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Abstract. In this study, we investigate the maximal dissipative singular Sturm-Liouville oper-
ators acting in the Hilbert space L2

r (a,b) (−∞ ≤ a < b ≤ ∞), that the extensions of a minimal
symmetric operator with defect index (2,2) (in limit-circle case at singular end points a and b).
We examine two classes of dissipative operators with separated boundary conditions and we es-
tablish, for each case, a self-adjoint dilation of the dissipative operator as well as its incoming
and outgoing spectral representations, which enables us to define the scattering matrix of the
dilation. Moreover, we construct a functional model of the dissipative operator and identify its
characteristic function in terms of the Weyl function of a self-adjoint operator. We present several
theorems on completeness of the system of root functions of the dissipative operators and verify
them.
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1. INTRODUCTION

Dissipative operators are one of the important classes of non-self-adjoint operators.
It is well recognized ([1–3,9,13–16]), that the theory of dilations with application of
functional models gives an ample approach to the spectral theory of dissipative (con-
tractive) operators. By carrying the complete information on the spectral properties
of the dissipative operator, we can say that characteristic function plays the primary
role in this theory. Hence, in the incoming spectral representation of the dilation, the
dissipative operator becomes the model. Completeness problem of the system of ei-
genvectors and associated (or root) vectors is solved through the factorization of the
characteristic function. The computation of the characteristic functions of dissipative
operators is preceded by the construction and investigation of the self-adjoint dila-
tion and the corresponding scattering problem, in which the characteristic function is
considered as the scattering matrix. According to the Lax-Phillips scattering theory
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[10], the unitary group {U(s)} (s ∈ R:= (−∞,∞)) has typical properties in the sub-
spaces D− and D+ of the Hilbert space H, which are called respectively the incoming
and outgoing subspaces. One can find the adequacy of this approach to dissipative
Schrödinger and Sturm-Liouville operators, for example, in [1–3, 9, 13–15].

In this paper, we take the minimal symmetric singular Sturm-Liouville operator
acting in the Hilbert space L2

r (a,b) (−∞ ≤ a < b ≤ ∞) with maximal defect index
(2,2) (in Weyl’s limit-circle cases at singular end points a and b) into consideration.
We define all maximal dissipative, maximal accumulative and self-adjoint extensions
of such a symmetric operator using the boundary conditions at a and b. We investigate
two classes of non-self-adjoint operators with separated boundary conditions, called
‘dissipative at a’ and ‘dissipative at b’. In each of these two cases, we construct a
self-adjoint dilation of the maximal dissipative operator together with its incoming
and outgoing spectral representations so that we can determine the scattering matrix
(function) of the dilation as stated in the scheme of Lax and Phillips [10]. Then,
we create a functional model of the maximal dissipative operator via the incoming
spectral representation and define its characteristic function in terms of the Weyl
function (or scattering matrix of the dilation) of a self-adjoint operator. Finally, using
the results found for characteristic functions, we prove the theorems on completeness
of the system of eigenfunctions and associated functions (or root functions) of the
maximal dissipative Sturm-Liouville operators. Results of the present paper are new
even in the case p = r = 1 (in the case of the one-dimensional Schrödinger operator).

2. EXTENSIONS OF A SYMMETRIC OPERATOR AND SELF-ADJOINT DILATIONS
OF THE DISSIPATIVE OPERATORS

We address the following Sturm-Liouville differential expression with two singu-
lar end points a and b:

τ(x): =
1

r(t)
[−(p(t)x′(t))′+q(t)x(t)] (t ∈ J: = (a,b), −∞≤ a < b≤+∞), (2.1)

where p,q and r are real-valued, Lebesgue measurable functions on J, and p−1,q,r
∈ L1

loc(J), p 6= 0 and r > 0 almost everywhere on J.
In order to pass from the differential expression to operators, we shall take the Hil-

bert space L2
r (J) consisting of all complex-valued functions f satisfying∫ b

a r(t) | f (t)|2 dt < ∞, with the inner product ( f ,g) =
∫ b

a r(t) f (t)g(t)dt.
Let Dmax represent the linear set of all functions f ∈ L2

r (J) such that f and p f ′

are locally absolutely continuous functions on J, and τ( f ) ∈ L2
r (J). Let us define the

maximal operator Tmax on Dmax as Tmax f = τ( f ).
For any two functions f ,g ∈Dmax, Green’s formula is given by

