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ON THE HYPER-SUMS OF POWERS OF INTEGERS
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Abstract. The main object of this paper is to study an old problem concerning the hyper-sums
of powers of integers. First, we establish some important properties of this problem (generating
function, explicit formula, congruence). Finally, an explicit formula for the hyper-sums of powers
of integers involving the generalized Bernoulli polynomials are also given.
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1. INTRODUCTION

Following the usual notations (see [4]), the falling factorial xn .x 2C/ is defined
by x0 D 1; xn D x .x�1/ � � �.x�nC1/ for n > 0 and, the rising factorial denoted
by xn, is defined by xn D x .xC1/ � � �.xCn�1/ with x0 D 1. The (signed) Stirling
numbers of the first kind s .n;k/ are the coefficients in the expansion

xn D

nX
kD0

s .n;k/xk :

The Stirling numbers of the second kind, denoted
˚
n
k

	
are the coefficients in the ex-

pansion

xn D

nX
kD0

(
n

k

)
xk :

The Stirling numbers of the second kind
˚
n
k

	
count the number of ways to partition a

set of n elements into exactly k nonempty subsets.
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The hyper-sums (sums of sums) of powers of integers S .r/p .n/ .p � 0/ (or the
r-fold summation of pth powers) are defined recursively as8̂̂̂̂

<̂
ˆ̂̂:

S
.r/
0 .n/D

 
nC r

rC1

!
; r � 0;

S
.0/
p .n/D

nX
iD1

ip I S
.r/
p .n/D

nX
jD1

S
.r�1/
p .j / ; n;r;p � 1:

As mentioned by Knuth [8], the hyper-sums of powers of integers was introduced
for the first time by Faulhaber as a generalization of sums of powers of integers

S .0/p .n/D 1pC2pC�� �Cnp:

The sums S .0/p .n/ have been of interest for a long time and different methods have
been proposed to obtain them, see [1–3, 5, 6, 9, 10].

In 2005, Inaba [7] extended the well-known formulas for S .0/p .n/ which is based
on Stirling numbers of the second kind to obtain the explicit formulas of the hyper-
sums of powers of integers

S .r/p .n/D

pX
kD1

kŠ

 
nC rC1

rCkC1

!(
p

k

)
; n;p � 1: (1.1)

Note that when p � 0, we can write S .r/p .n/ as

S .r/p .n/D

pX
kD0

(
p

k

) 
kŠ

 
nC rC1

kC rC1

!
�

 
nC r

r

!
ı0;k

!
; (1.2)

where ıi;j denotes the Kronecker symbol.
The purpose of the present paper is to give some results concerning the hyper-sums

of powers of integers S .r/p .n/.

2. MAIN RESULTS

We begin by the exponential generating function of the hyper-sums of powers of
integers.

Theorem 1. The exponential generating function of the hyper-sums of powers of
integers S .r/p .n/ is

X
p�0

S .r/p .n/
´p

pŠ
D

 
nC rC1

rC1

!
2F1

�
1;�n

rC2
I1� e´

�
�

 
nC r

r

!
;
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where 2F1

�
a;b

c
I´

�
denotes the Gaussian hypergeometric function defined by

X
n�0

.a/n .b/n

.c/n
´n

nŠ
:

Proof. First, we invert the formula (1.2) to obtain
pX
kD0

s .p;k/S
.r/

k
.n/D pŠ

 
nC rC1

pC rC1

!
�

 
nC r

r

!
ı0;p:

Further, we have

A0 .´/D
X
p�0

 
pŠ

 
nC rC1

pC rC1

!
�

 
nC r

r

!
ı0;p

!
´p

pŠ

D

X
p�0

 
nC rC1

pC rC1

!
´p�

 
nC r

r

!

D

 
nC rC1

rC1

!X
p�0

.1/p .�n/p

.rC2/p
.�´/p

pŠ
�

 
nC r

r

!
:

Finally, the result follows from [11, Theorem 3]X
p�0

S .r/p .n/
´p

pŠ
D A0

�
e´�1

�
:

This completes the proof. �

We will now derive a few further consequences of Theorem 1.

Corollary 1. The exponential generating function of the hyper-sums of powers of
integers S .r/p .n/ is given byX

p�0

S .r/p .n/
´p

pŠ
D

nX
iD1

 
nC r � i

r

!
ei´: (2.1)

Proof. It follows from the theory of hypergeometric functions that the Gaussian

hypergeometric function 2F1

�
1;�n

rC2
I1� e´

�
has an integral representation given

by

2F1

�
1;�n

rC2
I1� e´

�
D .rC1/

1Z
0

.1�x/r
�
1�xCxe´

�n
dx:
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Hence, we obtain

X
p�0

S .r/p .n/
´p

pŠ
D
.nC rC1/Š

nŠrŠ

nX
kD0

 
n

k

!
e.n�k/´

1Z
0

.1�x/rCk xn�kdx�

 
nC r

r

!

D
.nC rC1/Š

nŠrŠ

nX
kD0

 
n

k

!
e.n�k/´

.rCk/Š.n�k/Š

.nC rC1/Š
�

 
nC r

r

!

