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Abstract. We study sufficient conditions for existence of solutions to the global optimization
problem minx2A d.x;f x/; where A; B are nonempty subsets of a metric space .X;d/ and
f W A! B belongs to the class of proximal simulative contraction mappings. Our results unify,
improve and generalize various comparable results in the existing literature on this topic. As an
application of the obtained theorems, we give some solvability theorems of a variational inequal-
ity problem.
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1. INTRODUCTION

LetA andB be nonempty subsets of a metric space .X;d/ and f WA!B an arbitrary
mapping on A: A fixed point problem defined by a pair .A;B/ of sets and a mapping
f is to find a point x� in A such that d.x�;f x�/D 0: It is clear that if A\B D¿;
the fixed point problem defined by .A;B/ and f has no solution. In this case, a point
x� in A satisfying

d.x�;f x�/� d.a;f x�/

for every a in A is the nearest point to f x� 2 B in A: Such a point is called an
approximate fixed point of f .

It is a reasonable demand to settle down with such a point when an operator equation
f x D x does not admit a solution.

The study of conditions that assure existence and uniqueness of approximate fixed
point of a mapping f is an important area of research.

Suppose that 4AB D d.A;B/ D inffd.x;y/ W x 2 A;y 2 Bg is the measure of a
distance between two sets A and B: A point x� in A is called a best proximity point
of f if

d.x�;f x�/D4AB :
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Best proximity point results deal with sufficient conditions under which the nonlinear
minimization problem

min
x2A

d.x;f x/

has at least one solution. Thus a best proximity point problem defined by a mapping
f and a pair .A;B/ of sets is to find a point x� in A such that

d.x�;f x�/D4AB :

If AD B; the best proximity point problem reduces to a fixed point problem.
In light of this, a best proximity point problem can be viewed as a natural gener-

alization of the fixed point problem. Also, results dealing with existence and unique-
ness of best proximity point of certain mappings are more general than the ones
dealing with approximate fixed point problem of those mappings.

The theory of best proximity point has proved to be simple and applicable in solv-
ing real world problems in nonlinear analysis, optimization, economics, game theory,
and so forth. See, for example, [10] and [13].

The purpose of this paper is to study best proximity point results of proximal
simulative contraction mappings. These results extend, unify and strengthen various
known results in [6, 7, 12, 17] among others. As an application of the obtained the-
orems, we give some solvability theorems of a variational inequality problem, see
[18].

2. PRELIMINARIES

Throughout this paper, we assume that .X;d/ is a metric space and .A;B/ a pair of
nonempty subsets of X:

Consistent with [6], the following definitions and results will be needed in the
sequel. Let

A0 D fx 2 A W d.x;y/D4AB for some y 2 Bg;

B0 D fy 2 B W d.x;y/D4AB for some x 2 Ag:

If A\B ¤¿; then A0 and B0 are nonempty. Moreover, A0 and B0 are contained in
the boundaries of A and B; respectively whenever A and B are closed subsets of a
normed linear space such that4AB > 0.

Definition 1. A set B is said to be approximatively compact with respect to A
if every sequence fyng in B , satisfying d.x;yn/! d.x;B/ for some x 2 A, has a
convergent subsequence.

Sankar Raj [16] introduced the concept of P-property and obtained a best proxim-
ity point result for a class of weakly contractive mappings as an interesting general-
ization of Banach contraction principle.
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Definition 2. Let A0 be nonempty. The pair .A;B/ is said to have the P-property
if and only if

d.x1;y1/D d.x2;y2/D4AB implies that d.x1;x2/D d.y1;y2/

where x1;x2 2 A0 and y1;y2 2 B0:

Example 1 ([1]). Let X D R2. Define the metric d on X by

d..x1;y1/; .x2;y2//Dmaxfj x1�y1 j; j x2�y2 jg:

If A WD f.x;0/ W �1 � x � 1g and B WD f.0;y/ W �1 � y � 1g; then the pair .A;B/
has the P-property.

Several authors studied best proximity point results for different contractive map-
pings employing the notion of P-property, see [8] and the references mentioned
therein.

Abkar and Gabeleh [2] proved that most of best proximity point results based
on P-property can be deduced from existing comparable fixed point results in the
literature.