(Tmax f ,g)− ( f ,Tmaxg) = [ f ,g](b)− [ f ,g](a), (2.2)

where
[ f ,g](t): =Wt( f ,g): = f (t)(pg′)(t)− (p f ′)(t)g(t) (t ∈ J),
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[ f ,g](a): = lim
t→a+

[ f ,g](t), [ f ,g](b): = lim
t→b−

[ f ,g](t).

In L2
r (J), we consider the dense linear set Dmin consisting of smooth, compactly sup-

ported functions on J. Let us indicate the restriction of the operator Tmax to Dmin by
Tmin. We can conclude from (2.2) that Tmin is symmetric. Thus, it admits closure de-
noted by Tmin. The minimal operator Tmin is a symmetric operator with defect index
(0,0), (1,1) or (2,2), and Tmax = T ∗min ([4, 5, 12, 18, 19]). Note that the operator Tmin
is self-adjoint for defect index (0,0), that is, T ∗min = Tmin = Tmax.

Moreover, we assume that Tmin has defect index (2,2). Under this assumption,
Weyl’s limit-circle cases are obtained for the differential expression τ at a and b (see
[4–6, 8, 11, 12, 17–19]). The domain of the operator Tmin consists of precisely the
functions f ∈Dmax, which satisfy the following condition

[ f ,g](b)− [ f ,g](a) = 0, ∀g ∈Dmax. (2.3)

Let T−min and T+
min denote respectively the minimal symmetric operators generated by

the expression τ on the intervals (a,c] and [c,b) for some c ∈ J, and D∓min represents
the domain of T∓min. It is known ([5, 12, 18]), that the defect number de f Tmin of Tmin
can be computed using the formula de f Tmin = de f T+

min + de f T−min− 2. Thus, we
obtain that de f T+

min +de f T−min = 4, de f T+
min = 2 and de f T−min = 2.

We denote by θ(t) and χ(t) the solutions of the equation

τ(y) = 0 (t ∈ J) (2.4)

satisfying the conditions

θ(c) = 1, (pθ
′)(c) = 0, χ(c) = 0, (pχ

′)(c) = 1, c ∈ J. (2.5)

The Wronskian of the two solutions of (2.4) does not depend on t, and the two solu-
tions of this equation are linearly independent if and only if their Wronskian is non-
zero. Conditions (2.5) and the constancy of the Wronskian imply that

Wt(θ,χ) =Wc(θ,χ) = 1 (a≤ t ≤ b) . (2.6)

Hence, θ and χ form a fundamental set of solutions of (2.4). Since Tmin has defect
index (2,2), we have θ,χ ∈ L2

r (J), and θ,χ ∈Dmax as well.
The following equality holds for arbitrary functions f ,g ∈Dmax ([2])

[ f ,g](t) = [ f ,θ](t)[g,χ](t)− [ f ,χ](t)[g,θ](t) (a≤ t ≤ b). (2.7)

The domain Dmin of the operator Tmin is composed of precisely the functions
f ∈Dmax satisfying the boundary conditions given as follows ([1])

[ f ,θ](a) = [ f ,χ](a) = [ f ,θ](b) = [ f ,χ](b) = 0. (2.8)

Recall that a linear operator A (with dense domain D(A)) acting on some Hilbert
space H is called dissipative (accumulative) if ℑ(Ay,y) ≥ 0 (ℑ(Ay,y) ≤ 0) for all
y ∈ D(A) and maximal dissipative (maximal accumulative) if it does not have a
proper dissipative (accumulative) extension ([7], p.149).
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Now, consider the linear maps of Dmax into C2 given by

Ψ1 f =
(

[ f ,χ](a)
[ f ,θ](b)

)
, Ψ2 f =

(
[ f ,θ](a)
[ f ,χ](b)

)
. (2.9)

Then we get the following statement ([1]).

