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Abstract. We study differential equation of Emden-Fowler type

y00�xay� D 0; for a 2 R and � < 0.

We describe the conditions on parameters a and � which assure that this equation has infin-
itely many solutions defined in some neighborhood of zero and the conditions which guarantee
existence of infinitely solutions with certain asymptotic behavior.
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1. INTRODUCTION

In this paper we study the very important non-linear second-order differential
equation

y00�xay� D 0:

This equation came first into prominence in connection with the astrophysical re-
searcher Emden. A number of results obtained by Emden in the usual half-intuitive,
wholly ingenious fashion of the physicist were made by Fowler, who was then stim-
ulated to continue and give a complete discussion of solutions of this equation for all
values of the parameters. The equation has several very interesting physical applic-
ations, occurring in astrophysics in the form of the Emden equation and in atomic
physics in the form of Fermi-Thomas equation.

Mathematically, the equation has great potential. It is a nontrivial, nonlinear, dif-
ferential equation with a large class of solutions whose behavior can be ascertained
with astonishing accuracy, despite the fact that the solutions, in general, can’t be ob-
tained explicitly. The Emden-Fowler type of equation has significant applications in
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many fields of scientific and technical world and this equation has been investigated
by many researchers. Such equations were considered, e.g. in [1–5]. In [1,2] asymp-
totic properties of solutions of the Emden-Fowler equations at infinity were obtained.
In papers [3–5] some asymptotic properties of solutions of the Emden-Fowler equa-
tions near zero were obtained. These papers motivate us to fully examine the behavior
of solutions Emden-Fowler equation near zero in the case when � < 0 and a 2 R.

Our paper is divided into two parts. In Section 2, we discuss conditions on para-
meters which ensure that the solution of Emden-Fowler equation is defined in some
neighborhood of zero and it is shown that this result can not be proven under weaker
assumptions.

In Section 3, we examine the asymptotic behavior of the solutions of this equation.
We proved the existence of infinitely many solutions of this equation for some value
of parameters. Also, we proved uniqueness of solution which satisfies appropriate
conditions.

With some changes of the variables, we can reduce equation

.t� �u0.t//0� t˛ �u� .t/D 0; for �¤ 1; (1.1)

to the equation
y00�xay� D 0: (1.2)

Our results give appropriate results for equation (1.1). Namely, if � > 1, set x D
t��1

��1
; u D

y

x
� .�� 1/

��˛�2
.��1/.��1/ ; the equation for y is y00.x/� xay� D 0; where

aD
˛C�

��1
�.�C3/. If � < 1, set xD

t1��

1��
; uD y �.1��/�

�C˛
.1��/.��1/ ; the equation

for y is y00.x/�xay� D 0; where aD
˛C�

1��
.

2. ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF EMDEN-FOWLER EQUATION

Consider the equation
y00�xay� D 0; (2.1)

where � < 0 and a 2 R.
Using Picard theorem we can conclude existence of the local defined solution, so

the natural question is to find conditions which assure that the solution is defined
globally. First we will prove that for some values of parameters a and � every mono-
tone solution of equation (2.1) is defined on the interval containing zero environment,
i.e. that there are no monotone solutions such that the graph of the solution ”tends to
the point on x–axis”.

Lemma 1. If � 6 �1 and x1 > 0, then every positive monotone solution of differ-
ential equation (2.1) is defined on some interval I such that .0;x1�� I; x1 > 0.
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Proof. It is enough to observe only the nondecreasing solutions. Let observe the
solution such that y.x1/ > 0, y0.x1/ > 0. Suppose that x0 > 0 and y.x/ is the solu-
tion defined on the interval .x0;x1�, but y.x/ is not defined on the interval .x0;x0�,
for arbitrarily x0 < x0. In this situation we have lim

x!x0C
y.x/ D 0. It follows from

equation (2.1) that y00.x/ > 0, and from that we can conclude that y0.x/ is an in-
creasing function, so there exists finite lim

x!x0C
y0.x/, so we have y.x/ 6 y.x1/ and

y0.x/6 y0.x1/ for every x 2 .x0;x1�. The function y.x/ can be continuously exten-
ded in point x0 such that y.x0/D 0, then for every x 2 .x0;x1/ and some � 2 .x0;x/
the inequality y.x/�0

x�x0
D y0.�/6 y0.x1/ holds. Since � < 0, it follows that

y00.x/D xay� .x/>
�
y0.x1/

��
xa.x�x0/

� ;

and for every x 2 .x0;x1/ we have

y0.x1/> y0.x1/�y
0.x/D

Z x1

x

y00.t/dt >
�
y0.x1/

�� Z x1

x

ta.t �x0/
�dt:

Since � 6 �1, the right side of the inequality tends to1 when x! x0, but the left
side of the inequality is constant, which is a contradiction, so it follows that such
solution is defined on the interval .0;x1�. �

Example 1. Let’s

x.u/D x0 � e

2
uR
0

dvr
v2C8� v

�C1

�C1 ; y.u/D
p
x0 �u � e

uR
0

dvr
v2C8� v

�C1

�C1 ; x0 > 0; u 2 .0;1/ ;

where a D�
�C3

2
and �1 < � < 0. We notice that x.u/ and y.u/ are well defined

on the interval .0;1/. Also, x.u/ is an injective function from .0;1/ to .x0;1/, so
we can observe x.u/ and y.u/ as parametric representation of function y.x/, defined
on .x0;1/. Straightforward calculation shows that

x0.u/D
2x0 � e

2
uR
0

dvr
v2C8� v

�C1

�C1q
u2C8 � u

�C1

�C1

;

y0.u/D

�
p
x0C

u �
p
x0q

u2C8 � u
�C1

�C1

�
� e

uR
0

dvr
v2C8� v

�C1

�C1 ;

x00.u/D
2x0

u2C8 � u
�C1

�C1

� e

2
uR
0

dvr
v2C8� v

�C1

�C1 �

�
2�

uC4u�q
u2C8 � u

�C1

�C1

�
;
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y00.u/D

p
x0 � e

uR
0

dvr
v2C8� v

�C1

�C1q
u2C8 � u

�C1

�C1

�

�
1C

uq
u2C8 � u

�C1

�C1

C

4.1��/
1C�

�u�C1

u2C8 � u
�C1

�C1

�
:

It follows that
d2y

dx2
.u/D

1

.x0.u//3

�
y00.u/ �x0.u/�x00.u/ �y0.u/

�
D x
� 3
2

0 �u
�
� e

�3
uR
0

dvr
v2C8� v

�C1

�C1 ; and

.x.u//a � .y.u//� D .x.u//�
�C3
2 � .y.u//� D x

� 3
2

0 �u
�
� e

�3
uR
0

dvr
v2C8� v

�C1

�C1 ;

so with x.u/ and y.u/ a parametric representation of function y.x/ is given, which
is a solution of equation (2.1). Notice that

x.u/! x0; y.u/! 0;

when u! 0C. It follows that the result of Lemma 1 can not be extended for every
�1 < � < 0 and aC�C16 0.

Lemma 1 provides existence of the solution in some neighborhood of zero, so the
natural question is to investigate asymptotic behavior of such solutions. In the next
theorem we show that for some values of parameters a and � there are no solutions
y.x/ of differential equation (2.1), such that lim

x!0C
y.x/ D 0, i.e. that there are no

solutions such that the graph of the solution ”tends to the point .0;0/”.

Theorem 1. If � < 0 and aC � C 1 6 0, then there are no positive solutions
y.x/ of differential equation (2.1) defined in the some neighborhood of zero such
that lim

x!0C
y.x/D 0.

Proof. If there was a positive solution with the above characteristics, then it must
be nondecreasing. Extending the function y.x/ such that y.0/D 0, we derive that the
function y.x/ is continuous on the segment Œ0;x1� and differentiable on the interval
.0;x1/ for some x1 > 0. It follows that for every x 2 .0;x1/ the inequality y.x/�0

x�0
D

y0.�/6 y0.x/ holds for some � 2 .0;x/. Since y0.x/ is an increasing function, follows
that y.x/6 xy0.x/6 xy0.x1/. From differential equation (2.1) and from above line,
it follows that

y00.x/D xa
�
y.x/

�� > xaC�
�
y0.x1/

��
;

for each x 2 .0;x1/. From the integration we obtain

y0.x1/> y0.x1/�y
0.x/D

Z x1

x

y00.t/dt >
�
y0.x1/

�� Z x1

x

taC�dt;
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i.e.
�
y0.x1/

�1�� >
R x1
x taC�dt , which is impossible, since aC � 6 �1, so thatR x1

x taC�dt !1 when x! 0C. �

If � < 0 and aC�C1 > 0, then there are infinitely many solutions y.x/ of differ-
ential equation (2.1), such that lim

x!0C
y.x/D 0, i.e. there are infinitely many solutions

such that the graph of the solution ”tends to the point .0;0/”. This result is from [4].