Sadiq Basha [6] modified the concept of P-property and introduced the concept of
proximal contractions of first and second kinds as follows:

Definition 3. A mapping f W A! B is said to be a proximal Banach contraction
of first kind if there exists a non-negative number ˛ < 1 such that for all u1;u2;x1;x2

in A;

d.u1;f x1/D d.u2;f x2/D4AB implies that d.u1;u2/� ˛d.x1;x2/:

Definition 4. A mapping f WA!B is said to be a proximal Banach contraction of
second kind if there exists a non-negative number ˛ < 1 such that for all u1;u2;x1;x2

in A;

d.u1;f x1/D d.u2;f x2/D4AB implies that d.f u1;f u2/� ˛d.f x1;f x2/:

Then, Sanhan et al. [17] introduced the concept of proximal '-contraction of the
first and second kinds.

Definition 5. A mapping f WA!B is said to be a proximal '-contraction of first
kind if there exists an upper semi-continuous function from the right, with '.t/ < t
for all t > 0, such that for all u1;u2;x1;x2 in A;

d.u1;f x1/D d.u2;f x2/D4AB implies that d.u1;u2/� '.d.x1;x2//:

Definition 6. A mapping f W A! B is said to be a proximal '-contraction of
second kind if there exists an upper semi-continuous function from the right, with
'.t/ < t for all t > 0, such that for all u1;u2;x1;x2 in A;

d.u1;f x1/D d.u2;f x2/D4AB implies that d.f u1;f u2/� '.d.f x1;f x2//:
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Note that if '.t/D ˛t; ˛ 2 Œ0;1/ then proximal '-contraction of first and second
kinds reduce to proximal Banach contraction of first and second kinds, respectively.

Another interesting generalization of proximal Banach contractions was obtained
by Sadiq Basha and Shahzad [7].

Definition 7. A mapping f WA!B is said to be a generalized proximal contrac-
tion of first kind if there exist non-negative numbers ˛;ˇ;
;ı with ˛CˇC
C2ı < 1
such that for all u1;u2;x1;x2 2 A;

d.u1;f x1/D d.u2;f x2/D4AB

implies that

d.u1;u2/� ˛d.x1;x2/Cˇd.x1;u1/C
d.x2;u2/C ıŒd.x1;u2/Cd.x2;u1/�:

Definition 8. A mapping f WA!B is said to be a generalized proximal contrac-
tion of second kind if there exist non-negative numbers ˛;ˇ;
;ı with ˛CˇC 
 C
2ı < 1 such that for all u1;u2;x1;x2 2 A;

d.u1;f x1/D d.u2;f x2/D4AB

implies that

d.f u1;f u2/� ˛d.f x1;f x2/Cˇd.f x1;f u1/C
d.f x2;f u2/

C ıŒd.f x1;f u2/Cd.f x2;f u1/�:

For more results in this direction, we refer to [3, 11, 14] and the references men-
tioned therein.

Very recently, Khojasteh et al. [12] introduced the notion of simulation function
and Argoubi et al. [5] (see also [15]) modified the definition as follows:

Definition 9. A mapping � W Œ0;1/� Œ0;1/! R is called a simulation function
if it satisfies the following conditions: .�1/ �.t; s/ < s � t for all t; s > 0I .�2/ if
ftng; fsng are sequences in .0;1/ such that lim

n!1
tn D lim

n!1
sn 2 .0;1/, then

limsup
n!1

�.tn; sn/ < 0:

Example 2 ([12]). If ' W Œ0;1/! Œ0;1/ is an upper semi-continuous function
such that '.t/ < t for all t > 0 and '.0/D 0, then � W Œ0;1/� Œ0;1/! R defined by
�.t; s/D '.s/� t for all s; t 2 Œ0;1/ is a simulation function.

Let = be the family of all functions � W Œ0;1/� Œ0;1/! R satisfying the condi-
tions .�1/ and .�2/:

Definition 10 ([12]). Let X be a metric space. A mapping f W X ! X is said to
be =-contraction (or simulative contraction) if there exists � 2 = such that

�.d.f x;fy/;d.x;y//� 0; for all x;y 2X:
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Note that Banach contractions are =-contractions but the converse does not hold
in general; see [4, 12].

We introduce the following notions of proximal simulative contractions.