Theorem 1. For any contraction S ∈C2 the restriction of the operator Tmax to the
set of vectors f ∈Dmax satisfying the boundary condition

(S− I)Ψ1 f + i(S+ I)Ψ2 f = 0 (2.10)

or
(S− I)Ψ1 f − i(S+ I)Ψ2 f = 0 (2.11)

is, respectively, a maximal dissipative or a maximal accumulative extension of the
operator Tmin. Conversely, every maximally dissipative (accumulative) extension of
Tmin is the restriction of Tmax to the set consisting of vectors f ∈ Dmax satisfying
(2.10) ((2.11)), and the contraction S is uniquely determined by the extension. These
conditions describe a self-adjoint extension if and only if S is unitary. In the latter
case, (2.10) and (2.11) are equivalent to the condition (cosB)Ψ1 f −(sinB)Ψ2 f = 0,
where B is a self-adjoint operator (Hermitian matrix) in C2. The general forms of
dissipative and accumulative extensions of the operator Tmin are respectively given
by the conditions

S (Ψ1 f + iΨ2 f ) = Ψ1 f − iΨ2 f , Ψ1 f + iΨ2 f ∈D(S), (2.12)

S (Ψ1 f − iΨ2 f ) = Ψ1 f + iΨ2 f , Ψ1 f − iΨ2 f ∈D(S), (2.13)

where S is a linear operator with ‖S f‖ ≤ ‖ f‖ , f ∈D(S). For an isometric operator
S in (2.12) and (2.13) we have the general forms of symmetric extensions.

Particularly, the boundary conditions ( f ∈Dmax)

[ f ,χ](a)−α1[ f ,θ](a) = 0, (2.14)

[ f ,θ](b)−α2[ f ,χ](b) = 0 (2.15)

with ℑα1 ≥ 0 or α1 = ∞, and ℑα2 ≥ 0 or α2 = ∞ ℑα1 ≤ 0 or α1 = ∞, and ℑα2 ≤ 0
or α2 = ∞) characterize all maximal dissipative (maximal accumulative) extensions
of Tmin with separated boundary conditions. If ℑα1 = 0 or α1 = ∞, and ℑα2 = 0
or α2 = ∞ hold true, then self-adjoint extensions of Tmin are obtained. Here for
α1 = ∞ (α2 = ∞), condition (2.14) ((2.15)) should be replaced by [ f ,θ](a) = 0
([ f ,χ](b) = 0).

Next, we shall consider the maximal dissipative operators T∓α1α2
generated by (2.1)

and the boundary conditions given by (2.14) and (2.15) of two different types: ‘dis-
sipative at a’, i.e., either ℑα1 > 0 and ℑα2 = 0 or α2 = ∞; and ‘dissipative at b’, i.e.,
ℑα1 = 0 or α1 = ∞ and ℑα2 > 0.
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In order to establish a self-adjoint dilation of the maximal dissipative operator
T−α1α2

for the case ‘dissipative at a’ (i.e., ℑα1 > 0 and ℑα2 = 0 or α2 = ∞), we associ-
ate with H := L2

r (J) the ‘incoming’ and ‘outgoing’ channels L2 (R−)
(R−:= (−∞,0]) and L2(R+) (R+:= [0,∞)), we form the orthogonal sum H:=
L2(R−)⊕H ⊕L2(R+). Let us call the space H as the main Hilbert space of the
dilation and consider in this space the operator T−α1α2

generated by the expression

T〈u−,y,u+〉= 〈i
du−
dξ

,τ(y), i
du+
dς
〉 (2.16)

on the set D(T−α1α2
) consisting of vectors 〈u−,y,u+〉, where u− ∈W 1

2 (R−), u+ ∈
W 1

2 (R+), y ∈Dmax and

[y,χ](a)−α1[y,θ](a) = γu−(0), [y,χ](a)−α1[y,θ](a) = γu+(0),

[y,θ](b)−α2[y,χ](b) = 0. (2.17)

Here W 1
2 (R∓) denotes the Sobolev space, and γ2:= 2ℑα1, γ > 0. Then we obtain the

next assertion.

