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Abstract. In this paper, the author uses the generating function for the Bernoulli numbers in
order to obtain a new proof for a known linear recurrence relation of the Riemann zeta function
with even integer arguments, �.2n/.
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1. INTRODUCTION

Originally the Riemann zeta function was defined for real arguments by Euler as
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; x > 1:

Euler first started to develop the theory of this function and obtained in 1734 the
famous formula for even positive zeta values
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where n is a positive integer and Bn is the n-th Bernoulli number. There are many
proofs of this formula, some of them elementary, see, e.g., [1–3, 5, 10, 12–14].

The following recurrence relation for �.2n/ has been derived by Song [11, eq. 15]
in 1987 using Fourier series expansion of periodic functions. In this work, Song did
not make use of the Riemann zeta function and always wrote the sums explicitly.

Theorem 1. For n > 0,
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We see that this linear recurrence relation does not require a priori knowledge of
the Bernoulli numbers. If n is small, then it is relatively easy to evaluate �.2n/,
namely
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In 2008, Lettington [7, Lemma 11.1.2, pp. 140–142] rediscovered this result in his
doctoral thesis by deriving the Bernoulli recurrence relation
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Moreover, he showed in [8] that this linear recurrence for the Riemann zeta function
occurs naturally in a certain variety of odd-side magic square matrix with multiplic-
ative symmetries. These symmetries are discussed more generally in [4].

In this paper, based on the generating function of the Bernoulli numbers and
Euler’s formula (1.1), we provide a proof of Theorem 1 which is different from
Song’s and Lettington’s proofs. We remark that the proof via generating functions
for the Bernoulli numbers is of interest, as can be observed in the recent paper by
Coffey [6].

2. A PROOF OF THEOREM 1

We consider the following two series:
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and
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Thus we deduce that 
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Equating coefficients of x2nC1 on each side give the relation
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Moreover, taking into account that B1 D�1=2 and B2nC1 D 0 for n > 0, we deduce
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Using Euler’s formula (1.1), we obtain the relation
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that can be rewritten as
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This completes the proof.

3. CONCLUDING REMARKS.

Due to the results of Euler and the more recent works described herein, we know
that the linear recurrence relations for �.2n/ are intimately related to the properties
of the Bernoulli numbers. In this paper, we have obtained a new proof of the lin-
ear recurrence for �.2n/ considered by Song and Lettington. Moreover, equating
coefficients of x2n on each side of the relation (2.1), we obtain the relation
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that allows us to derive the following recurrence relation for �.2n/.
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Theorem 2. For n > 0,

�.2n/C
22n�1

22n�1

 
.�1/n

�2n

.2n/Š
�
2n�1

2
C

n�1X
kD1

.�1/k
�2k

.2k/Š
�.2n�2k/

!
D 0:

According to the last theorem, we can write
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A final remark is that as with Lemma 2.1 of [9], these type of recurrence rela-
tions often reduce to relations involving Bernoulli numbers, binomial coefficients and
powers of 2. Here we find that Theorems 1 and 2 are consequences of the recurrence
relation
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