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Abstract. For an algebra A, the lattice QuordA of all quasiorders of A, i. e., of all reflexive
and transitive relations compatible with all fundamental operations of A, is dealt with. In the
present paper we prove that if A is a monounary algebra, then QuordA is distributive if and only
if it is modular and we find necessary and sufficient conditions for A under which QuordA is
distributive.
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1. INTRODUCTION

A reflexive and transitive relation on an algebra A, which is compatible with all
fundamental operations of A, is said to be a quasiorder of A. Quasiorders of an alge-
bra can be considered as a common generalization of its congruences and compatible
partial orders.

The lattices of all quasiorders on a set have several special properties (e. g., they are
atomistic, dually atomistic and complemented [4]). By [2, 7], every algebraic lattice
is isomorphic to the quasiorder lattice of a suitable algebra. Only few properties of
the lattice of quasiorders are known in the case of concrete classes of algebras. For
example, for the majority algebras it is known that their quasiorder lattice is always
distributive [3, 8]). In [9] the question how endomorphisms of quasiorders behave,
in particular, under which conditions Endq � Endq0 for quasiorders q;q0 on a set A
(Endq is the set of all mappings preserving q). They describe the quasiorder lattice
of the algebra (A;Endq).

We will deal with the lattice Quord.A;f / of all quasiorders of .A;f /, where
.A;f / is a monounary algebra.

Let .A;f / be a monounary algebra. Clearly, if jAj D 1, then Quord.A;f / is a 1-
element lattice and if .A;f / is a 2-element cycle, then Quord.A;f / is a 2-element
lattice. Also, we show that if jAj D 2 and .A;f / is not a cycle, then Quord.A;f /Š
M2.
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The aim of this paper is to find necessary and sufficient conditions under which
the lattice Quord.A;f / is modular or distributive, respectively.

2. PRELIMINARIES

First we recall some basic notions. By a monounary algebra we understand a pair
.A;f / where A is a nonempty set and f WA! A is a mapping.

A monounary algebra .A;f / is called connected if, for arbitrary x;y 2 A, there
are non-negative integers n;m such that f n.x/ D f m.y/. A maximal connected
subalgebra of a monounary algebra is called a connected component.

An element x 2 A is referred to as cyclic, if there exists a positive integer n such
that f n.x/ D x. In this case the set fx;f 1.x/;f 2.x/; : : : ;f n�1.x/g is said to be
a cycle.

A quasiorder of an algebra AD .A;F / is a reflexive and transitive binary relation
on A, which is compatible with all operations f 2 F . A quasiorder is a congruence
of A, if it is symmetric. We will denote by QuordA and ConA the lattice of all
quasiorders and of all congruences of A, respectively, ordered by inclusion.

For an algebra AD .A;F /, a;b 2 A, let ˛.a;b/ and �.a;b/ be the smallest qua-
siorder and the smallest congruence, respectively, such that .a;b/ 2 ˛.a;b/, .a;b/ 2
�.a;b/.

Trivial relations I D f.a;a/ W a 2 Ag and A2 are congruences. For a monounary
algebra .A;f /, so called “natural ordering” � defined for x;y 2 A by the formula
.x;y/ 2 � if y D f n.x/ for some non-negative integer was studied, e. g., in [6]. It
is easy to see that � 2 Quord.A;f /. Thus, e. g., if some connected component of
.A;f / has at least 3 elements, then � is a nontrivial quasiorder.

If ˛ 2 Quord.A;f /, x 2 A, then we denote

Œx�˛ D fy 2 A W .x;y/ 2 ˛; .y;x/ 2 ˛g:

The symbols N and Z are used for the sets of all positive integers and of all inte-
gers. Next, if n 2N, then Zn is the system of all integers modulo n.

The pentagon N5 and the diamond M3 are used as in [5]; also, for n 2N, Mn is
a lattice with nC2 elements 0;1;a1;a2; : : : ;an such that 0 < ai < 1, ai 6< aj for any
i;j 2 f1; : : : ;ng, i ¤ j .

Lemma 2.1. Let us assume that .A;f / is a monounary algebra with AD f0;1g,
f .0/D f .1/D 0. Put ˛ D I [f.0;1/g and ˇ D I [f.1;0/g. Then Quord.A;f /D
fI;A2;˛;ˇg ŠM2.