Theorem 2. The operator T−α1α2
is self-adjoint in the space Hand it is a self-

adjoint dilation of the maximal dissipative operator T−α1α2
.

Proof. We assume that Y,Z ∈D(T−α1α2
), Y = 〈u−,y,u+〉 and Z = 〈v−,z,v+〉. If we

use integration by parts and (2.16), we find that

(T−α1α2
Y,Z)H =

∫ 0

−∞

iu′−v−dξ+(Tmaxy,z)H +
∫

∞

0
iu′+v+dς

= iu−(0)v−(0)− iu+(0)v+(0)+ [y,z](b)− [y,z](a)+(Y,T−α1α2
Z)H.
(2.18)

Moreover, if the boundary conditions (2.17) for the components of the vectors Y,Z
and (2.7) are used, it can be seen easily that iu−(0)v−(0)− iu+(0)v+(0) +[y,z](b)
−[y,z](a) = 0. Hence, we conclude that T−α1α2

is symmetric. Thus, in order to prove
that T−α1α2

is self-adjoint, it is sufficient to show that (T−α1α2
)∗ ⊆ T−α1α2

Take Z =
〈v−,z,v+〉 ∈D((T−α1α2

)∗). Let (T−α1α2
)∗Z = Z∗ = 〈v∗−,z∗,v∗+〉 ∈ H, so that

(T−α1α2
Y,Z)H = (Y,Z∗)H , ∀Y ∈D(T−α1α2

). (2.19)

If we choose suitable components for Y ∈ D(T−α1α2
) in (2.19), it can be shown eas-

ily that v− ∈W 1
2 (R−), v+ ∈W 1

2 (R+), z ∈ Dmax and Z∗ = TZ, where T is given
by (2.16). Therefore, (2.19) takes the following form (TY,Z)H = (Y,TZ)H , ∀Y ∈
D(T−α1α2

). Hence, the sum of the integrated terms in the bilinear form (TY,Z)H must
be zero:

iu−(0)v−(0)− iu+(0)v+(0)+ [y,z](b)− [y,z](a) = 0 (2.20)
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for all Y = 〈u−,y,u+〉 ∈D(T−α1α2
). Additionally, after the boundary conditions (2.17)

for [y,θ](a) and [y,χ](a) are solved, it is found that

[y,θ](a) =− i
γ
(u+(0)−u−(0)) , [y,χ](a) = γu−(0)−

iα1

γ
(u+(0)−u−(0)). (2.21)

Therefore, (2.7) and (2.21) imply that (2.20) is equivalent to the equality given as
follows

iu−(0)v−(0)− iu+(0)v+(0) = [y,z](a)− [y,z](b)

=− i
γ
(u+(0)−u−(0)) [z,χ] (a)− γ[u−(0)−

iα1

γ2 (u+(0)−u−(0))] [z,θ] (a)

− [y,θ](b) [z,χ] (b)+ [y,χ](b) [z,θ] (b)

=− i
γ
(u+(0)−u−(0)) [z,χ] (a)− γ[u−(0)−

iα1

γ2 (u+(0)−u−(0))] [z,θ] (a)

+([z,θ] (b)−α2 [z,χ] (b))[y,χ](b).

