

ON THE HYPER-SUMS OF POWERS OF INTEGERS

DIFFALAH LAISSAOUI, FOUAD BOUNEBIRAT, AND MOURAD RAHMANI

Received 27 May, 2016

Abstract. The main object of this paper is to study an old problem concerning the hyper-sums of powers of integers. First, we establish some important properties of this problem (generating function, explicit formula, congruence). Finally, an explicit formula for the hyper-sums of powers of integers involving the generalized Bernoulli polynomials are also given.

2010 Mathematics Subject Classification: 11B73; 11B68; 33C05

Keywords: Bernoulli numbers, sums of powers of integers, Stirling numbers

1. INTRODUCTION

Following the usual notations (see [4]), the falling factorial $x^{\underline{n}}$ ($x \in \mathbb{C}$) is defined by $x^{\underline{0}} = 1$, $x^{\underline{n}} = x (x-1) \cdots (x-n+1)$ for n > 0 and, the rising factorial denoted by $x^{\overline{n}}$, is defined by $x^{\overline{n}} = x (x+1) \cdots (x+n-1)$ with $x^{\overline{0}} = 1$. The (signed) Stirling numbers of the first kind s (n,k) are the coefficients in the expansion

$$x^{\underline{n}} = \sum_{k=0}^{n} s(n,k) x^{k}.$$

The Stirling numbers of the second kind, denoted $\binom{n}{k}$ are the coefficients in the expansion

$$x^n = \sum_{k=0}^n \begin{cases} n \\ k \end{cases} x^{\underline{k}}.$$

The Stirling numbers of the second kind $\binom{n}{k}$ count the number of ways to partition a set of *n* elements into exactly *k* nonempty subsets.

© 2017 Miskolc University Press

The hyper-sums (sums of sums) of powers of integers $S_p^{(r)}(n)$ $(p \ge 0)$ (or the *r*-fold summation of *p*th powers) are defined recursively as

$$\begin{cases} S_0^{(r)}(n) = \binom{n+r}{r+1}, \ r \ge 0, \\ S_p^{(0)}(n) = \sum_{i=1}^n i^p \ ; \ S_p^{(r)}(n) = \sum_{j=1}^n S_p^{(r-1)}(j), \ n, r, p \ge 1. \end{cases}$$

As mentioned by Knuth [8], the hyper-sums of powers of integers was introduced for the first time by Faulhaber as a generalization of sums of powers of integers

$$S_p^{(0)}(n) = 1^p + 2^p + \dots + n^p$$
.

The sums $S_p^{(0)}(n)$ have been of interest for a long time and different methods have been proposed to obtain them, see [1-3, 5, 6, 9, 10].

In 2005, Inaba [7] extended the well-known formulas for $S_p^{(0)}(n)$ which is based on Stirling numbers of the second kind to obtain the explicit formulas of the hypersums of powers of integers

$$S_p^{(r)}(n) = \sum_{k=1}^p k! \binom{n+r+1}{r+k+1} \begin{cases} p \\ k \end{cases}, \quad n, p \ge 1.$$
(1.1)

Note that when $p \ge 0$, we can write $S_p^{(r)}(n)$ as

$$S_{p}^{(r)}(n) = \sum_{k=0}^{p} \begin{cases} p \\ k \end{cases} \left(k! \binom{n+r+1}{k+r+1} - \binom{n+r}{r} \delta_{0,k} \right),$$
(1.2)

where $\delta_{i,j}$ denotes the Kronecker symbol.

The purpose of the present paper is to give some results concerning the hyper-sums of powers of integers $S_p^{(r)}(n)$.

2. MAIN RESULTS

We begin by the exponential generating function of the hyper-sums of powers of integers.