Proof. If .0;1/ 2 
 for some 
 2 Quord.A;f /, then .f .0/;f .1// 2 
 must be
valid, i. e., .0;1/ 2 
 implies .0;0/ 2 
 , which is trivially satisfied. Hence the small-
est element 
 belonging to Quord.A;f / and such that .0;1/ 2 
 is equal to ˛. Sim-
ilarly, ˇ is the smallest quasiorder ı with the property that .1;0/ 2 ı. The remaining
members of Quord.A;f / are I and A2. Hence Quord.A;f /ŠM2. �
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Lemma 2.2. If .A;f / is a monounary algebra containing at least three 1-element
cycles, then Quord.A;f / contains a pentagon.

Proof. Let a;b;c 2 A be distinct elements of A which form one-element cycles.
Put

˛1 D I [f.b;a/g; ˛2 D I [f.b;a/; .c;a/g;

and
ˇ1 D I [f.c;b/g; ˇ2 D I [f.c;b/; .b;a/; .c;a/g:

Then ˛1;˛2;ˇ1;ˇ2 2 Quord.A;f /. Next, ˛1 < ˛2 < ˇ2, ˇ1 < ˇ2 and ˛1 ^ˇ1 D
˛2^ˇ1 D I . Next, ˛1 � ˇ2, ˇ1 � ˇ2, thus ˛1_ˇ1 � ˇ2. If .x;y/ 2 ˇ2� .˛1[˛2/,
then .x;y/D .c;a/. Since .c;b/ 2 ˇ1, .b;a/ 2 ˛1, we get by transitivity that .c;a/ 2
ˇ1_˛1. Hence ˛1_ˇ1 D ˇ2. Therefore, ˛2_ˇ1 D ˇ2. Thus we have a pentagon
consisting of the quasiorders fI;˛1;˛2;ˇ1;ˇ2g. �

Corollary 2.1. Let .A;f / be a monounary algebra, jAj � 3, f .x/D x for each
x 2 A. The lattice Quord.A;f / contains a pentagon.

Let us remark that the statement of 2.1 can be proved in a shorter way: In this case
the lattice Quord.A;f / coincides with the lattice of all quasiorders of a set A. It is
known that if jAj � 3, then this lattice is not modular.

3. CONNECTED MONOUNARY ALGEBRA

From the paper of Berman [1] concerning congruences it follows that if n 2 N,
then � is a congruence relation of an n-element cycle .C;f / if and only if there is
d 2N such that d divides n and for each x 2 C ,

Œx�� D
˚
x;f d .x/; : : : ;f .

n
d
�1/d .x/

	
:

The congruence with this property will be denoted �d . It is easy to verify that for
each x 2 C , �d is the smallest congruence containing the pair .x;f d .x//.

Lemma 3.1. Let .A;f / be an n-element cycle, n 2 N. Then Quord.A;f / D
Con.A;f /D f�d W d=ng.

Proof. Without loss of generality we can assume that A D Zn and that f .x/ �
xC 1 .mod n/ for x 2 Zn. Since each congruence is a quasiorder of .A;f /, we
have to prove that Quord.A;f /� f�d W d=ng.

Let ˛ 2Quord.A;f /. If ˛D I , then ˛D �n. Suppose that ˛¤ I , i. e., .i1; i2/ 2 ˛
for some i1; i2 2Zn, i1 ¤ i2. This implies that .f n�i1.i1/;f n�i1.i2// 2 ˛. We have

f n�i1.i1/D f
n�i1

�
f i1.0/

�
D f n.0/D 0;

and thus there exists the smallest d with .0;d/2 ˛. Denote by e the greatest common
divisor of d and n. Then the numbers n1 D n

e
and d1 D d

e
are mutually prime. If

jd � j 0d mod n for some 0 � j � j 0 < n1, then n=jd � j 0d , n1=.j � j 0/d1, thus
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n1=j � j
0 which yields that j D j 0. Therefore, the elements 0;d;2d; : : : ; .n1� 1/d

are distinct. Further,

.0;d/ 2 ˛ ) .d;2d/D
�
f d .0/;f d .d/

�
2 ˛

) .2d;3d/ 2 ˛ ) �� � )
�
.n1�1/d;n1d

�
2 ˛:

Since n1d D n
e
d D nd1 � 0 mod n, we have ..n1 � 1/d;0/ 2 ˛, therefore we

obtain
Œ0�˛ �

˚
0;d;2d; : : : ; .n1�1/d

	
: (3.1)

Assume that .0;f m.0// 2 ˛ for somem 2N. There are q 2N, ´ 2N[f0g such that
mD qd C´, 0 � ´ < d . We have .qd;0/ 2 ˛ by (3.1), thus .f ´.qd/;f ´.0// 2 ˛,
.qd C´;´/ 2 ˛, .m;´/ 2 ˛. Hence

