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Abstract. In this paper, some existence results for generalized vector equilibrium-like problems
(for short, GVELPs) are established by virtue of a generalized KKM-Fan theorem in topological
vector spaces. In addition, some applications to vector optimization problems are also given. The
results presented in this paper are the extension and improvement of the corresponding results of
other authors.
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1. INTRODUCTION AND PRELIMINARIES

The vector variational inequality (VVI) was first introduced in [1] in the setting
of finite dimensional Euclidean space Rn. Subsequently, the VVI was generalized to
infinite dimensional spaces in [9, 11, 22, 30]. The vector variational-like inequality
(VVLI), a generalization of VVI, was studied in [26, 27] with applications in the
vector optimization problem (VOP). The VVI and VVLI with set-valued mappings
have been considered in [16, 18, 31]. In recent years some generalizations of VVI
and VVLI have been further studied by many authors. For details, see e.g., [2–8,
13–15, 17, 19–21, 23–25, 28, 32, 34] and references therein. In 2008, Jabarootian
and Zafarani [21] considered an extension of the VVLI with set-valued mapping,
called generalized vector variational-like inequality (GVVLI). By using a generalized
KKM-Fan theorem in [12], they established some results on the existence of solutions
for this class of GVVLIs.
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Next, we recall some concepts and notations. A nonempty subset C of a vector
space Y is a convex cone if �C � C for all � � 0 and C CC � C . A convex cone
C is pointed if C \ .�C/D f0g. A cone C is proper if it is properly contained in Y .
Note that C is a proper cone if and only if 0 62 intC , where intC denotes the interior
of C . A pointed convex cone C induces a partial order �C on Y defined by x �C y
whenever y�x 2 C . In this case, .Y;�C / is an ordered vector space .Y;�C / with
an order relation�C . The weak order 6�intC on an ordered vector space .Y;�C / with
intC ¤¿ is defined by x 6�intC y whenever y�x 62 intC .

Let X and Y be two topological spaces. We say that a multifunction ' W X ! 2Y

is closed, or has closed graph if its graph was given by

G .'/D f.x;y/ 2X �Y W y 2 '.x/g

which is a closed subset of X �Y .
For any two Hausdorff topological vector spaces (t.v.s.) X and Y , let L.X;Y /

denote the family of all continuous linear operators from X into Y . When Y is the
set R of real numbers, L.X;Y / is the usual dual space X� of X . For any x 2X and
any u 2 L.X;Y /, we shall write the value u.x/ as hu;xi. We suppose throughout
this paper thatK is a nonempty closed convex subset ofX; T WK! 2L.X;Y / is a set-
valued mapping, ˚ WL.X;Y /�K�K! Y; A WK�L.X;Y /!L.X;Y /; ˛ WX!

Y and f W K �K ! Y are four functions such that f .x;x/ D 0 for all x 2 X , and
fC.x/ W x 2Kg is a family of closed, convex and pointed cones of Y (i.e., C WK! 2Y

is a cone mapping) such that intC.x/¤¿. for all x 2K.
Motivated and inspired by generalized vector equilibrium problems considered

in Zeng and Yao [33, 35], this work is to further extend the results of Jabarootian
and Zafarani [21] to the setting of the generalized vector equilibrium-like prob-
lems (GVELPs). The main purpose of this article is the solvability of the following
GVELP and its related problems in topological vector spaces.

Here, ˚.A.a;T .´//;x;y/D f˚.A.a;u/;x;y/ W u 2 T .´/g; 8a;x;y;´ 2K.
Problem (I). Find x0 2K and w0 2 A.x0;T .x0// such that

˚.w0;x0;y/Cf .x0;y/ 6�intC.x0/ 0; for all y 2K:

Problem (II). Find x0 2K such that for each y 2K

˚.w;x0;y/Cf .x0;y/ 6�intC.x0/ ˛.y�x0/; for some w 2 A.x0;T .y//:

Problem (III). Find x0 2K and w0 2 A.x0;T .x0// such that

˚.w0;x0;y/ 6�C.x0/nf0g 0; for all y 2K:

Problem (IV). Find x0 2K such that

0�C.x0/ ˚.w;x0;y/; for all y 2K and w 2 A.x0;T .y//:

Problem (V). Find x0 2K such that

0�C.x0/ ˚.w;x0;y/; for all y 2K and w 2 A.x0;T .x0//:
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In particular, if A.x;u/ D u for each .x;u/ 2 K �L.X;Y / and ˚.w;x;y/ D
hw;�.y;x/i for each .w;x;y/ 2L.X;Y /�K �K, where � WK �K!X is a func-
tion, then Problems (I)-(V) reduce to Problems (I)-(V) in [21], respectively. Problems
(I) and (II) with A.x;u/ D u and ˚.w;x;y/ D hw;�.y;x/i become the simplified
versions of the generalized vector variational-like inequality problems (GVVTIPs) in
[24]. In this case, it is enough to replace M.�;T .�// WK! 2L.X;Y / in [24] with our
mapping T . For Problem (II), by putting ˛� 0, we deduce in a similar way GVVTIP
(II) in [24]. Problem (II) with A.x;u/ D u and ˚.w;x;y/ D hw;�.y;x/i is also a
vector version of Problem (II) in [19].

Lemma 1 (see [9]). Let .Y;�C / be an ordered topological vector space with a
closed, convex and pointed cone C with intC ¤¿. Then for each x;y 2 Y , one has

(1) y�x 2 intC and y 62 intC ) x 62 intC .
(2) y�x 2 C and y 62 intC ) x 62 intC .
(3) y�x 2 �intC and y 62 �intC ) x 62 �intC .
(4) y�x 2 �C and y 62 �intC ) x 62 �intC .