Theorem 1. The exponential generating function of the hyper-sums of powers of integers $S_p^{(r)}(n)$ is

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = \binom{n+r+1}{r+1} {}_2F_1 \left(\begin{array}{c} 1, -n \\ r+2 \end{array}; 1-e^z \right) - \binom{n+r}{r},$$

where
$${}_{2}F_{1}\left(\begin{array}{c}a,b\\c\end{array};z\right)$$
 denotes the Gaussian hypergeometric function defined by
$$\sum_{n\geq 0}\frac{(a)^{\overline{n}}(b)^{\overline{n}}}{(c)^{\overline{n}}}\frac{z^{n}}{n!}.$$

Proof. First, we invert the formula (1.2) to obtain

$$\sum_{k=0}^{p} s(p,k) S_{k}^{(r)}(n) = p! \binom{n+r+1}{p+r+1} - \binom{n+r}{r} \delta_{0,p}.$$

Further, we have

$$A_{0}(z) = \sum_{p \ge 0} \left(p! \binom{n+r+1}{p+r+1} - \binom{n+r}{r} \delta_{0,p} \right) \frac{z^{p}}{p!}$$

= $\sum_{p \ge 0} \binom{n+r+1}{p+r+1} z^{p} - \binom{n+r}{r}$
= $\binom{n+r+1}{r+1} \sum_{p \ge 0} \frac{(1)^{\overline{p}} (-n)^{\overline{p}}}{(r+2)^{\overline{p}}} \frac{(-z)^{p}}{p!} - \binom{n+r}{r}.$

Finally, the result follows from [11, Theorem 3]

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = A_0 \left(e^z - 1 \right).$$

This completes the proof.

We will now derive a few further consequences of Theorem 1.

Corollary 1. The exponential generating function of the hyper-sums of powers of integers $S_p^{(r)}(n)$ is given by

$$\sum_{p \ge 0} S_p^{(r)}(n) \frac{z^p}{p!} = \sum_{i=1}^n \binom{n+r-i}{r} e^{iz}.$$
 (2.1)

Proof. It follows from the theory of hypergeometric functions that the Gaussian hypergeometric function ${}_2F_1\left(\begin{array}{c} 1,-n\\r+2\end{array};1-e^z\right)$ has an integral representation given by

$${}_{2}F_{1}\left(\begin{array}{c}1,-n\\r+2\end{array};1-e^{z}\right) = (r+1)\int_{0}^{1}(1-x)^{r}\left(1-x+xe^{z}\right)^{n}dx.$$

Hence, we obtain

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = \frac{(n+r+1)!}{n!r!} \sum_{k=0}^n \binom{n}{k} e^{(n-k)z} \int_0^1 (1-x)^{r+k} x^{n-k} dx - \binom{n+r}{r}$$
$$= \frac{(n+r+1)!}{n!r!} \sum_{k=0}^n \binom{n}{k} e^{(n-k)z} \frac{(r+k)!(n-k)!}{(n+r+1)!} - \binom{n+r}{r}$$
$$= \sum_{k=0}^n \binom{k+r}{r} e^{(n-k)z} - \binom{n+r}{r}$$
$$= \sum_{k=0}^{n-1} \binom{k+r}{r} e^{(n-k)z},$$
as claimed.

as claimed.

An explicit formula for $S_p^{(r)}(n)$ is given in the following corollary.

Corollary 2. The hyper-sums of powers of integers $S_p^{(r)}(n)$ $(p \ge 0)$ is given by

$$S_p^{(r)}(n) = \sum_{i=1}^n \binom{n+r-i}{r} i^p.$$

Proof. Since

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = \sum_{i=1}^n \binom{n+r-i}{r} \sum_{p\geq 0} \frac{(iz)^p}{p!}$$
$$= \sum_{p\geq 0} \left(\sum_{i=1}^n \binom{n+r-i}{r} i^p \right) \frac{z^p}{p!}$$

Equating the coefficient of $\frac{z^p}{p!}$, we get the result.

In the next theorem we will present some congruence relations for $S_p^{(r)}(n)$.

Theorem 2. Let *n* be a prime number and for p > 0, $r \ge 0$, we have

(1) If n | r + 1, then $S_p^{(r)}(n) \equiv 0 \pmod{n}$, (2) If $n \nmid r + 1$ and n - 1 | p, then $S_p^{(r)}(n) \equiv -1 \pmod{n}$.

Proof. If $n \mid r + 1$ then by Lucas' congruence we get

$$S_p^{(r)}(n) \equiv \sum_{i=1}^{n-1} {\binom{r-i}{r}} i^p \pmod{n}$$
$$\equiv 0 \pmod{n}.$$

Since $n - 1 \mid p$, the Fermat's little theorem and Lucas' congruence gives

$$S_p^{(r)}(n) \equiv \sum_{i=1}^{n-1} \binom{n+r-i}{r} \pmod{n}$$
$$\equiv -1 + \binom{n+r}{r+1} \pmod{n}$$
$$\equiv -1 \pmod{n}.$$

This completes the proof.