Example 2. Results of Lemma 1 and Theorem 1 can not be extended for every
a > �2 and aC� 6 �1. For example, for aD�1, � D 0 solutions y.x/D x lnxC
C.x�x0/ of the equation y00 D xay� are nondecreasing on the interval .x0;1/ for
every x0;C > 0. Specially, for x0 D 0 and every C > 0 we have lim

x!0C
y.x/D 0.

Finally, at the end of this section we give conditions on parameters a and � which
assure that the positive solutions of (2.1) have no vertical asymptote at x D 0.

Theorem 2. If � < 0, a >�2 and y.x/ is positive solution of differential equation
(2.1) defined on the interval .0;x0�, such that y0.x0/6 0, then

lim
x!C0

y.x/ <C1 :

Proof. It follows from equation (2.1) that y00.x/ > 0 for x 2 Œx1;x2�, x2 > x1 > 0,
i.e. y.x/ is a convex function. From this and from the condition y0.x0/ 6 0, we
can conclude that y0.x/ < 0 for x 2 .0;x0/ and y.x/ > y.x0/ for x 2 .0;x0�. This,
together with (2.1) implies the inequality

y00.x/D xay� .x/6 xay� .x0/ : (2.2)

First consider the case a¤�1. From the inequality (2.2), after integration, we have

y0.x0/�y
0.x/D

Z x0

x

y00.t/dt 6
Z x0

x

tay� .x0/dt D
y� .x0/

aC1
�
�
xaC10 �xaC1

�
;

for x 2 .0;x0�, i.e. after another integration we have

�y.x0/Cy.x/6
y� .x0/

aC1

 
xaC10 .x0�x/C

xaC20 �xaC2

aC2

!
�y0.x0/.x0�x/ :

Therefore

y.x/6
y� .x0/

aC1

 
xaC10 .x0�x/C

xaC20 �xaC2

aC2

!
�y0.x0/.x0�x/Cy.x0/ :

Since a > �2 we conclude that lim
x!C0

y.x/ <C1.

Now, consider the case aD�1. Similarly, from the inequality (2.2) we have

y0.x0/�y
0.x/6 y� .x0/ � .lnx0� lnx/ ; x 2 .0;x0� ;

i.e. y.x/6 y� .x0/ � .x0�x/ � .lnx0� ln Nx/�y0.x0/.x0�x/Cy.x0/ ;
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for some Nx 2 .x;x0/. Therefore, we conclude that lim
x!C0

y.x/ <C1. �

In [3] it was shown that if a 6 �2, the result of the previous theorem can not be
applied. Also in that paper asymptotic behavior near zero is obtained of each positive
solution of equation (2.1) for a 6 �2.

3. CAUCHY PROBLEM FOR AN EMDEN-FOWLER EQUATION

Consider the Cauchy problem

y00�xay� D 0; y.0/D c; y0.0/D �; (3.1)

where � < 0, a 2 R and �;c are arbitrary constants such that c > 0.
First we must precise what is the meaning of Cauchy problem in this situation.

Emden-Fowler equation is defined for x > 0, but, for example, under assumptions of
Lemma 1 and Theorem 2 it follows that lim

x!0C
y.x/D c exists in Œ0;1/, so we will

write this shortly as y.0/ D c. Similarly, since y00.x/ > 0 for x > 0, we have that
lim
x!0C

y0.x/D � exists in R[f�1g and we will consider situation when � 2 R.

The next theorem provides us the existence and uniqueness of solution of the
Cauchy problem (3.1).

Theorem 3. If � < 0 and a >�1, then Cauchy problem (3.1) has a unique solution
defined on some interval .0;h�; h 6 1 (solution is defined on .0;h� and solution can
continuously differentiable extend to 0, such that y.0/ D c > 0; y0.0/ D �), for h
small enough.