We denote by F .X/ the family of all nonempty finite subsets of X . Let F W Y !
2X be a set-valued mapping. Then F is said to be transfer closed-valued iff for
each .y;x/ 2 Y �X with x 62 F.y/, there exists y0 2 Y such that x 62 clF.y0/. If
B � Y and A � X , then we call F W B ! 2A transfer closed-valued iff the multi-
valued mapping y 7! F.y/\A is transfer closed-valued. When X D Y and AD B ,
we call F transfer closed-valued on A. Let K be a convex subset of a vector space
X . Then a mapping F W K ! 2X is called a KKM mapping iff for each nonempty
finite subset A ofK, convA� F.A/, where convA denotes the convex hull of A, and
F.A/D

S
fF.x/ W x 2 Ag.

Theorem 1 (see [12]). Let K be a nonempty and convex subset of a Hausdorff
t.v.s. X . Suppose that �; O� W K ! 2K are two set-valued mappings such that the
following conditions are satisfied:

(A1) O� .x/� � .x/; 8x 2K;
(A2) O� is a KKM map;
(A3) for each A 2 F .K/; � is transfer closed-valued on convA;
(A4) for each A 2 F .K/; clK.

T
x2convA� .x//\ convA D .

T
x2convA� .x//\

convA;
(A5) there is a nonempty compact convex set B � K such that clK.

T
x2B � .x//

is compact.
Then,

T
x2K � .x/¤¿.

Definition 1. Let T WX ! 2Y be a set-valued mapping. Then,
(i) T is said to be upper semicontinuous (u.s.c.) iff, for each closed set B � Y ,

T �.B/D fx 2X W T .x/\B ¤¿g is clised in X I
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(ii) T is said to be lower semicontinuous (l.s.c.) iff, for each open set B � Y ,

T �.B/D fx 2X W T .x/\B ¤¿g is open in X I

(iii) T is said to be closed (resp. open) iff, the set Gr.T /D f.x;y/ 2 X �Y W y 2
T .x/g is closed (resp. open) in X �Y .

2. GVELPS WITH MONOTONICITY

Let Ã be the family of all bounded subsets of X whose union is total in X , i.e., the
linear hull of

S
fS W S 2 Ãg is dense in X . Let B be a neighborhood base of 0 in Y .

When S runs through Ã and V through B, the family

M.S;V /D fu 2L.X;Y / W hu;xi 2 V;8x 2 Sg

is a neighborhood base of 0 in L.X;Y / for a unique translation-invariant topology,
called the topology of uniform convergence on the sets S 2 Ã, or briefly the � -
topology; see [29].

Definition 2. Let ˛ W X ! Y with ˛.t´/ D tp˛.´/ 8t > 0 and 8´ 2 X , where
p > 1. Then a function ˚ WL.X;Y /�K�K! Y is said to be

(i) relaxed ˛-f -pseudomonotone with respect to T and A if for each x1;x2;
y 2K,

˚.w1;x1;x2/Cf .x1;x2/ 6�intC.x1/ 0 for all w1 2 A.y;T x1/

) ˚.w2;x1;x2/Cf .x1;x2/ 6�intC.x1/ ˛.x2�x1/ for all w2 2 A.y;T x2/:

(ii) relaxed ˛-f -pseudomonotone-type with respect to T and A if for each x1;x2;
y 2K,

˚.w1;x1;x2/Cf .x1;x2/ 6�intC.x1/ 0 for some w1 2 A.y;T x1/

) ˚.w2;x1;x2/Cf .x1;x2/ 6�intC.x1/ ˛.x2�x1/ for some w2 2 A.y;T x2/:

(iii) strongly pseudomonotone with respect to T and A if for each x1;x2;y 2K,

˚.w1;x1;x2/ 6�C.x1/nf0g 0 for some w1 2 A.y;T x1/

) 0�C.x1/ ˚.w2;x1;x2/ for all w2 2 A.y;T x2/:

In particular, if A.x;u/ D u for each .x;u/ 2 K �L.X;Y / and ˚.w;x;y/ D
hw;�.y;x/i for each .w;x;y/ 2L.X;Y /�K �K, where � WK �K!X is a func-
tion, then the concepts in Definition 2 (i)-(iii) reduce to the ones in Definition 2
(i)-(iii) of [21], respectively.

Definition 3. A function ˚ WL.X;Y /�K�K! Y is said to be upper hemicon-
tinuous (u.h.c.) (resp. lower hemicontinuous (l.h.c.)) with respect to T and A if for
each x;y;´ 2K,

t 2 Œ0;1� 7! ˚.A.´;T .xC t .y�x///;x;y/

is u.s.c. (resp. l.s.c.) at 0C.
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Definition 4. A set-valued mapping F WK! 2Y is said to be C -convex where C
is a convex cone in Y if for each x;y 2K and t 2 Œ0;1� one has

.1� t /F .x/C tF .y/� F..1� t /xC ty/CC:

A single valued function F WK! Y is said to be C -convex if for each x;y 2K and
t 2 Œ0;1�,

F..1� t /xC ty/�C .1� t /F .x/C tF .y/:

Here, we consider a generalized vector version of Minty-type lemma.

Lemma 2. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Assume that

(H1) for each .w;x/ 2 L.X;Y /�K; ˚.w;x;x/D 0 and f is C�-convex in the
second variable;

(H2) ˚ is continuous in the first variable and C�-convex in the third variable, and
A is continuous in the second variable;

(H3) ˚ is relaxed ˛-f -pseudomonotone type and u.h.c. with respect to T and A,
where T WK! 2L.X;Y / takes compact values.
Then, Problems (I) and (II) are equivalent.