Note that u±(0) can be arbitrary complex numbers. If we compare the coefficients of
u±(0) on the left and right sides of the last equality, we see that the vector
Z = 〈v−,z,v+〉 satisfies the boundary conditions [z,χ](a)− α1[z,θ](a) = γv−(0),
[z,χ](a)−α1[z,θ](a) = γv+(0), [z,θ](b) −α2[z,χ](b) = 0. Consequently, the inclu-
sion (T−α1α2

)∗ ⊆ T−α1α2
is fulfilled. This proves that T−α1α2

= (T−α1α2
)∗.

In the space H, self-adjoint operator T−α1α2
generates a unitary group U−(s):=

exp[iT−α1α2
s] (s ∈ R). Denote by P : H→ H and P1 : H → H the mappings act-

ing in keeping with the formulas P : 〈u−,y,u+〉 → y and P1 : y → 〈0,y,0〉. Set
V (s) = PU−(s)P1 (s ≥ 0). The family

{
V (s)

}
(s≥ 0) of operators is a strongly

continuous semigroup of completely non-unitary contractions on H . Let A represent
the generator of this semigroup, i.e, Az = lims→+0[(is)−1(V (s)z−z)]. All vectors for
which this limit exists belong to the domain of A. The operator A is maximal dissip-
ative and the operator T−α1α2

is called the self-adjoint dilation of A ([13–15]). We aim
to show that A = T−α1α2

, which implies in turn that T−α1α2
is a self-adjoint dilation of

T−α1α2
. To achieve this goal, we first verify the following equality ([13–15])

P (T−α1α2
−λI)−1P1y = (T−α1α2

−λI)−1y, y ∈H , ℑλ < 0. (2.22)

Let (T−α1α2
− λI)−1P1y = Z = 〈v−,z,v+〉. Then (T−α1α2

− λI)Z = P1y, and so,
Tmaxz− λz = y, v− (ξ) = v−(0)e−iλξ and v+ (ς) = v+(0)e−iλς. Since Z ∈ D(T−α1α2

)

and hence, v− ∈ L2(R−); we have v−(0) = 0, and consequently, z satisfies the
boundary conditions [z,χ](a)− α1[z,θ](a) = 0, [z,θ](b)− α2[z,χ](b) = 0. There-
fore, z ∈D(T−α1α2

), and since a dissipative operator cannot have an eigenvalue λ with
ℑλ < 0, we conclude that z = (T−α1α2

− λI)−1y. Here, we evaluate v+(0) using the
formula v+(0) = γ−1 ([z,χ](a)−α1[z,θ](a)). Then

(T−α1α2
−λI)−1P1y =

〈
0,(T−α1α2

−λI)−1y,γ−1 ([z,χ](a)−α1[z,θ](a))e−iλς

〉



DILATIONS, MODELS AND SPECTRAL PROBLEMS 23

for y ∈H and ℑλ < 0. Applying P , we get the desired equality (2.22).
Now, it is not difficult to show that A = T−α1α2

. In fact, it follows from (2.22) that

(T−α1α2
−λI)−1 = P (T−α1α2

−λI)−1P1 =−iP
∫

∞

0
U−(s)e−iλsdsP1

=−i
∫

∞

0
V (s)e−iλsds = (A−λI)−1 , ℑλ < 0,

and thus we have T−α1α2
= A proving Theorem 2. �

In order to construct a self-adjoint dilation of the maximal dissipative operator
T+

α1α2
in the case ‘dissipative at b’ (i.e., ℑα1 = 0 or α1 = 0 and ℑα2 > 0) in H, we

consider the operator T+
α1α2

generated by the expression (2.16) on the set D(T+
α1α2

) of
vectors 〈u−,y,u+〉 satisfying the conditions: u− ∈W 1

2 (R−), u+ ∈W 1
2 (R+), y∈Dmax

and
[y,χ](a)−α1[y,θ](a) = 0, [y,θ](b)−α2[y,χ](b) = βu−(0),

[y,θ](b)−α2[y,χ](b) = βu+(0), (2.23)
where β2:= 2ℑα2, β > 0.

Since the proof of the next theorem is similar to that of Theorem 2, we omit it here.