Definition 11. A mapping f WA!B is said to be proximal simulative contraction
of first kind if there exists a mapping � 2 = such that for all u1;u2;x1;x2 in A;
d.u1;f x1/D d.u2;f x2/D4AB implies that

�.d.u1;u2/;d.x1;x2//� 0:

Definition 12. A mapping f WA!B is said to be proximal simulative contraction
of second kind if there exists a mapping � 2 = such that for all u1;u2;x1;x2 in A;
d.u1;f x1/D d.u2;f x2/D4AB implies that

�.d.f u1;f u2/;d.f x1;f x2//� 0:

We note that
(i) if A D B; then proximal simulative contractions of the first kind are =-

contractions.
(ii) If �.t; s/D '.s/� t for all s; t 2 Œ0;1/, where ' W Œ0;1/! Œ0;1/ is an upper

semi-continuous function such that '.t/ < t for all t > 0 and '.0/D 0:Then
proximal simulative contractions of first and second kinds reduce to proximal
'-contractions of first and second kinds, respectively.

3. MAIN RESULTS

We start with the following result dealing with a continuous proximal simulative
contraction of first kind.

Theorem 1. Let A and B be nonempty closed subsets of a complete metric space
.X;d/. Suppose that A0 and B0 are nonempty, f W A! B is a continuous proximal
simulative contraction of first kind and f .A0/ � B0. Then there exists a unique
element x inA such that d.x;f x/D4AB : Moreover, for any fixed element x0 2A0;

the sequence fxng satisfying d.xnC1;f xn/D4AB for all n 2N[f0g converges to
the best proximity point x of f:

Proof. Let x0 be a given point in A0. Since f .A0/� B0, we can choose x1 2 A0

such that d.x1;f x0/D4AB . As f x1 2 B0, there exists a point x2 2 A0 such that
d.x2;f x1/D4AB . Continuing in this manner, we can obtain a sequence fxng in A0

such that

d.xn;f xn�1/D4AB and d.xnC1;f xn/D4AB for all n 2N: (3.1)

Since f is proximal simulative contraction of first kind, we have

�.d.xn;xnC1/;d.xn�1;xn//� 0 for all n 2N:

If for some m 2N, we have xm�1 D xm, then

d.xm;f xm�1/D d.xm;f xm/D4AB ;
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that is, xm is a best proximity point of f: Thus, we can assume that d.xn�1;xn/ > 0

for all n 2N. Now, the property (�1) of a simulation function assures that

0� �.d.xn;xnC1/;d.xn�1;xn// < d.xn�1;xn/�d.xn;xnC1/

and hence
d.xn;xnC1/ < d.xn�1;xn/ for all n 2N:

It follows that fd.xn;xnC1/g is a monotonically decreasing sequence of non-negative
real numbers which is bounded below, then there exists r � 0 such that fd.xn;xnC1/g

converges to r: We claim that r D 0. Assume on the contrary that r > 0: Obviously,

lim
n!1

d.xn;xnC1/D lim
n!1

d.xn�1;xn/D r: (3.2)

From (3.2) and the property (�2) of a simulation function, we get

0� limsup
n!1

�.d.xn;xnC1/;d.xn�1;xn// < 0

and hence r D 0, that is
lim

n!1
d.xn;xnC1/D 0: (3.3)

Next, to prove that fxng is a Cauchy sequence in X; it suffices to show that fx2ng is
a Cauchy sequence in X . If not, there exists � > 0 and two subsequences fx2mk

g and
fx2nk

g of fx2ng with nk >mk � k such that

d.x2mk
;x2nk

/� � for all k 2N: (3.4)

Without any loss of generality, we assume that for all k 2 N, nk is the smallest
positive integer greater than mk for which this inequality holds, then

d.x2mk
;x2nk�2/ < � for all k 2N: (3.5)

By (3.4) and (3.5), we have

� � d.x2mk
;x2nk

/

� d.x2mk
;x2nk�2/Cd.x2nk�2;x2nk�1/Cd.x2nk�1;x2nk

/

< �Cd.x2nk�2;x2nk�1/Cd.x2nk�1;x2nk
/: (3.6)

On taking the limit as k !1 in the previous inequality (3.6) and using (3.3), we
obtain that

lim
k!1

d.x2mk
;x2nk

/D �: (3.7)

Similarly, we have

� � d.x2mk
;x2nk

/

� d.x2mk
;x2mkC1/Cd.x2mkC1;x2nkC1/Cd.x2nkC1;x2nk

/: (3.8)

Also,

d.x2mkC1;x2nkC1/� d.x2mkC1;x2mk
/Cd.x2mk

;x2nk
/Cd.x2nk

;x2nkC1/:

(3.9)
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On taking the limit as k!1 on both sides of (3.8) and (3.9), using (3.3) and (3.7),
we have

lim
k!1

d.x2mkC1;x2nkC1/D �: (3.10)