.0;m/ 2 ˛; .m;´/ 2 ˛ ) .0;´/ 2 ˛; (3.2)

which, together with the assumption that d was the smallest positive integer with
.0;d/ 2 ˛, implies that ´D 0. Then by (3.2), .m;0/ 2 ˛, m 2 Œ0�˛. In view of (3.1)
then

Œ0�˛ D
˚
0;d;2d; : : : ; .n1�1/d

	
D

n
0;d;2d; : : : ;

�n
d
�1
�
d
o
: (3.3)

This implies

Œ1�˛ D
n
1;1Cd;1C2d; : : : ;1C

�n
d
�1
�
d
o
;

:::

Œd �1�˛ D
n
d �1;d �1Cd;d �1C2d; : : : ;d �1C

�n
d
�1
�
d
o
:

Therefore, d=n and ˛ D �d . �

Corollary 3.1. Let .A;f / be an n-element cycle for some n 2N . Then the lattice
Quord.A;f / is distributive.

Proof. By Lemma 3.1, the lattice Quord.A;f / is isomorphic to the lattice Dn of
all divisors of n, since �d1

� �d2
if and only if d2=d1. �

Lemma 3.2. Let .A;f / be a connected monounary algebra containing an n-
element cycle C; jAj D nC1� 3. Then

Quord.A;f /Š Quord.C;f /�M2 D Con.C;f /�M2

and Quord.A;f / is distributive.

Proof. We can suppose that ADZn[fag, f .i/� iC1 mod n for each i 2Zn,
f .a/D 0. By Lemma 3.1, Quord.Zn;f /D f�d W d=ng. Let ˛ 2Quord.A;f /. Then
˛

0

D ˛\Z2n is a quasiorder of .Zn;f / and there is d dividing n with ˛0 D �d . One
of the following conditions is satisfied:

(1) ˛ D ˛0[f.a;a/g,
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(2) there is y 2Zn with .a;y/ 2 ˛,
(3) there is ´ 2Zn with .´;a/ 2 ˛.

Let (3.2) hold. Then .f .a/;f .y// 2 ˛, thus .0;yC1/ 2 ˛. Hence .0;yC1/ 2 �d ,
d=yC1 and then

ŒyC1��d
D

n
0;d;2d; : : : ;

�n
d
�1
�
d
o
:

This implies

Œy��d
D

n
d �1;d �1Cd; : : : ;d �1C

�n
d
�1
�
d
o
:

Then f.a; t/ W t 2 Œy��d
g � ˛. If there is y0 ¤ y with y0 2 Zn, .a;y0/ 2 ˛, then

.y;y0/ 2 ˛0 and Œy��d
D Œy0��d

. Thus .a; t/ 2 ˛ if and only if t 2 fa;d � 1;d � 1C
d; : : : ;d �1C . n

d
�1/dg. Analogously, if (3.3) is valid, then .t;a/ 2 ˛ if and only if

t 2 fa;d �1;d �1Cd; : : : ;d �1C . n
d
�1/dg. Therefore, if (3.1) fails to holds, then

exactly one of the following conditions is satisfied:

˛ D ˛0[
n
.a; t/ W t 2

n
a;d �1;d �1Cd; : : : ;d �1C

�n
d
�1
�
d
oo
; (3.4)

˛ D ˛0[
n
.t;a/ W t 2

n
a;d �1;d �1Cd; : : : ;d �1C

�n
d
�1
�
d
oo
; (3.5)

˛ D ˛0[
n
.t;a/; .a; t/ W t 2

n
a;d �1;d �1Cd; : : : ;d �1C

�n
d
�1
�
d
oo
: (3.6)

Let us define a mapping 'WQuord.A;f /! Quord.Zn;f /�M2; the elements of
M2 are denoted by 0;1;2;3 (0-the least, 1-the greatest element of M2). If ˛ satis-
fies (3.1), then we put '.˛/D .˛0;0/. If ˛ satisfies (3.4), ((3.5), (3.6), respectively),
then we put '.˛/D .˛0;2/ ('.˛/D .˛0;3/, '.˛/D .˛0;1/, respectively). It is a rou-
tine calculation to verify that ' is a lattice isomorphism, which yields the required
assertion. �

Lemma 3.3. If .A;f / is a connected monounary algebra fulfilling no of the as-
sumptions of 3.1 and 3.2, jAj > 2, then Quord.A;f / contains a pentagon, thus it
fails to be modular.

Proof. By the assumption, there exist distinct elements 0;1;2 2 A such that if we
denote C D ff k.0/ W k 2N[f0gg, then 1;2 … C , f .1/D 0 and f .2/ 2 C [f1g.