Theorem 3. The operator T+
α1α2

is self-adjoint in H and it is a self-adjoint dilation
on the maximal dissipative operator T+

α1α2
.

3. SCATTERING THEORY OF THE DILATIONS, FUNCTIONAL MODELS AND
COMPLETENESS OF ROOT FUNCTIONS OF THE DISSIPATIVE OPERATORS

The unitary group U±(s)= exp[iT±α1α2
s] (s∈R) possesses a crucial feature through

which we can apply to it the Lax-Phillips scheme ([10]). Namely, it has incoming
and outgoing subspaces D−:= 〈L2(R−),0,0〉 and D+:= 〈0,0,L2(R+)〉 satisfying
the following properties:

(1) U±(s)D− ⊂D−, s≤ 0 and U±(s)D+ ⊂D+, s≥ 0;
(2)

⋂
s≤0

U±(s)D− =
⋂

s≥0
U±(s)D+ = {0};

(3)
⋃

s≥0
U±(s)D− =

⋃
s≤0

U±(s)D+ = H;

(4) D−⊥D+.
It is evident that property (4) holds true. Let us prove property (1) for D+ (the proof
for D− is similar). For this end, we define R ±

λ
=(T±α1α2

−λI)−1 for all λ with ℑλ< 0.
Then, for any Y = 〈0,0,u+〉 ∈D+, we get

R ±
λ

Y = 〈0,0,−ie−iλς

∫
ς

0
e−iλξu+(ξ)dξ〉.

Therefore, we see that RλY ∈D+. Further, if Z⊥D+, then

0 =
(
R ±

λ
Y,Z

)
H
=−i

∫
∞

0
e−iλs (U±(s)Y,Z)

H
ds, ℑλ < 0,
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which implies that (U±(s)Y,Z)H = 0 for all s≥ 0. So, we obtain U±(s)D+ ⊂D+ for
s≥ 0, proving property (1).

To prove property (2) for D+ (the proof for D− is similar), we denote by P+ :
H→ L2(R+) and P+

1 : L2(R+)→ D+ the mappings acting according to the for-
mulae P+ : 〈u−,y,u+〉 → u+ and P+

1 : u→ 〈0,0,u〉, respectively. The semigroup of
isometries X (s) = P+U−(s)P+

1 , s ≥ 0 is a one-sided shift in L2(R+). In fact, the
generator of the semigroup of the one-sided shift Y (s) in L2(R+) is the differen-
tial operator i d

dξ
satisfying the boundary condition u(0) = 0. On the other hand, the

generator B of the semigroup of isometries X (s), s≥ 0, is the operator defined by

Bu = P+T−α1α2
P+

1 Y = P+T−α1α2
〈0,0,u〉= P+〈0,0, idu

dξ
〉= i

du
dξ

,

where u ∈W 1
2 (R+) and u(0) = 0. However, since a semigroup is uniquely determ-

ined by its generator, we have X (s) = Y (s), and thus,⋂
s≥0

U−(s)D+ = 〈0,0,
⋂
s≥0

Y (s)L2(R+)〉= {0},

(the proof for U+(s) is similar) verifying that property (2) is valid.
As stated in the scheme of the Lax-Phillips scattering theory, the scattering matrix

is defined using the spectral representations theory. Now, we shall continue with
their construction. During this process, we shall also have proved property (3) of the
incoming and outgoing subspaces.

Recall that the linear operator A (with domain D(A)) acting in the Hilbert space
H is called completely non-self-adjoint (or pure) if invariant subspace M ⊆ D(A)
(M 6= {0}) of the operator A whose restriction on M is self-adjoint, does not exist.

Lemma 1. The operator T±α1α2
is completely non-self-adjoint (pure).