Since fx2mk
g and fx2nk

g are subsequences of fx2ngwith nk >mk � k; then by (3.1)
we get

d.x2mkC1;f x2mk
/D4AB D d.x2nkC1;f x2nk

/ for all k 2N: (3.11)

By using (3.7) and (3.10), it follows from (3.11) and the property (�2) of a simulation
function that

0� limsup
k!1

�.d.x2mkC1;x2nkC1/;d.x2mk
;x2nk

// < 0;

a contradiction and hence fxng is a Cauchy sequence in X: Since A is a closed subset
of a complete metric space .X;d/, then there exists x 2 A such that

lim
n!1

xn D x: (3.12)

On taking the limit as n!1 on one of equalities in (3.1), by (3.12) and the continu-
ity of f; we obtain that

d.x;f x/D4AB :

Therefore, x is a best proximity point of f in A: To prove uniqueness, suppose there
exists another best proximity point x� of f in A, other than x: That is

d.x�;x/ > 0; d.x�;f x�/D4AB and d.x;f x/D4AB :

By the property (�1) of a simulation function, since f is proximal simulative con-
traction of first kind, we get d.x�;x/ < d.x�;x/, a contradiction, and hence the best
proximity point of f in A is unique. This completes the proof. �

Example 3. Let X D R2 be endowed with the Euclidean metric

d..x1;y1/; .x2;y2//Dj x1�x2 j C j y1�y2 j for all x1;y1;x2;y2 2X:

Let AD f.0;y/ W 0 � y � 1g and B D f.1;y/ W 0 � y � 1g: Then, define f W A! B

and � W Œ0;1/� Œ0;1/! R by

f ..0;y//D .1;y�
y2

2
/ and �.t; s/D

(
1
2
s� t if t < s;
0 if t � s:

Indeed the pair .X;d/ is a complete metric space, ADA0; B DB0;4AB D 1; and f
is a continuous proximal simulative contraction of first kind which is not a proximal
contraction of first kind. Moreover f has no fixed point, but the point ´D .0;0/ 2 A
is a unique best proximity point of f:

In the next result, we consider a continuous proximal simulative contraction map-
ping of second kind.
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Theorem 2. Let A and B be nonempty closed subsets of a complete metric space
.X;d/ such that A is approximatively compact with respect to B . Suppose that A0

and B0 are nonempty, f W A! B is a continuous proximal simulative contraction
of second kind and f .A0/ � B0. Then there exists an element x in A such that
d.x;f x/D4AB : Moreover, for any fixed element x0 2 A0; the sequence fxng sat-
isfying d.xnC1;f xn/D4AB for all n 2N[f0g converges to a best proximity point
x of f: Further, if x;x� are best proximity points of f , then f x D f x� and f has a
unique best proximity point if it is an injective function on A0.

Proof. Let x0 be a given point in A0. Following arguments similar to those in the
proof of Theorem 1, we obtain that fxng is a sequence in A0 satisfying

d.xn;f xn�1/D4AB and d.xnC1;f xn/D4AB for all n 2N:

We assume that f xn�1 ¤ f xn for all n 2 N; in fact, if f xm�1 D f xm for some
m 2N, from

d.xm;f xm/D d.xm;f xm�1/D4AB ;

we deduce that xm is a proximity point of f . Since f is proximal simulative con-
traction of second kind, we have

�.d.f xn;f xnC1/;d.f xn�1;f xn//� 0 for all n 2N:

It follows from the property (�1) of a simulation function that

0� �.d.f xn;f xnC1/;d.f xn�1;f xn// < d.f xn�1;f xn/�d.f xn;f xnC1/;

which implies that

d.f xn;f xnC1/ < d.f xn�1;f xn/ for all n 2N:

Therefore fd.f xn;f xnC1/g is a monotonically decreasing sequence of non-negative
real numbers which is bounded below, then there exists r � 0 such that
fd.f xn;f xnC1/g converges to r: Following arguments similar to those in the proof
of Theorem 1 we obtain that r D 0. Thus

lim
n!1

d.f xn�1;f xn/D 0 for all n 2N:

Also, ff xng is a Cauchy sequence in X: Since B is a closed subset of a complete
metric space .X;d/, then there exists y 2 B such that

lim
n!1

f xn D y: (3.13)

Now, for all n 2N, we have

d.y;A/� d.y;xnC1/� d.y;f xn/Cd.f xn;xnC1/

D d.y;f xn/C4AB

� d.y;f xn/Cd.y;A/;
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which implies that

d.y;A/� d.y;xnC1/� d.y;f xn/Cd.y;A/: (3.14)

