as above we have x� D T x�. �

Example 3. Let X D Œ0;1� be endowed with a graph G D .V;E/ with V DX and
E D

˚
.x;y/ W x;y 2 f 1

nC1
W n 2Ng[f0g

	
[f.x;x/ W x 2Xg, and b-metric d.x;y/D

.x�y/2 with s D 2. Define # D fU�j� > 0g. It is easy to see that .X;#/ is a uniform
space. Define T WX !X by

T x D

8̂<̂
:
0 if x D 0
1

3nC1
if x D 1

n
W n > 1

p
x otherwise:

(2.15)

Take  .t/ D t
3

for all t � 0. It is easy to see that T is edge preserving and  G-
contraction. Also for x0 D 1

2
we have .x0;T x0/ 2 E and .T x0;x0/ 2 E. Moreover

for any sequence fxng in X with xn ! x as n!1 and .xn�1;xn/ 2 E for each
n 2N we have .xn;x/ 2 E for each n 2N. Therefore by Theorem 2, T has a fixed
point.
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To investigate the uniqueness of a fixed point, we consider the following condition:
.H/: For all x;y 2 Fix.T /, there exists ´ 2X such that .´;x/ 2E and .´;y/ 2
E.

Here, Fix.T / denotes the set of all fixed points of T .
The following theorem guarantees the uniqueness of a fixed point.

Theorem 3. Adding the condition .H/ in the hypothesis of Theorem 2, we obtain
the uniqueness of fixed point of T .

Proof. Suppose, on the contrary, that u;v 2 X are two distinct fixed points of T .
From .H/, there exists ´ 2X such that

.´;u/ 2E and .´;v/ 2E: (2.16)

By using the fact that T is edge preserving, from (2.16), we have

.T n´;u/ 2E and .T n´;v/ 2E; for all n 2N[f0g: (2.17)

We define the sequence f´ng in X by ´nC1 D T ´n D T n´0 for all n 2N[f0g and
´0 D ´. From (2.17) and (2.9), we have

p.´nC1;u/D p.T ´n;T u/�  .p.´n;u//; (2.18)

for all n 2N[f0g. This implies that

p.´n;u/�  
n.p.´0;u//; for all n 2N:

Letting n!1 in the above inequality, we obtain

lim
n!1

p.´n;u/D 0: (2.19)

Similarly, we have
lim
n!1

p.´n;v/D 0: (2.20)

From (2.19) and (2.20) together with Lemma 1-(a), it follows that uD v. Thus, fixed
point of T is unique. �

Definition 8. Let .X;#/ be a uniform space endowed with the graph G. A pair
of two self mappings T;S W X ! X is said to be a  G-contraction pair if for each
.x;y/ 2E, we have

maxfp.T x;Sy/;p.Sx;Ty/g �  .p.x;y//; (2.21)

where  2 	 .

Theorem 4. Let .X;#/ be a S -complete Hausdorff uniform space endowed with
the graph G and p is an Es-distance on X . Suppose that the pair of T;S W X ! X

is  G-contraction pair satisfying the following conditions.
(i) .T;S/ is edge preserving pair, that is, for each .x;y/2E, we have .T x;Sy/2
E and .Sx;Ty/ 2E;

(ii) there exists x0 2X such that .x0;T x0/ 2E and .T x0;x0/ 2E;
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(iii) for any sequence fxng in X with xn! x as n!1 and .xn;xnC1/ 2 E for
each n 2N[f0g, then .xn;x/ 2E for each n 2N[f0g.

Then T and S have a common fixed point.

Proof. By hypothesis (ii) of theorem, we have x0 2 X such that .x0;T x0/ 2 E
and .T x0;x0/ 2 E. Since .T;S/ is an edge preserving pair, then we can construct a
sequence such that

T x2n D x2nC1; Sx2nC1 D x2nC2 and .xn;xnC1/ 2E; .xnC1;xn/ 2E;N[f0g;

for all n 2N[f0g. From (2.21) for all n 2N[f0g, we have

p.x2nC1;x2nC2/D p.T x2n;Sx2nC1/

�maxfp.T x2n;Sx2nC1/;p.Sx2n;T x2nC1/g

�  .p.x2n;x2nC1//:

Hence, we conclude that

p.x2nC1;x2nC2/�  .p.x2n;x2nC1//: (2.22)

Similarly, we get

p.x2nC2;x2nC3/D p.Sx2nC1;T x2nC2/

�maxfp.T x2nC1;Sx2nC2/;p.Sx2nC1;T x2nC2/g

�  .p.x2nC1;x2nC2//:

Hence, we have

p.x2nC2;x2nC3/�  .p.x2nC1;x2nC2//: (2.23)

Thus from (2.22) and (2.23), and by induction, we get

p.xn;xnC1/�  
n.p.x0;x1//; for all n 2N: (2.24)

Now we show that fxng is a p-Cauchy sequence. Since p is an Es-distance then for
m> n, we have

p.xn;xm/� s
np.xn;xnC1/C s

nC1p.xnC1;xnC2/C�� �C s
m�1p.xm�1;xm/

� sn n.p.x0;x1//C s
nC1 nC1.p.x0;x1//C�� �C s

m�1 m�1.p.x0;x1//:

Now, we shall consider

Sn D

nX
kD0

sk k.p.x0;x1//:

Thus, from (2) we have
p.xn;xm/� Sm�1�Sn�1: (2.25)

Since  2 	 , there exists S 2 Œ0;1/ such that limn!1Sn D S . Thus, by (2.25) we
have

lim
n;m!1

p.xn;xm/D 0: (2.26)
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Since p is not symmetric then by repeating the same argument we have

lim
n;m!1

p.xm;xn/D 0: (2.27)

Hence the sequence fxng is a p-Cauchy in the S -complete space X . Thus, there
exists x� 2 X such that limn!1p.xn;x�/ D 0 which implies limn!1T x2n D
limn!1Sx2nC1 D x�. By assumption (iii), we have .xn;x�/ 2 E. Thus, by us-
ing the triangular inequality and (2.21), we have

p.xn;T x
�/� sp.xn;x2nC2/C sp.x2nC2;T x

�/

D sp.xn;x2nC2/C sp.Sx2nC1;T x
�/

� sp.xn;x2nC2/C smaxfp.T x2nC1;Sx�/;p.Sx2nC1;T x�/g

� sp.xn;x2nC2/C s .p.x2nC1;x
�// (2.28)

Letting n!1 in (2.28), we have p.xn;T x�/D 0. Hence we have
limn!1p.xn;x�/D 0 and limn!1p.xn;T x�/D 0. Thus by Lemma 1-(a) we have
x� D T x�. Analogously, we can drive x� D Sx�. Therefore x� D T x� D Sx�. �

Remark 2. Note that Theorem 4 is valid if one replace condition (ii) with
(ii)’: there exists x0 2X such that .x0;Sx0/ 2E and .Sx0;x0/ 2E.

Example 4. Let X D Œ0;1� be endowed with a graph G D .V;E/ with V DX and
E D

˚
.x;y/ W x;y 2 f 1

nC1
W n 2Ng[f0g

	
[f.x;x/ W x 2 Xg, and dislocated metric

space d.x;y/ D maxfx;yg. Define # D fU�j� > 0g, where U� D f.x;y/ 2 X2 W
d.x;y/ < d.x;x/C �g. It is easy to see that .X;#/ is a uniform space. Define
T WX !X by

T x D

8̂<̂
:
0 if x D 0
1

2nC1
if x D 1

n
W n > 1

x2 otherwise
(2.29)

and S WX !X by

Sx D

8̂<̂
:
0 if x D 0
1
2n

if x D 1
n
W n > 1

p
x otherwise

(2.30)

Take  .t/D t
2

for all t � 0. Further, it is easy to see that .T;S/ is edge preserving
and G-contraction pair. Also for x0D 1

2
we have .x0;T x0/2E and .T x0;x0/2E.

Moreover for any sequence fxng in X with xn! x as n!1 and .xn;xnC1/ 2 E
for each n 2N[f0g we have .xn;x/ 2 E for each n 2N. Therefore by Theorem 4,
T and S have a common fixed point.

To investigate the uniqueness of a common fixed point, we use the following con-
dition.
.I / For each x;y 2 CF ix.T;S/, we have .x;y/ 2 E, where CF ix.T;S/ is the

set of all common fixed points of T and S .
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Theorem 5. Adding the condition .I / in the hypothesis of Theorem 4, we obtain
the uniqueness of common fixed point of T and S .

Proof. On the contrary suppose that u;v 2X are two distinct common fixed points
of T and S . From .I / and (2.21) we have

p.u;v/Dmaxfp.T u;Sv/;p.Su;T v/g �  .p.u;v// < p.u;v/;

which is impossible for p.u;v/ > 0. Consequently, we have p.u;v/ D 0. Analog-
ously, one can show that p.u;u/D 0. Thus we have uD v, which is a contradiction
to our assumption. Hence T and S have a unique common fixed point. �
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