Proof. Problem (I) ) Problem (II) follows from the definition of relaxed ˛-f -
pseudomonotonicity type of ˚ with respect to T and A.

Conversely, suppose that we can find x0 2K such that for each y 2K

˚.w;x0;y/Cf .x0;y/ 6�intC.x0/ ˛.y�x0/; for some w 2 A.x0;T .y//:

This means that

˚.A.x0;T .y//;x0;y/Cf .x0;y/�˛.y�x0/ 6� intC.x0/: .2:1/

Assume to the contrary that, for any element x0 2K, there exists y0 2K such that

˚.w0;x0;y0/Cf .x0;y0/�intC.x0/ 0; for all w0 2 A.x0;T .x0//:

That is,
˚.A.x0;T .x0//;x0;y0/Cf .x0;y0/��intC.x0/:

Since A is continuous in the second variable, by the compactness of T .x0/ we know
that A.x0;T .x0/ is a compact set in L.X;Y /. So, by the continuity of ˚ in the first
variable, we know that ˚.A.x0;T .x0//;x0;y0/Cf .x0;y0/ is a compact set in Y .
Hence we can choose an open neighborhood V of zero in Y such that

˚.A.x0;T .x0//;x0;y0/Cf .x0;y0/CV ��intC.x0/:

We consider xt D x0C t .y0�x0/ for t 2 Œ0;1�. By the upper hemicontinuity of ˚
with respect to T and A, there exists 0 < ˇ < 1 such that, for 0 < t < ˇ,

˚.A.x0;T .xt //;x0;y0/Cf .x0;y0/CV ��intC.x0/: .2:2/
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Since �C.x0/ is a cone, from condition (H1), we obtain
1

t
f .x0;xt /�f .x0;y0/ 2 �C.x0/: .2:3/

Then, by (2.2) and (2.3), we deduce that

˚.A.x0;T .xt //;x0;y0/C
1

t
f .x0;xt /CV ��intC.x0/: .2:4/

On the other hand, since ˚ is C�-convex in the third variable, we deduce that for all
vt 2 T .xt /,
1

t
Œ˚.A.x0;vt /;x0;xt /� .1� t /˚.A.x0;vt /;x0;x0/� t˚.A.x0;vt /;x0;y0/� 2 �C.x0/:

.2:5/

From condition (H1) and adding (2.4) and (2.5), for all vt 2 T .xt /,

˚.A.x0;vt /;x0;xt /Cf .x0;xt /C tV ��intC.x0/:

As limt!0C
1
t
˛.t.y0�x0//D 0, for t > 0 small enough, we have

˚.A.x0;vt /;x0;xt /Cf .x0;xt /�˛.xt �x0/��intC.x0/:

But this contradicts (2.1). �

Remark 1. Lemma 2 generalizes Lemma 2.1 of [25] to the GVELPs. It also im-
proves and extends Theorem 3.1 of [24] and Lemma 2.5 of [19] because the VVLIs
and GVVIs considered in [19, 24] are replaced by the more general problems, i.e.,
GVELPs.

Theorem 2. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Let hypotheses (H1)-(H3) of Lemma 2 hold and suppose that

(i) for each finite subset D of K, the set-valued mapping � WK! 2K defined by

� .y/D fx 2K W˚.w;x;y/Cf .x;y/ 6�intC.x/ ˛.y�x/; for some w 2A.x;T .y//g

is transfer closed valued on conv.D/;
(ii) for each finite subset D of K, x;y 2 conv.D/ and for each net fx�g in K

converging to x, if x� 2 � .´/ for all ´ 2 conv.D/ and for all �, then x 2 � .y/;
(iii) there exist a nonempty compact set M �K and a nonempty compact convex

set B �K such that for each x 2K nM , there exists y 2 B such that x 62 � .y/.
Then, Problem (I) holds.

Proof. We define the set-valued mapping O� WK! 2K by
O� .y/ WD fx 2K W ˚.w;x;y/Cf .x;y/ 6�intC.x/ 0; for some w 2 A.x;T .x//g:

We show that O� is a KKM mapping. Indeed, assume O� is not a KKM mapping.
Then there exists fx1;x2; :::;xng � K; ti � 0; i D 1;2; :::;n with

Pn
iD1 ti D 1 such

that x D
Pn
iD1 tixi 62

Sn
iD1
O� .xi /. Thus for any w 2 A.x;T .x//, we have

˚.w;x;xi /Cf .x;xi /�intC.x/ 0; i D 1;2; :::;nI
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therefore, we deduce that
nX
iD1

ti˚.w;x;xi /C

nX
iD1

tif .x;xi /�intC.x/ 0: .2:6/

On the other hand, since f is C�-convex in the second variable and ˚ is C�-convex
in the third variable, we know from Eq. (2.6) that for each w 2 A.x;T .x//

0D ˚.w;x;x/Cf .x;x/

�C.x/

nX
iD1

ti˚.w;x;xi /C

nX
iD1

tif .x;xi /

�intC.x/ 0;

which leads to a contradiction that C.x/¤ Y . Hence, O� is a KKM mapping. Since˚
is relaxed ˛-f -pseudomonotone-type with respect to T andA, we have O� .y/�� .y/
for each y 2 K. Hence, � is also a KKM mapping. Thus all the conditions of
Theorem 1 are fulfilled by the mappings O� and � . Therefore,

T
y2K � .y/ ¤ ¿.