On taking the limit as n!1 in (3.14) and using (3.13), we have

lim
n!1

d.y;xnC1/D d.y;A/:

Since A is approximatively compact with respect to B; the sequence fxng has a sub-
sequence fxnk

g convergent to some element x 2A: It follows, from the continuity of
f , that

d.x;f x/D lim
k!1

d.xnk
;f xnk�1/D4AB :

Thus d.x;f x/ D4AB and hence x is a best proximity point of f in A: If there is
another best proximity point x� of f in A other than x with f x� ¤ f x, then we
have

d.f x�;f x/ > 0 and d.x�;f x�/D d.x;f x/D4AB :

By the property (�1) of a simulation function, since f is proximal simulative con-
traction of the second kind, we have d.f x�;f x/ < d.f x�;f x/, a contradiction,
and hence f x D f x�: Thus, f has a unique best proximity point if it is an injective
function on A0. �

Finally, we relax the requirement of continuity for the mapping f in the following
result.

Theorem 3. Let A and B be nonempty closed subsets of a complete metric space
.X;d/ such that B is approximatively compact with respect to A. Suppose that A0

and B0 are nonempty, f W A! B is a proximal simulative contraction of first kind
and f .A0/ � B0. Then there exists a unique element x in A such that d.x;f x/ D
4AB : Moreover, for any fixed element x0 2 A0; the sequence fxng satisfying
d.xnC1;f xn/D4AB for all n 2N[f0g converges to the best proximity point x of
f:

Proof. Let x0 be a given point in A0. Following arguments similar to those in the
proof of Theorem 1 we build a Cauchy sequence fxng of points of A0 satisfying

d.xnC1;xn/ > 0 and d.xnC1;f xn/D4AB for all n 2N[f0g: (3.15)

Since A is a closed subset of a complete metric space .X;d/, then there exists
x 2 A such that

lim
n!1

xn D x: (3.16)

Now, for all n 2N[f0g, we have

d.x;B/� d.x;f xn/� d.x;xnC1/Cd.xnC1;f xn/

D d.x;xnC1/C4AB

� d.x;xnC1/Cd.x;B/:
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Thus
d.x;B/� d.x;f xn/� d.x;xnC1/Cd.x;B/: (3.17)

On taking the limit as n!1 in (3.17) and using (3.16), we obtain that

lim
n!1

d.x;f xn/D d.x;B/:

Since B is approximatively compact with respect to A; ff xng has a subsequence
ff xnk

g convergent to some element y 2 B: Thus,

d.x;y/D lim
k!1

d.xnkC1
;f xnk

/D4AB :

This implies that x 2 A0. Since f .A0/� B0, we can choose u 2 A such that

d.u;f x/D4AB : (3.18)

We shall show that u D x: If fxng has a subsequence convergent to u, then u D x,
so we can assume that xn ¤ u for all n 2N[f0g. By (3.15), we deduce that there
exists a subsequence fxnk

g of fxng, such that xnk
¤ x for all k 2N. Then by (3.15),

(3.18) and the property (�1) of a simulation function, we obtain

0� �.d.xnkC1;u/;d.xnk
;x// < d.xnk

;x/�d.xnkC1;u/;

that is,
d.xnkC1;u/ < d.xnk

;x/ for all n 2N[f0g: (3.19)
On taking the limit as n!1 on both sides of (3.19) and using (3.16), we get that

0� d.x;u/� 0:

Therefore uD x and hence d.x;f x/D4AB : Suppose that there exists another best
proximity point x� in A of f , other than x: Then we have

d.x�;x/ > 0 and d.x�;f x�/D d.x;f x/D4AB :

By the property (�1) of a simulation function, since f is proximal simulative con-
traction of first kind, we get

d.x�;x/ < d.x�;x/;

a contradiction. Therefore the best proximity point of f in A is unique. �

Example 4. Let X D R2 be endowed with the Euclidean metric

d..x1;y1/; .x2;y2//Dj x1�x2 j C j y1�y2 j for all x1;y1;x2;y2 2X:

Let AD f.0;y/ W 0� y <1g and B D f.1;y/ W 0� y <1g. Then, define f WA!B

and � W Œ0;1/� Œ0;1/! R by

f ..0;y//D

(
.1; ln.1Cy/

y
/ if y > 0;

.1;0/ otherwise,
and �.t; s/D

(
1
2
s� t if t < s;
0 if t � s:

Indeed A D A0; B D B0; 4AB D 1; and f is a proximal simulative contraction
of first kind which is not continuous. Further, B is approximatively compact with
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respect toA and ´D .0;0/ is a unique point inA satisfying the conclusion of Theorem
3.