D

nX
kD0

 
kC r

r

!
e.n�k/´�

 
nC r

r

!

D

n�1X
kD0

 
kC r

r

!
e.n�k/´;

as claimed. �

An explicit formula for S .r/p .n/ is given in the following corollary.

Corollary 2. The hyper-sums of powers of integers S .r/p .n/ .p � 0/ is given by

S .r/p .n/D

nX
iD1

 
nC r � i

r

!
ip:

Proof. Since X
p�0

S .r/p .n/
´p

pŠ
D

nX
iD1

 
nC r � i

r

!X
p�0

.i´/p

pŠ

D

X
p�0

 
nX
iD1

 
nC r � i

r

!
ip

!
´p

pŠ
:

Equating the coefficient of ´
p

pŠ
, we get the result. �

In the next theorem we will present some congruence relations for S .r/p .n/.

Theorem 2. Let n be a prime number and for p > 0; r � 0; we have

(1) If n j rC1; then S .r/p .n/� 0 .modn/;
(2) If n − rC1 and n�1 j p; then S .r/p .n/��1 .modn/.

Proof. If n j rC1 then by Lucas’ congruence we get

S .r/p .n/�

n�1X
iD1

 
r � i

r

!
ip .modn/

� 0.modn/ :



ON THE HYPER-SUMS OF POWERS OF INTEGERS 311

Since n�1 j p, the Fermat’s little theorem and Lucas’ congruence gives

S .r/p .n/�

n�1X
iD1

 
nC r � i

r

!
.modn/

��1C

 
nC r

rC1

!
.modn/

��1.modn/ :

This completes the proof. �

Theorem 3. The ordinary generating function of the hyper-sums of powers of
integers S .r/p .n/ is given byX

r�0

S .r/p .n/´r D
1

.1�´/nC1

nX
iD1

.1�´/i ip: (2.2)

Proof. Since X
r�0

 
nC r � i

r

!
´r D .1�´/i�n�1 ;

which implies .2:2/ : �

Further, from .2:1/ and .2:2/, we deduce the double generating function of the
hyper-sums of powers of integers S .r/p .n/X

r�0

X
p�0

S .r/p .n/
´p

pŠ
tr D

nX
iD1

X
r�0

 
nC r � i

r

!
trei´

D
1

.1� t /nC1

nX
iD1

�
e´ .1� t /

�i
D

e.nC1/´ .1� t /n� e´

.1� t /n .e´ .1� t /�1/
:

Now, according to the well-known formula, for n 2N and m 2N�

2F1

�
�n;1

m
I´

�
D
nŠ.´�1/m�2

.m/n´m�1

"
m�2X
kD0

.nC1/k

kŠ

�
´

´�1

�k
� .1�´/nC1

#
;

we can rewrite the exponential generating function of the hyper-sums of powers of
integers S .r/p .n/ as

X
p�0

S .r/p .n/
´p

pŠ
D

.�1/r er´

.1� e´/rC1

 
rX
kD0

 
nCk

k

!�
1� e�´

�k
� e.nC1/´

!
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�

 
nC r

r

!
: (2.3)

The next result gives an explicit formula for S .r/p .n/ involving the generalized
Bernoulli polynomials. Recall that the generalized Bernoulli polynomials B.˛/n .x/ of
degree n in x are defined by the exponential generating function [12, 13]� ´

e´�1

�˛
ex´ D

X
n�0

B.˛/n .x/
´n

nŠ
(2.4)

for arbitrary parameter ˛:
In particular, B.1/n .x/ WD Bn .x/ denotes the classical Bernoulli polynomials with

B1 .0/D�
1
2

.

Theorem 4. For all n;p;r � 0; we have

S .r/p .n/D
pŠ

.pC rC1/Š
B.rC1/pCrC1 .nC rC1/

�pŠ

rX
jD0

 
nCk

k

!
B.jC1/pCjC1 .j /

.pCj C1/Š
�

 
nC r

r

!
ı0;p:

Proof. By (2.3) and (2.4) we haveX
p�0

S .r/p .n/
´p

pŠ
D�

rX
kD0

 
nCk

k

!
e.r�k/´

.e´�1/r�kC1
C
e.rCnC1/´

.e´�1/rC1
�

 
nC r

r

!

D�

rX
kD0

 
nCk

k

!X
p�0

B.r�kC1/p .r �k/
´p�r�1

pŠ

C

X
p�0

B.rC1/p .nC rC1/
´p�r�1

pŠ
�

 
nC r

r

!
:

After some rearrangement, we find

X
p�0

S .r/p .n/
´p

pŠ
D

X
p�0

´p

pŠ

0@pŠB.rC1/pCrC1 .nC rC1/

.pC rC1/Š

�

rX
kD0

pŠ
B.r�kC1/
pCr�kC1

.r �k/

.pC r �kC1/Š

 
nCk

k

!
�

 
nC r

r

!
ı0;p

1A :
Equating the coefficient of ´

p

pŠ
; we get the result. �
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When r D 0, Theorem 4 reduces to the known result

S .0/p .n/D
1

pC1

�
BpC1 .nC1/�BpC1 .0/

�
� ı0;p:
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