Hence, Problem (II) holds and from Lemma 2, Problem (I) is deduced. �

Remark 2. In the above theorem, if � .y/ is closed for all y 2K, then conditions
(i) and (ii) hold. In the following results, we will establish the closedness of � .y/ for
each y 2K.

Corollary 1. Let X be a normed space and .Y;T / be a t.v.s. Let C W K ! 2Y

be a cone mapping such that intC� ¤ ¿, where C� D
T
x2K C.x/. Let hypotheses

(H1)-(H3) of Lemma 2 hold and suppose that
(i) the set-valued mapping W W K ! 2Y defined by W.x/ D Y n .�intC.x// has

weakly closed graph;
(ii) f is weakly continuous in the first variable and ˛ is weakly continuous;
(iii) A is continuous from �X � � to � , where �X is the weak topology of X and �

is the uniform convergence topology of L.X;Y /;
(iv) for each ´ 2K, ˚.�; �;´/ WL.X;Y /�K! Y is continuous from � ��X to �Y ,

where �Y is the weak topology of Y ;
(v) there exist a nonempty weakly compact set M � K and a nonempty weakly

compact convex set B � K such that for each x 2 K nM , there exists y 2 B such
that x 62 � .y/.
Then, Problem (I) holds.

Proof. By Theorem 2, it is enough to show that for each y 2 K, � .y/ is weakly
closed. Let fxˇ g be a net in � .y/ weakly convergent to x0 2 K. Since xˇ 2 � .y/,
there exists vˇ 2 � .y/ satisfying

˚.A.xˇ ;vˇ /;xˇ ;y/Cf .xˇ ;y/ 6�intC.xˇ/ ˛.y�xˇ /;
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that is,

´ˇ D ˚.A.xˇ ;vˇ /;xˇ ;y/Cf .xˇ ;y/�˛.y�xˇ / 62 �intC.xˇ /: .2:7/

Thus, ´ˇ 2 W.xˇ / and hence .xˇ ;´ˇ / 2 Gr.W /. Since T .y/ is compact, fvˇ g
has a convergent subnet in T .y/. Let fv�g be a subnet of fvˇ g that converges to
v0 2 T .y/. Since A is continuous from �X � � to � , we know that fA.x�;v�/g con-
verges to A.x0;v0/ 2 L.X;Y /. Also, since ˚.�; �;y/ W L.X;Y /�K ! Y is con-
tinuous from � � �X to �Y , we know that ˚.A.x�;v�/;x�;y/ converges weakly to
˚.A.x0;v0/;x0;y/. Consequently, by the weak continuity of f in the first vari-
able and the weak continuity of ˛ we deduce that f˚.A.x�;v�/;x�;y/Cf .x�;y/�
˛.y � x�/g converges weakly to ´0 D ˚.A.x0;v0/;x0;y/C f .x0;y/� ˛.y � x0/.
Since W has weakly closed graph and .x�;´�/ 2 Gr.W / (due to (2.7)), we get
.x0;´0/ 2Gr.W /. Therefore,

˚.A.x0;v0/;x0;y/Cf .x0;y/�˛.y�x0/ 62 �intC.x0/:

That is, there exists Qw.D A.x0;v0// 2 A.x0;T .y// such that

˚. Qw;x0;y/Cf .x0;y/ 6�intC.x0/ ˛.y�x0/:

Thus, x0 2 � .y/, which completes the proof. �

Remark 3. Corollary 1 generalizes Corollary 2.1 of [21] to the GVELPs. It also
improves and extends Theorem 3.4 of [24] and Theorem 3.2 of [23] because the
problems considered in our Corollary 1 are the more general problems, i.e., GVELPs.

Corollary 2. Let X be metrizable. Let C WK! 2Y be a cone mapping such that
intC� ¤ ¿, where C� D

T
x2K C.x/. Let hypotheses (H1)-(H3) of Lemma 2 and

condition (iii) of Theorem 2 hold, and suppose that
(i) the set-valued mapping W W K ! 2Y defined by W.x/ D Y n .�intC.x// is

closed;
(ii) f is continuous in the first variable and ˛ is continuous;
(iii) for each ´ 2K, ˚.�; �;´/ WL.X;Y /�K! Y is continuous and A is continu-

ous.
Then, Problem (I) holds.

Proof. By the similar proof to that of Corollary 1, we obtain the desired result. �

Remark 4. It is easy to see that in the case where K is a compact subset of X , we
can omit the metrizability of X in the above corollary. Moreover, Corollary 2 gener-
alizes Corollary 2.2 of [21] to the GVELPs. It also improves and extends Theorems
2.1, 2.2 and 3.1 of [19], Theorem 3.1 of [32] and Theorem 3.4 of [23] because the
problems considered in our Corollary 2 are the more general problems, i.e., GVELPs.

As another consequence of Theorem 2, when ˚ is relaxed ˛-f -pseudomonotone
with respect to T and A, we also obtain a generalized version of Theorems 3.1-3.4 in
[25] and hence Theorem 3.2 in [32].
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Corollary 3. Assume T has a continuous selection g and let C W K ! 2Y be a
cone mapping such that intC� ¤¿, where C� D

T
x2K C.x/. Let hypotheses (H1)-

(H3) of Lemma 2 and conditions (i)-(iii) of Corollary 2 hold. If there exist a nonempty
compact set M �K and a nonempty compact convex set B �K such that, for each
x 2K nM , there exists y 2 B such that

˚.A.x;g.y//;x;y/Cf .x;y/�intC.x/ ˛.y�x/:

Then Problem (I) holds.