Proof. First consider the case �> 0. Instead of Cauchy problem (3.1) we consider
the integral equation

y.x/D �xC cC

Z x

0

.x� t /tay� .t/dt : (3.2)

The sequence of functions is defined as follows:

y0.x/D �xC c; ynC1.x/D �xC cC

Z x

0

.x� t /tay�n .t/dt : (3.3)

Let us show that all functions yn.x/ satisfy the inequalities

cC�x 6 yn.x/6 cC2�x; x 2 Œ0;h�; n 2N0 ; (3.4)

for some h independent of n. We prove this assertion by induction. If n D 0 then
cC�x D y0.x/6 2�xC c, for x 2 Œ0;h�. Let inequalities (3.4) hold, then

.cC�x/� > y�n .x/> .2�xC c/� ;

for x 2 Œ0;h�. Then

ynC1.x/6 �xC cC

Z x

0

.x� t /ta.cC�t/�dt
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6 �xC cCx

Z h

0

ta.cC�t/�dt 6 2�xC c ;

where h is sufficiently small. Since

�xC c 6 �xC cC

Z x

0

.x� t /tay�n .t/dt D ynC1.x/ ;

so (3.4) holds.
We will show uniform convergence of the sequence yn.x/ on Œ0;h�. Consider the

function series y0.x/C
1P
nD1

.yn.x/�yn�1.x//. The sequence of partial sums of that

series is Sn.x/D y0.x/C .y1.x/�y0.x//C : : :C .yn.x/�yn�1.x//D yn.x/, i.e.
uniform convergence of functional sequence yn.x/ is equivalent to uniform conver-
gence of that function series.

Let us show that

jyn.x/�yn�1.x/j6 xn�n; x 2 Œ0;h�; n 2N ; (3.5)

for some h independent of n. We prove this assertion by induction. For n D 1, we
have

jy1.x/�y0.x/j6 x

Z x

0

ta.�tC c/�dt 6 x

Z h

0

ta.�tC c/�dt 6 �x ;

where h is sufficiently small. Let inequality (3.5) hold, then

jynC1.x/�yn.x/j6 x

Z x

0

tajy�n .t/�y
�
n�1.t/jdt

D xj� j

Z x

0

tajyn.t/�yn�1.t/j�
��1.t/dt;

where min
x2Œ0;h�

.yn.x/;yn�1.x//6 �.x/6 max
x2Œ0;h�

.yn.x/;yn�1.x//, but

.cC�x/��1 > ���1.x/> .2�xC c/��1 ;

so we have

jynC1.x/�yn.x/j6 xj� j

Z x

0

ta.cC�t/��1xn�ndt

6 xnC1�nj� j

Z h

0

ta.cC�t/��1dt ;

i.e. jynC1.x/�yn.x/j6 xnC1�nC1 ;

where h is sufficiently small. We conclude that

jyn.x/�yn�1.x/j6 xn�n 6 .�h/n; x 2 Œ0;h�; n 2N :

From lines above we can conclude that sequence yn.x/ uniformly converges to some
function y.x/.
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Let y.x/ D lim
n!C1

yn.x/; x 2 Œ0;h�. Then y.0/ D c and y0.0/ D �. Since we

have
jy�n .x/�y

� .x/j6 ���1.x/ � j� j � jyn.x/�y.x/j ;

where min
x2Œ0;h�

.yn.x/;y.x//6 �.x/6 max
x2Œ0;h�

.yn.x/;y.x//, sequence y�n .x/ uniformly

converges to function y� .x/ on Œ0;h�. Because of that we have

lim
n!C1

Z x

0

.x�t /tay�n .t/dt D

Z x

0

lim
n!C1

..x�t /tay�n .t//dt D

Z x

0

.x�t /tay� .t/dt :

From this we conclude that sequence yn.x/ uniformly converges to function given in
(3:2).