Theorem 3. The ordinary generating function of the hyper-sums of powers of integers $S_p^{(r)}(n)$ is given by

$$\sum_{r \ge 0} S_p^{(r)}(n) z^r = \frac{1}{(1-z)^{n+1}} \sum_{i=1}^n (1-z)^i i^p.$$
(2.2)

、

Proof. Since

$$\sum_{r \ge 0} \binom{n+r-i}{r} z^r = (1-z)^{i-n-1},$$

which implies (2.2).

Further, from (2.1) and (2.2), we deduce the double generating function of the hyper-sums of powers of integers $S_p^{(r)}(n)$

$$\sum_{r \ge 0} \sum_{p \ge 0} S_p^{(r)}(n) \frac{z^p}{p!} t^r = \sum_{i=1}^n \sum_{r \ge 0} \binom{n+r-i}{r} t^r e^{iz}$$
$$= \frac{1}{(1-t)^{n+1}} \sum_{i=1}^n \left(e^z (1-t)\right)^i$$
$$= \frac{e^{(n+1)z} (1-t)^n - e^z}{(1-t)^n (e^z (1-t) - 1)}.$$

Now, according to the well-known formula, for $n \in \mathbb{N}$ and $m \in \mathbb{N}^*$

$${}_{2}F_{1}\left(\begin{array}{c}-n,1\\m\end{array};z\right) = \frac{n!(z-1)^{m-2}}{(m)^{\overline{n}}z^{m-1}} \left[\sum_{k=0}^{m-2} \frac{(n+1)^{k}}{k!} \left(\frac{z}{z-1}\right)^{k} - (1-z)^{n+1}\right],$$

we can rewrite the exponential generating function of the hyper-sums of powers of integers $S_p^{(r)}(n)$ as

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = \frac{(-1)^r e^{rz}}{(1-e^z)^{r+1}} \left(\sum_{k=0}^r \binom{n+k}{k} (1-e^{-z})^k - e^{(n+1)z} \right)$$

$$-\binom{n+r}{r}.$$
 (2.3)

The next result gives an explicit formula for $S_p^{(r)}(n)$ involving the generalized Bernoulli polynomials. Recall that the generalized Bernoulli polynomials $\mathbb{B}_n^{(\alpha)}(x)$ of degree *n* in *x* are defined by the exponential generating function [12, 13]

$$\left(\frac{z}{e^z - 1}\right)^{\alpha} e^{xz} = \sum_{n \ge 0} \mathbb{B}_n^{(\alpha)}(x) \frac{z^n}{n!}$$
(2.4)

for arbitrary parameter α .

In particular, $\mathbb{B}_{n}^{(1)}(x) := \mathbb{B}_{n}(x)$ denotes the classical Bernoulli polynomials with $\mathbb{B}_{1}(0) = -\frac{1}{2}$.

Theorem 4. For all $n, p, r \ge 0$, we have

$$S_{p}^{(r)}(n) = \frac{p!}{(p+r+1)!} \mathbb{B}_{p+r+1}^{(r+1)}(n+r+1) - p! \sum_{j=0}^{r} \binom{n+k}{k} \frac{\mathbb{B}_{p+j+1}^{(j+1)}(j)}{(p+j+1)!} - \binom{n+r}{r} \delta_{0,p}.$$

Proof. By (2.3) and (2.4) we have

$$\begin{split} \sum_{p \ge 0} S_p^{(r)}(n) \frac{z^p}{p!} &= -\sum_{k=0}^r \binom{n+k}{k} \frac{e^{(r-k)z}}{(e^z-1)^{r-k+1}} + \frac{e^{(r+n+1)z}}{(e^z-1)^{r+1}} - \binom{n+r}{r} \\ &= -\sum_{k=0}^r \binom{n+k}{k} \sum_{p \ge 0} \mathbb{B}_p^{(r-k+1)}(r-k) \frac{z^{p-r-1}}{p!} \\ &+ \sum_{p \ge 0} \mathbb{B}_p^{(r+1)}(n+r+1) \frac{z^{p-r-1}}{p!} - \binom{n+r}{r}. \end{split}$$