We conclude with the following remarks:
(i) If we put AD B in Theorem 3, we obtain the main result in [12].

(ii) If we put AD B and �.s; t/D ˛s� t for all s; t 2 Œ0;1/ where ˛ 2 Œ0;1/ in
Theorem 3, we obtain a well known Banach fixed point theorem.

(iii) If we choose �.t; s/D '.s/� t for all s; t 2 Œ0;1/ where ' W Œ0;1/! Œ0;1/

is an upper semi-continuous function such that '.t/ < t for all t > 0 and
'.0/D 0, we obtain the result in [17].

4. VARIATIONAL INEQUALITIES

Let K be a nonempty closed and convex subset of a real Hilbert space H , with
inner product h�; �i and corresponding norm k � k. A variational inequality problem
can be stated as follows:

Find u 2K such that hgu;v�ui � 0 for all v 2K, where g WH !H is a given
operator.

The interest for such a kind of mathematical tool is due to the fact that a wide
class of equilibrium and economic problems, arising in the applied sciences, can
be described by variational inequalities. Here, we consider the metric projection
operator, say PK WH ! K, for solving the variational inequality problem. Indeed,
it is well-known that, for each u 2H , there exists a unique nearest point PKu 2 K

such that ku�PKuk � ku�vk for all v 2K, see [9].
The following Lemmas hold.

Lemma 1. Let ´ 2H . Then u 2K satisfies the inequality hu�´;y�ui � 0, for
all y 2K if and only if uD PK´.

Lemma 2. Let g WH !H . Then u 2 K is a solution of hgu;v�ui � 0, for all
v 2K, if and only if uD PK.u��gu/, with � > 0.

It is obvious that any set is approximatively compact with respect to itself. There-
fore, we prove our first result.

Theorem 4. Let K be a nonempty closed and convex subset of a real Hilbert
space H . Suppose that g WH !H is such that PK.I ��g/ WK!K is a proximal
simulative contraction of first kind. Then there exists a unique element u 2 K such
that hgu;v � ui � 0 for all v 2 K. Moreover, for any fixed element u0 2 K; the
sequence fung, with unC1DPK.un��gun/where �>0 and n2N[f0g, converges
to u.

Proof. Define f WK!K by f x D PK.x��gx/ so that, by Lemma 2, u 2K is
a solution of hgu;v�ui � 0 for all v 2K, if and only if uD f u. Now, f satisfies
all the hypotheses of Theorem 1 with AD B DK, then the conclusions of Theorem
4 hold true as a particular case of Theorem 3. �
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Similarly, the following result is related to Theorem 2.

Theorem 5. LetK be a nonempty closed and convex subset of a real Hilbert space
H . Suppose that g W H ! H is such that PK.I � �g/ W K ! K is a continuous
proximal simulative contraction of second kind. Then there exists a unique element
u2K such that hgu;v�ui� 0 for all v 2K. Moreover, for any fixed element u0 2K;

the sequence fung, with unC1 D PK.un � �gun/ where � > 0 and n 2 N[ f0g,
converges to u.

Of course, these type-theorems can be extended and particularized for different
variational inequality problems. For instance, we think to the case of a variational
inequality of the second kind, that is, find u 2 K such that hgu;v�uiC K.v/�

 K.u/ � 0 for all v 2 H , where g W H ! H is a given operator and  K W H !

R[fC1g is a proper, convex and continuous function. Clearly, if we assume

 K.v/D

(
C1 if v 62K;
0 if v 2K;

that is the indicator function of nonempty closed and convex set K, then we retrieve
the classical variational inequality problem at the beginning of this section.

5. CONCLUSIONS

In this paper, we present an abstract approach to the solution of best proximity
point and variational inequality problems, via classical arguments of fixed point the-
ory. The motivation in the use of known fixed point techniques is their usefulness in
covering a wide range of situations, without artificial expedients. On the other hand,
we give sufficient flexibility to our theory, by using classes of simulation functions.
As shown in dealing with variational inequality problems, the approach give us the
possibility to design a convergent algorithm for the solution of the problem under
investigation. Precisely, by using the metric projection, we are able to construct a
sequence of approximations, say fung, which is convergent to the solution of the
problem.
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ing this paper. The authors declare that they have no competing interests. All authors
read and approved the final manuscript.
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