Let us prove the uniqueness. Let y1.x/ and y2.x/ be solutions of Cauchy problem
(3.1). Then

jy1.x/�y2.x/j6 xj� j

Z x

0

tajy1.t/�y2.t/j�
��1.t/dt ;

where min
x2Œ0;h�

.y1.x/;y2.x//6 �.x/6 max
x2Œ0;h�

.y1.x/;y2.x//, so

y1.x/> �xC c; y2.x/> �xC c; x 2 Œ0;h� ;

because y001.x/ > 0 and y002.x/ > 0, for x 2 Œ0;h�, we can conclude that

y��11 .x/6 .�xC c/��1; y��12 .x/6 .�xC c/��1; x 2 Œ0;h� ;

i.e. ���1.x/6 .�xC c/��1; x 2 Œ0;h� :

Finally, we have

jy1.x/�y2.x/j6 x � max
x2Œ0;h�

jy1.x/�y2.x/j � j� j

Z h

0

ta.�tC c/��1dt ;

i.e. jy1.x/�y2.x/j6
1

2
max
x2Œ0;h�

jy1.x/�y2.x/j; x 2 Œ0;h� ;

where h is sufficiently small. It follows that y1 � y2.
Now, let us consider the case �6 0. Instead of Cauchy problem (3.1) we consider

the integral equation (3.2), where x 2 Œ0;h�, for h sufficiently small .h�C c > 0/.
The sequence of functions yn.x/ is defined as (3.3). Let us show that all functions
yn.x/ satisfy the inequalities

cC�x 6 yn.x/6 cCx; x 2 Œ0;h�; n 2N0 ; (3.6)

for some h independent of n. We prove this assertion by induction. If n D 0 then
cC�x D y0.x/6 xC c, for x 2 Œ0;h�. Let inequalities (3.6) hold, then

.cC�x/� > y�n .x/> .xC c/� ;
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for x 2 Œ0;h�. Then

ynC1.x/6 cC

Z x

0

.x� t /ta.cC�t/�dt 6 cCx

Z h

0

ta.cC�t/�dt 6 xC c ;

where h is sufficiently small. How it is

�xC c 6 �xC cC

Z x

0

.x� t /tay�n .t/dt D ynC1.x/ ;

then (3.6) holds.
We will show uniform convergence of the sequence yn.x/ on Œ0;h�. For proof

of uniform convergence of functional sequence yn.x/ is enough to prove uniform
convergence of function series y0.x/C

P1
nD1 .yn.x/�yn�1.x//.

Let us show that

jyn.x/�yn�1.x/j6 xn; x 2 Œ0;h�; n 2N ; (3.7)

for some h independent of n. We prove this assertion by induction. For n D 1, we
have

jy1.x/�y0.x/j6 x

Z x

0

ta.�tC c/�dt 6 x

Z h

0

ta.�tC c/�dt 6 x ;

where h is sufficiently small. Let inequality (3.7) hold, then

jynC1.x/�yn.x/j6 x

Z x

0

tajy�n .t/�y
�
n�1.t/jdt

D xj� j

Z x

0

tajyn.t/�yn�1.t/j�
��1.t/dt;

where min
x2Œ0;h�

.yn.x/;yn�1.x//6 �.x/6 max
x2Œ0;h�

.yn.x/;yn�1.x//, so

.cC�x/��1 > ���1.x/> .xC c/��1 ;

we have

jynC1.x/�yn.x/j6 xj� j

Z x

0

ta.cC�t/��1xndt 6 xnC1j� j

Z h

0

ta.cC�t/��1dt ;

i.e. jynC1.x/�yn.x/j6 xnC1 ;

where h is sufficiently small. We conclude that

jyn.x/�yn�1.x/j6 xn 6 hn; x 2 Œ0;h�; n 2N :

From lines above we can conclude that sequence yn.x/ uniformly converges to some
function y.x/.
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In the same way as � > 0, it can be shown that sequence y�n .x/ uniformly con-
verges to function y� .x/ on Œ0;h�. Because of that we have

lim
n!C1

Z x

0

.x�t /tay�n .t/dt D

Z x

0

lim
n!C1

..x�t /tay�n .t//dt D

Z x

0

.x�t /tay� .t/dt:

From this we conclude that sequence yn.x/ uniformly converges to function

y.x/D �xC cC

Z x

0

.x� t /tay� .t/dt:

The proof of uniqueness in this case is the same as the proof when �> 0. It follows
that y1 � y2. �
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