After some rearrangement, we find

$$\sum_{p\geq 0} S_p^{(r)}(n) \frac{z^p}{p!} = \sum_{p\geq 0} \frac{z^p}{p!} \left(p! \frac{\mathbb{B}_{p+r+1}^{(r+1)}(n+r+1)}{(p+r+1)!} - \sum_{k=0}^r p! \frac{\mathbb{B}_{p+r-k+1}^{(r-k+1)}(r-k)}{(p+r-k+1)!} \binom{n+k}{k} - \binom{n+r}{r} \delta_{0,p} \right).$$

Equating the coefficient of $\frac{z^p}{p!}$, we get the result.

When r = 0, Theorem 4 reduces to the known result

$$S_p^{(0)}(n) = \frac{1}{p+1} \left(\mathbb{B}_{p+1}(n+1) - \mathbb{B}_{p+1}(0) \right) - \delta_{0,p}.$$

ACKNOWLEDGEMENT

The authors would like to thank an anonymous reviewer for careful reading of this manuscript and their constructive remarks.

REFERENCES

- A. Beardon, "Sums of powers of integers." Am. Math. Mon., vol. 103, no. 3, pp. 201–213, 1996, doi: 10.2307/2975368.
- [2] R. Chapman, "Evaluating $\sum_{n=1}^{N} (a+nd)^p$ again," *The Mathematical Gazette*, vol. 92, pp. 92–94, 03 2008, doi: 10.1017/S0025557200182622.
- [3] A. Edwards, "Sums of powers of integers: a little of the history." *Math. Gaz.*, vol. 66, pp. 22–28, 1982, doi: 10.2307/3617302.
- [4] R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete mathematics: a foundation for computer science. 2nd ed.*, 2nd ed. Amsterdam: Addison-Wesley Publishing Group, 1994.
- [5] M. D. Hirschhorn, "Evaluating $\sum_{n=1}^{N} (a+nd)^p$," The Mathematical Gazette, vol. 90, pp. 114–116, 03 2006, doi: 10.1017/S0025557200179197.
- [6] F. Howard, "Sums of powers of integers via generating functions." *Fibonacci Q.*, vol. 34, no. 3, pp. 244–256, 1996.
- [7] Y. Inaba, "Hyper-sums of powers of integers and the Akiyama-Tanigawa matrix." J. Integer Seq., vol. 8, no. 2, pp. art. 05.2.7, 6, 2005.
- [8] D. Knuth, "Johann Faulhaber and sums of powers." *Math. Comput.*, vol. 61, no. 203, pp. 277–294, 1993, doi: 10.2307/2152953.
- [9] T. C. Kotiah, "Sums of powers of integers a review." Int. J. Math. Educ. Sci. Technol., vol. 24, no. 6, pp. 863–874, 1993, doi: 10.1080/0020739930240611.
- [10] I. Mező and J. L. Ramírez, "The linear algebra of the r-Whitney matrices." *Integral Transforms Spec. Funct.*, vol. 26, no. 3, pp. 213–225, 2015, doi: 10.1080/10652469.2014.984180.
- [11] M. Rahmani, "Generalized Stirling transform." *Miskolc Math. Notes*, vol. 15, no. 2, pp. 677–690, 2014.
- [12] H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals. Amsterdam: Elsevier, 2012.
- [13] H. Srivastava and P. G. Todorov, "An explicit formula for the generalized Bernoulli polynomials." J. Math. Anal. Appl., vol. 130, no. 2, pp. 509–513, 1988, doi: 10.1016/0022-247X(88)90326-5.

Authors' addresses

Diffalah Laissaoui

Dr Yahia Farès University of Médéa, Médéa 26000, Algeria *E-mail address:* laissaoui.diffalah74@gmail.com

Fouad Bounebirat

University of Boumerdès, Department of Mathematics, Boumrdès 35000, Algeria *E-mail address:* bounebiratfouad@yahoo.fr

314 DIFFALAH LAISSAOUI, FOUAD BOUNEBIRAT, AND MOURAD RAHMANI

Mourad Rahmani

USTHB, Faculty of Mathematics, P. O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria *E-mail address:* mrahmani@usthb.dz