Proof. Since˚ is relaxed ˛-f -pseudomonotone with respect to T andA, hence˚
is ˛-f -pseudomonotone-type with respect to g (selection) and A. Thus, by Theorem
2, it is enough to show that, for each y 2K, the set

� .y/D fx 2K W ˚.w;x;y/Cf .x;y/ 6�intC.x/ ˛.y�x/ with w D A.x;g.y//g

is closed. Indeed, let fxˇ g be a net in � .y/ convergent to x0 2K. Since xˇ 2 � .y/,

˚.wˇ ;xˇ ;y/Cf .xˇ ;y/ 6�intC.xˇ/ ˛.y�xˇ / with wˇ D A.xˇ ;g.y//I

that is,

´ˇ D ˚.A.xˇ ;g.y//;xˇ ;y/Cf .xˇ ;y/�˛.y�xˇ / 62 �intC.xˇ /:

Thus, ´ˇ 2W.xˇ / and hence .xˇ ;´ˇ / 2 Gr.W /. By the continuity of f in the first
variable, continuity of ˛ and A, and continuity of ˚.�; �;y/, we have

´0 D lim
ˇ
´ˇ D ˚.A.x0;g.y//;x0;y/Cf .x0;y/�˛.y�x0/:

Since Gr.W / is closed, .x0;´0/ 2Gr.W / and hence,

˚.A.x0;g.y//;x0;y/Cf .x0;y/�˛.y�x0/ 62 �intC.x0/I

that is,

˚. Ow;x0;y/Cf .x0;y/ 6�intC.x0/ ˛.y�x0/ with Ow D A.x0;g.y//:

Therefore, x0 2 � .y/. This means that � .y/ is closed. �

Corollary 3 generalizes Corollary 2.3 of [21] to the GVELPs. In order to obtain
a solution of strong vector equilibrium-like problem, we need the following result.
This result is a generalization of Lemma 2.2 in [21], and also a generalized vector
version of Lemma 2.2 in [15].

Lemma 3. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Let ˚ be strongly pseudomonotone and l.h.c. with respect to T

and A. Assume that, for each .w;x/ 2L.X;Y /�K; ˚.w;x;x/D 0 and ˚ is affine
in the third variable. Then Problems (III) and (IV) are equivalent.
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Proof. Problem (III)) Problems (IV) follows from the definition of strong pseudo-
monotonicity of ˚ with respect to T and A.

Conversely, suppose that we can find x0 2K such that

0�C.x0/ ˚.w;x0;y/; for all y 2K and w 2 A.x0;T .y//: .2:8/

We consider xt D x0C t .y�x0/ for t 2 Œ0;1�. Replacing y by xt in Eq. (2.8), we
have

0�C.x0/ ˚.w;x0;yt /; for all w 2 A.x0;T .xt //:
As ˚ is affine in the third variable, ˚.w;x0;x0/D 0;8w 2A.x0;T .xt //, and C.x0/
is a cone, we deduce that for any w 2 A.x0;T .xt //

0�C.x0/ ˚.w;x0;yt /

D .1� t /˚.w;x0;x0/C t˚.w;x0;y/D t˚.w;x0;y/I

that is,
˚.A.x0;T .xt //;x0;y/� C.x0/: .2:9/

Suppose on the contrary that

˚.A.x0;T .x0//;x0;y/\ .Y nC.x0//¤¿:
As ˚ is l.h.c. with respect to T and A, we have

˚.A.x0;T .xt //;x0;y/\ .Y nC.x0//¤¿;
for sufficiently small t , which contradicts (2.9). Hence,

˚.A.x0;T .x0//;x0;y/� C.x0/; 8y 2K;

which immediately yields

˚.A.x0;T .x0//;x0;y/ 6� �C.x0/n f0g; 8y 2K:

That is, there exists w0 2 A.x0;T .x0// such that

˚.w0;x0;y/ 6�C.x0/nf0g 0; for all y 2K:

This completes the proof. �

Theorem 3. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Let ˚ be strongly pseudomonotone and l.h.c. with respect to T

and A. Suppose that
(i) for each finite subset D of K, the set-valued mapping � WK! 2K defined by

� .y/D fx 2K W 0�C.x/ ˚.w;x;y/; for all w 2 A.x;T .y//g

is transfer closed valued on conv.D/;
(ii) for each finite subset D of K, x;y 2 conv.D/ and for each net fx�g in K

converging to x, if x� 2 � .´/ for all ´ 2 conv.D/ and for all �, then x 2 � .y/;
(iii) for each .w;x/ 2 L.X;Y /�K; ˚.w;x;x/ D 0 and ˚ is affine in the third

variable;
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(iv) there exist a nonempty compact set M �K and a nonempty compact convex
set B �K such that for each x 2K nM , there exists y 2 B such that x 62 � .y/.
Then, Problem (III) holds.