Proof. Let H ′ ⊂ H be a non-trivial subspace in which the operator T−α1α2
(the

proof for T+
α1α2

is similar) induces a self-adjoint operator T ′ with domain D(T ′) =
H ′∩D(T−α1α2

). If z∈D(T ′), then we have z∈D(T ′∗) and [z,χ](a)−α1[z,θ](a) = 0,
[z,χ](a)−α1[z,θ](a) = 0, [z,θ](b)−α2[z,χ](b) = 0. Hence, we have [z,θ](a) = 0 for
the eigenfunctions z(t,λ) of the operator T−α1α2

that lie in H ′ and are eigenfunctions of
T ′. Since [z,χ](a)−α1[z,θ](a) = 0, we derive that [z,χ](a) = 0 and z(t,λ)≡ 0. Since
all solutions of τ(z) = λz (t ∈ J) lie in L2

r (J), we can see that the resolvent Rλ(T−α1α2
)

of the operator T−α1α2
is a Hilbert-Schmidt operator, and thus the spectrum of T−α1α2

is
purely discrete. Hence, the theorem on the expansion of the self-adjoint operator T ′

in eigenfunctions implies that H ′ = {0}, that is, T−α1α2
is pure. This completes the

proof. �

In order to prove third property, we set

H±− =
⋃
s≥0

U±(s)D−, H±+ =
⋃
s≤0

U±(s)D+
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and first prove the next result.

Lemma 2. The equality H±−+H±+ = H is fulfilled.

Proof. By means of the property (1) of the subspace D±, it can be shown that the
subspace H′± = H	

(
H±−+H±+

)
is invariant with respect to the group {U±(s)} and it

can be described as H′± =
〈
0,H ′

±,0
〉
, where H ′

± is a subspace in H . Therefore, if the
subspace H′± (and hence also H ′

±) were non-trivial, then the unitary group {U±′(s)},
restricted to this subspace, would be a unitary part of the group {U±(s)}, and thus
the restriction T±′α1α2

of T±α1α2
to H ′

± would be a self-adjoint operator in H ′
±. Since

the operator T±α1α2
is pure, we conclude that H ′

± = {0}, i.e., H′± = {0}. Hence, the
lemma is proved. �

Let ϕ(t,λ) and ψ(t,λ) be the solutions of the equation τ(y) = λy (t ∈ J) satisfying
the conditions given by

[ϕ,θ](a) =−1, [ϕ,χ](a) = 0, [ψ,θ](a) = 0, [ψ,χ](a) = 1. (3.1)

The Weyl function m∞α2(λ) of the self-adjoint operator T−∞α2
is determined by the

condition
[ψ+m∞α2ϕ,θ](b)−α2[ψ+m∞α2ϕ,χ](b) = 0,

which implies in turn that

m∞α2(λ) =−
[ψ,θ](b)−α2[ψ,χ](b)
[ϕ,θ](b)−α2[ϕ,χ](b)

. (3.2)

It follows from (3.2) that m∞α2(λ) is a meromorphic function on the complex plane C
with a countable number of poles on the real axis. We note that these poles coincide
with the eigenvalues of the self-adjoint operator T−∞α2

. Furthermore, we can show that
the function m∞α2(λ) has the following properties: ℑλℑm∞α2(λ)> 0 for ℑλ 6= 0 and
m∞α2(λ̄) = m∞α2(λ) for complex λ, except the real poles of m∞α2(λ).

For convenience, we adopt the following notations:

ω(t,λ) = ψ(t,λ)+m∞α2(λ)ϕ(t,λ),

Θ
−
α1α2

(λ) =
m∞α2(λ)−α1

m∞α2(λ)−α1
. (3.3)

Set

V −
λ
(t,ξ,ς) = 〈e−iλξ,(m∞α2(λ)−α1)

−1
γω(t,λ),Θ

−
α1α2

(λ)e−iλς〉.