Consider the following relations on the set A:

˛0 D I [C
2
[f1g�C;

˛1 D I [C
2
[f1;2g�C;

˛2 D I [C
2
[f1;2g�C [f.2;1/g
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and

ˇ1 D I [ .C [f1g/
2;

ˇ2 D I [ .C [f1g/
2
[f2g� .C [f1g/:

The above assumptions imply that these relations are quasiorders of .A;f /. Further,
(1) ˛0 < ˛1 < ˛2 < ˇ2,
(2) ˛0 < ˇ1 < ˇ2.

Let .x;y/ 2 ˛2^ˇ1, x ¤ y. Then either .x;y/ 2 C �C or x D 1, y 2 C . Thus
(3) ˛2^ˇ1 D ˛0.

Since ˛1 < ˛2, then (3) yields
(4) ˛1^ˇ1 D ˛0.

Let us count ˛1_ˇ1. We have ˛1 < ˇ2, ˇ1 < ˇ2, thus ˛1_ˇ1 � ˇ2. Let .x;y/ 2
ˇ2, .x;y/ … ˛1, .x;y/ … ˇ1. Then x D 2, y D 1. We have .2;0/ 2 ˛1, .0;1/ 2 ˇ1,
which implies that .2;1/ 2 ˛1_ˇ1, i. e., .x;y/ 2 ˛1_ˇ1. Therefore,

(5) ˛1_ˇ1 D ˇ2.
Next, ˛2 > ˛1 yields in view of (5) that

(6) ˛2_ˇ1 D ˇ2.
We have shown that Quord.A;f / contains a pentagon, and, therefore, it is not

modular. �

4. GENERAL CASE

Assume that jAj > 2 and that .A;f / is non-connected. Then either f .x/D x for
each x 2 A or there is a connected component B of .A;f / such that jBj � 2. In the
first case it was shown in Lemma 2.2 that Quord.A;f / contains a pentagon.

In Lemmas 4.1 and 4.2 , and Corollary 4.1, let B , C be distinct connected compo-
nents of .A;f / such that jBj � 2. Then B \C D¿. Let us put

˛1 D I [B �C; ˇ1 D I [C �B

and

˛2 D I [B
2
[B �C; ˇ2 D I [ .B [C/

2

Since jBj � 2, these relations are mutually distinct.

Lemma 4.1. The relations ˛1;˛2;ˇ1;ˇ2 belong to Quord.A;f /.

Proof. It is easy to see that each of the relations is reflexive and transitive. Let
x;y 2 A, x ¤ y. If .x;y/ 2 ˛1, then x 2 B , y 2 C , thus f .x/ 2 B , f .y/ 2 C
and .f .x/;f .y// 2 ˛1. Hence ˛1 2 Quord.A;f /. The remaining assertions can be
proved analogously. �

Lemma 4.2. The following relations assertions hold:
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(i) ˛1 < ˛2 < ˇ2, ˇ1 < ˇ2,
(ii) ˛2^ˇ1 D ˛1^ˇ1 D I ,

(iii) ˛1_ˇ1 D ˛2_ˇ1 D ˇ2.

Proof. The validity of (i) and (ii) is obvious. We have ˛1 < ˇ2, ˇ1 < ˇ2, thus
˛1_ˇ1 � ˇ2. Let .u;v/ 2 ˇ2. If uD v, then .u;v/ 2 ˛1_ˇ1. If .u;v/ 2 B �C or
.u;v/2C �B , then .u;v/2˛1 or .u;v/2ˇ1, thus .u;v/2˛1_ˇ1. If .u;v/2B�B ,
then take an arbitrary w 2 C ; we have

.u;w/ 2 B �C � ˛1 ; .w;v/ 2 C �B � ˇ1

and thus
.u;v/ 2 ˛1_ˇ1 :

The case .u;v/ 2 C �C is similar. Therefore ˇ2 � ˛1_ˇ1.
We have shown that ˛1 _ˇ1 D ˇ2. Next, since ˛1 � ˛2 � ˇ2, this implies that

also ˛2_ˇ1 D ˇ2. �

Corollary 4.1. Quord.A;f / contains a pentagon.

Let us summarize the obtained results.

Theorem 4.1. Let .A;f / be a monounary algebra. The following conditions are
equivalent:

(i) The lattice Quord.A;f / is modular.
(ii) The lattice Quord.A;f / is distributive.

(iii) Either jAj � 2 or .A;f / is connected and there exists a cycle C of .A;f /
such that jAj � jC jC1.
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[4] M. Erné and J. Reinhold, “Intervals in lattices of quasiorders,” Order, vol. 12, no. 4, pp. 375–403,
1995.

[5] G. Grätzer, General lattice theory, 2nd ed. Basel: Birkhäuser Verlag, 1998, new appendices by
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