Proof. For each y 2K, we define the set-valued mapping

O� .y/ WD fx 2K W ˚.w;x;y/ 6�C.x/nf0g 0; for some w 2 A.x;T .x//g:

We claim that O� is a KKM mapping. Indeed, assume O� is not a KKM mapping.
Then there exist fx1;x2; :::;xng � K; ti � 0; i D 1;2; :::;n with

Pn
iD1 ti D 1 such

that x D
Pn
iD1 tixi 62

Sn
iD1
O� .xi /. Thus for any w 2 A.x;T .x//, we have

˚.w;x;xi /�C.x/nf0g 0; i D 1;2; :::;n;

which yields
Pn
iD1 ti˚.w;x;xi / �C.x/nf0g 0. Since for each w 2 A.x;T .x//;

˚.w;x;x/D 0 and ˚ is affine in the third variable, we obtain

0D ˚.w;x;x/D

nX
iD1

ti˚.w;x;xi /�C.x/nf0g 0;

which is a contradiction. Hence, O� is a KKM mapping. It is clear that strong pseudo-
monotonicity of ˚ with respect to T and A, guarantees that O� .y/ � � .y/ for each
y 2 K. Thus all the conditions of Theorem 1 are fulfilled by the mappings O� and
� . Therefore,

T
y2K � ¤¿. Consequently, Problem (IV) holds and from Lemma 3,

Problem (III) is deduced. �

Remark 5. Theorem 3 generalizes Theorem 2.2 of [21] to the GVELPs. In The-
orem 3, if the set � .y/ is closed for each y 2K, then conditions (i) and (ii) hold. In
the following result, we will establish the closedness of � .y/ for each y 2 K. This
result generalizes Corollary 2.4 of [21] to the GVELPs. Moreover, it also extends
and improves Theorem 2.3 in [15].

Corollary 4. Assume in Theorem 3, we replace conditions (i)-(ii) by the following
conditions:

(i) the set-valued mapping C WK! 2Y is closed;
(ii) for each ´2K,˚.�; �;´/ WL.X;Y /�K! Y is continuous andA is continuous

in the first variable.
Then, Problem (III) holds.

Proof. By Theorem 3, it is enough to show that for each y 2 K, � .y/ is closed.
Let fxˇ g be a net in � .y/ convergent to x0 2K. Since xˇ 2� .y/, for each v 2 T .y/,
we have ´ˇ D ˚.A.xˇ ;v/;xˇ ;y/ 2 C.xˇ /, which hence yields .xˇ ;´ˇ / 2 Gr.C /.
Also, since˚.�; �;y/ WL.X;Y /�K! Y is continuous andA is continuous in the first
variable, we know that the net f˚.A.xˇ ;v/;xˇ ;y/g converges to .A.x0;v/;x0;y/;
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that is, ´0 D limˇ ´ˇ D˚.A.x0;v/;x0;y/. Since Gr.C / is closed, we get .x0;´0/ 2
Gr.C / and hence, ˚.A.x0;v/;x0;y/ 2 C.x0/ for all v 2 T .y/; that is,

0�C.x0/ ˚.w;x0;y/; for all w 2 A.x0;T .y//:

This means that x0 2 � .y/. Therefore, � .y/ is closed. �

3. GVELPS WITHOUT MONOTONICITY

In this section, some existence results for GVELPs without any monotonicity are
obtained.

Theorem 4. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Suppose that

(i) for each finite subset D of K, the set-valued mapping � WK! 2K defined by

� .y/D fx 2K W 0�C.x/ ˚.w;x;y/; for all w 2 A.x;T .x//g

is transfer closed valued on conv.D/;
(ii) for each finite subset D of K, x;y 2 conv.D/ and for each net fx�g in K

converging to x, if x� 2 � .´/ for all ´ 2 conv.D/ and for all �, then x 2 � .y/;
(iii) for any fixed x 2 K, the set fy 2 K W 0 6�C.x/ ˚.w;x;y/; for some w 2

A.x;T .x//g is convex;
(iv) For each x 2K, one has 0�C.x/ ˚.w;x;x/;8w 2 A.x;T .x//;
(v) there exist a nonempty compact set M � K and a nonempty compact convex

set B �K such that for each x 2K nM , there exists y 2 B such that x 62 � .y/.
Then, Problem (V) holds.

Proof. We claim that � is a KKM mapping. Indeed, assume � is not a KKM
mapping. Then there exist fx1;x2; :::;xng �K; ti � 0; i D 1;2; :::;n with

Pn
iD1 ti D

1 such that x D
Pn
iD1 tixi 62

Sn
iD1� .xi /. Thus, for any i D 1;2; :::;n, we have

˚.A.x;T .x//;x;xi / 6� C.x/:

Note that fy 2K W ˚.A.x;T .x//;x;y/ 6� C.x/g D fy 2K W 0 6�C.x/ ˚.w;x;y/; for
somew 2A.x;T .x//g. So, from condition (iii), it follows that˚.A.x;T .x//;x;x/ 6�
C.x/, that is, there exists w 2 A.x;T .x// such that 0 6�C.x/ ˚.w;x;x/, which con-
tradicts condition (iv). Hence, � is a KKM mapping. Thus all the conditions of
Theorem 1 are fulfilled by the mappings O� D � . Therefore,

T
y2K � .y/¤¿. Con-

sequently, Problem (V) holds. �

Remark 6. In Theorem 4, we can replace conditions (iii)-(iv) by the following
condition: (iii)0 ˚ is properly quasimonotone with respect to T and A, i.e., for all
n 2 N and for all vectors x1;x2; :::;xn 2 K, and scalars ti > 0; i D 1;2; :::;n withPn
iD1 ti D 1 and x D

Pn
iD1 tixi ; ˚.A.x;T .x//;x;xi /� C.x/ holds for some i .

In fact, by a similar proof, we can show that � is a KKM mapping. If˚.w;x;y/D
hw;�.y;x/i and A.x;u/D u then Theorem 4 reduces to Theorem 3.1 of [21]. In this
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case, if we let �.y;x/ D y � g.x/, then we conclude Theorem 2.1 in [14]. When
� .y/ is closed for each y 2 Y , then � satisfies conditions (i) and (ii).

As a consequence of Theorem 4, in the following result we establish the closedness
of � .

Corollary 5. Let X be metrizable and suppose that
(i) for each ´2K,˚.�; �;´/ WL.X;Y /�K! Y is continuous andA is continuous;
(ii) T WK! 2L.X;Y / is l.s.c.;
(iii) the set-valued mapping W WK! 2Y defined by W.x/D Y nC.x/ is open.
Then, Problem (V) holds.

Proof. By Theorem 4, it is enough to show that for each y 2 K; � .y/ is closed.
Indeed, let fxng be a sequence in � .y/ convergent to Nx 2 K. By the lower semi-
continuity of T , for each v 2 T . Nx/ there exists a sequence vn 2 T .xn/ converging
to v. Set ´n D ˚.A.xn;vn/;xn;y/. Then from xn 2 � .y/, we have ´n 2 C.xn/.
Thus, .xn;´n/ 62 Gr.W /. By the continuity of A, we know that fA.xn;vn/g con-
verges to A. Nx;v/. Since ˚.�; �;y/ W L.X;Y /�K ! Y is continuous, it is clear
that f˚.A.xn;vn/;xn;y/g converges to f˚.A. Nx;v/; Nx;y/; that is, ´D limn!1´n D
˚.A. Nx;v/; Nx;y/. Since Gr.W / is open, we have . Nx;´/ 62 Gr.W /, and hence Nx 2
� .y/. This completes the proof. �

Remark 7. If ˚.w;x;y/D hw;�.y;x/i and A.x;u/D u then Corollary 5 reduces
to Corollary 3.1 of [21]. In this case, if we let �.y;x/ D y �g.x/, then Corollary
5 establishes an existence theorem for strong vector implicit variational inequality
problem in [20]. Thus we extend and improve Theorem 3.2 in [20] in many aspects.
Corollary 5 also extends and improves Theorem 3.3 in [20] for the existence theorem
of weak vector implicit variational inequality problem by using Theorem 3.1 (i) in
[20]. As already mentioned, when K is a compact subset of X , then we can omit the
condition of metrizability of X .

We now establish an existence result for the GVELP without any monotonicity,
which is a generalization of Theorem 3.2 in [21] for the strong vector variational-like
inequality problem without any monotonicity.

Theorem 5. Let C W K ! 2Y be a cone mapping such that intC� ¤ ¿, where
C� D

T
x2K C.x/. Suppose that

(i) for each finite subset D of K, the set-valued mapping � WK! 2K defined by

� .y/D fx 2K W ˚.w;x;y/ 6�C.x/nf0g 0; for some w 2 A.x;T .x//g

is transfer closed valued on conv.D/;
(ii) for each finite subset D of K, x;y 2 conv.D/ and for each net fx�g in K

converging to x, if x� 2 � .´/ for all ´ 2 conv.D/ and for all �, then x 2 � .y/;
(iii) for each .w;x/ 2 L.X;Y /�K; ˚.w;x;x/ D 0 and ˚ is affine in the third

variable. ;
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(iv) there exist a nonempty compact set M �K and a nonempty compact convex
set B �K such that for each x 2K nM , there exists y 2 B such that x 62 � .y/.
Then, Problem (III) holds.

Proof. By the similar proof to that of Theorem 3, on can show that � is a KKM
mapping. Thus all the conditions of Theorem 1 are fulfilled by the mapping O� D
� . Therefore,

T
y2K � .y/ ¤ ¿. Hence, there exists x0 2

T
y2K � .y/ which is a

solution for Problem (III). �

As a consequence of Theorem 5, we obtain the following result which generalizes
Theorem 3.2 of [21], and hence Theorem 2.1 of [15].

Corollary 6. Suppose that, in addition to conditions (iii) and (iv) of Theorem 5,
for each y 2K; � .y/ is closed. Then, Problem (III) holds.

4. APPLICATIONS

In this section, we consider solutions for the generalized weak optimization prob-
lem (VOP). Let K be a convex subset of a Banach space X; g W K ! Rn; g.x/ D
.g1.x/;g2.x/; :::;gn.x// for x 2K, and fC.x/ W x 2Kg be a family of closed, con-
vex and pointed cones of Rn (i.e., C WK! 2Rn

is a cone mapping) such that Rn
C
�

C.x/;8x 2K. A point y 2K is called a solution for the generalized weak VOP of
g if

g.x/ 6�intC.y/ g.y/; for all x 2K:

Definition 5. Let f W X ! R be locally Lipschitz at a given point x 2 X and v
be any vector in X . The Clarke generalized directional derivative of f at x in the
direction v, denoted by f ı.xIv/, is defined by

f ı.xIv/D limsup
y!x;t#0

f .yC tv/�f .y/

t
:

Then, the Clarke generalized subdifferential of f at x, denoted by @cf .x/, is defined
as

@cf .x/D f� 2X� W f ı.xIv/� h�;vi; 8v 2Xg:

Lemma 4 (see [10]). If f WX!R is locally Lipschitz, then @cf .x/ is a nonempty
convex and weak�-compact valued. Moreover, @cf W X ! 2X

�

is norm-to-weak�

upper semicontinuous.

These definitions and properties can be extended to a locally Lipschitz vector-
valued function g WX ! Rn. Denote by gi ; i D 1;2; :::;n the components of g. The
Clarke generalized subdifferential of g at x 2X is the set

@cg.x/D @cg1.x/�@
cg2.x/� � � ��@

cgn.x/:
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Throughout the remainder of this paper, let˚ WL.X;Rn/�K�K!Rn be a func-
tion and g WK! Rn be a function which has the Clarke generalized subdifferential
on K.

Definition 6. The function g is said to be invex with respect to ˚ onK if for each
x;y 2K

˚.u;x;y/�Rn
C
g.y/�g.x/; 8 u 2 @cg.x/:

Remark 8. Let � W X �X ! X be a function. Let the function ˚ be defined as
˚.u;x;y/D hu;�.y;x/i;8.u;x;y/ 2L.X;Rn/�K �K. Assume that gi is locally
Lipschitz on K for i D 1;2; :::;n. If

h�i ;�.y;x/i � gi .y/�gi .x/; x;y 2K; �i 2 @
cgi .x/; i D 1;2; :::;n;

then the concept of invex function of g with respect to ˚ on K, reduces to the one of
invex function of g with respect to � on K (see Definition 6 in [21]).

Definition 7. ˚ is said to be @cg-monotone if for each x1;x2 2K

˚.u1;x1;x2/C˚.u2;x2;x1/�C.x1/ 0; 8ui 2 @
cg.xi /; i D 1;2:

Definition 8. The function˚ WL.X;Rn/�K�K!Rn is called skew if˚.u;x;y/
C˚.u;y;x/D 0 for each .u;x;y/ 2L.X;Rn/�K�K.

Lemma 5. Let ˚ be skew and let g be invex with respect to ˚ on K. Then ˚ is
@cg-monotone on K.

Proof. Suppose that g is invex with respect to ˚ on K. Then, for any x;y 2 K,
by the invexity of g, we obtain that

˚.u;x;y/�Rn
C
g.y/�g.x/;8u 2 @cg.x/ and

˚.v;y;x/�Rn
C
g.x/�g.y/;8v 2 @cg.y/:

By adding these last two relations, we have

˚.u;x;y/C˚.v;y;x/�Rn
C
0; for all u 2 @cg.x/; v 2 @cg.y/:

Since Rn
C
� C.x/, we deduce that for each x;y 2K

˚.u;x;y/C˚.v;y;x/�C.x/ 0; for all u 2 @cg.x/; v 2 @cg.y/:

This means that ˚ is @cg-monotone on K. �

Theorem 6. Let g WK! Rn be an invex function with respect to ˚ on K. Given
x0 2K. We consider the following problems:

(P1) For each y 2K, there exists u 2 @cg.x0/ such that ˚.u;x0;y/ 6�intC.x0/ 0.
(P2) x0 is a solution for the generalized weak VOP.
(P3) For each y 2K, there exists v 2 @cg.y/ such that ˚.v;x0;y/ 6�intC.x0/ 0.

Then, (P1)) (P2). If ˚ is skew, (P2)) (P3). If ˚ is affine in the third variable and
˚.@cg.y/;x;x/D f0g for each x;y 2K, (P3)) (P1).
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Proof. (P1)) (P2). Suppose that x0 is not a solution for the generalized weak
VOP. Then there exists y 2K such that g.y/�intC.x0/ g.x0/; that is,

g.x0/�g.y/ 2 intC.x0/:

On the other hand, by the invexity of g, we have

˚.u;x0;y/�Rn
C
g.y/�g.x0/; 8u 2 @

cg.x0/I

that is, for all u 2 @cg.x0/,

˚.u;x0;y/ 2 g.y/�g.x0/�Rn
C ��intC.x0/�C.x0/��intC.x0/:

Hence,
˚.u;x0;y/�intC.x0/ 0; 8u 2 @

cg.x0/;

which contradicts (P1).
(P2)) (P3). Suppose that (P3) is not true. Then, for each x0 2 K, there exists

y0 2K such that

˚.v;x0;y0/�intC.x0/ 0; 8v 2 @
cg.y0/I

that is,
˚.@cg.y0/;x0;y0/��intC.x0/:

On the other hand, by the invexity of g, we have

˚.u;y0;x0/�Rn
C
g.x0/�g.y0/; 8u 2 @

cg.y0/I

hence, since ˚ is skew, we have

�˚.u;x0;y0/�Rn
C
g.x0/�g.y0/; 8u 2 @

cg.y0/I

therefore,

g.x0/�g.y0/ 2 �˚.u;x0;y0/CRn
C � intC.x0/CC.x0/� intC.x0/:

That is, g.y0/�intC.x0/ g.x0/.
(P3)) (P1). Since g is invex with respect to ˚ on K, by Lemma 5 we know that

˚ is @cg-monotone on K. Now if in Lemma 2, put A.u;x/D u; f D 0; ˛ D 0 and
T D @cg, then we obtain the desired result. �

Theorem 6 generalizes Theorem 4.1 of [21] to the GVELPs. It also improves and
extends the main result in [28]. As an application of Corollary 2, we establish an
existence result for (P2). This result is the extension and refinement of Theorem 3.1
in [21].

Theorem 7. Let ˚ W L.X;Y /�K �K ! Rn be a function and g W K ! Rn be
an invexity function with respect to ˚ on K. Assume that the mapping W W K !
2Rn

defined by W.x/D Rn n .�intC.x// is closed, ˚ is skew and affine in the third
variable, and for each ´ 2K; ˚.�; �;´/ WL.X;Rn/�K! Rn is continuous. If there
exist a nonempty compact set M � K and a nonempty compact convex set B �
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K such that for each x 2 K nM , there exists y 2 B such that ˚.@cg.x/;x;y/ �
�intC.x/. Then the generalized weak VOP has a solution.

Proof. Lemmas 4 and 5 imply that all the conditions of Corollary 2 are fulfilled.
Hence, we deduce (P1) and then the proof follows from Theorem 6. �
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