By means of the vector V −
λ
(t,ξ,ς), we consider the transformation Φ− : Y → Ỹ−(λ)

by (Φ−Y )(λ):= Ỹ−(λ):= 1√
2π
(Y,V −

λ
)H on the vector Y = 〈u−,y,u+〉, where u−,u+,

and y are smooth, compactly supported functions.
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Lemma 3. The transformation Φ− maps H−− onto L2(R) isometrically. For all
vectors Y,Z ∈ H−− the Parseval equality and the inversion formula hold:

(Y,Z)H = (Ỹ−, Z̃−)L2 =
∫

∞

−∞

Ỹ−(λ)Z̃−(λ)dλ, Y =
1√
2π

∫
∞

−∞

Ỹ−(λ)V −λ dλ,

where Ỹ−(λ):= (Φ−Y )(λ) and Z̃−(λ):= (Φ−Z)(λ).

Proof. For Y,Z ∈D−, Y = 〈u−,0,0〉, Z = 〈v−,0,0〉, we get

Ỹ−(λ): =
1√
2π

(Y,V −
λ
)H =

1√
2π

∫ 9

−∞

u−(ξ)eiλξdξ ∈H 2
−

and

(Y,Z)H =
∫ 0

−∞

u−(ξ)v−(ξ)dξ =
∫

∞

−∞

Ỹ−(λ)Z̃−(λ)dλ = (Φ−Y,Φ−Z)L2

in view of the usual Parseval equality for Fourier integrals. Here and below, H 2
±

denote the Hardy classes in L2(R) consisting of the functions analytically extendable
to the upper and lower half-planes, respectively.

We aim to extend the Parseval equality to the whole of H−−. In this context, we
consider in H−− the dense set H′− of vectors acquired from the smooth, compactly
supported functions in D− : Y ∈ H′− if Y = U−(s)Y0, Y0 = 〈u−,0,0〉, u− ∈C∞

0 (R−),
where s = sY is a non-negative number depending on Y . If Y,Z ∈H′−, then for s > sY
and s > sZ we have U−(−s)Y, U−(−s)Z ∈D− and, moreover, the first components
of these vectors lie in C∞

0 (R−). Then, as the operators U−(s) (s ∈ R) are unitary, it
follows from the equality

Φ−U
−(−s)Y = (U−(−s)Y,V −

λ
)H = e−iλs(Y,V −

λ
)H = e−iλs

Φ−Y ,

that

(Y,Z)H = (U−(−s)Y,U−(−s)Z)H = (Φ−U
−(−s)Y,Φ−U−(−s)Z)L2

= (e−iλs
Φ−Y,e−iλs

Φ−Z)L2 = (Φ−Y,Φ−Z)L2 . (3.4)

If we take the closure in (3.4), we find the Parseval equality for the entire space H−−. If
all integrals in the Parseval equality are considered as limits in the mean of integrals
over finite intervals, we get the inversion formula. In conclusion, we have

Φ−H
−
− =

⋃
s≥0

Φ−U−(s)D− =
⋃
s≥0

e−iλsH 2
− = L2(R),

i.e., Φ− maps H−− onto whole L2(R), proving the lemma. �

Let us set

V +
λ
(t,ξ,ς) = 〈Θ−α1α2

(λ)e−iλξ,(m∞α2(λ)−α1)
−1

γω(t,λ),e−iλς〉.

By using the vectors V +
λ
(t,ξ,ς), we define the map Φ+ : Y → Ỹ+(λ) on vectors

Y = 〈u−,y,u+〉 in which u−,u+, and y are smooth, compactly supported functions
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by setting (Φ+Y )(λ):= Ỹ+(λ):= 1√
2π
(Y,V +

λ
)H. The next result can be proved by

following the procedure used in the proof of Lemma 3.

Lemma 4. The transformation Φ+ isometrically maps H−+ onto L2(R) and be-
sides, the Parseval equality and the inversion formula hold for all vectors Y,Z ∈ H−+
as follows:

(Y,Z)H = (Ỹ+, Z̃+)L2 =
∫

∞

−∞

Ỹ+(λ)Z̃+(λ)dλ, Y =
1√
2π

∫
∞

−∞

Ỹ+(λ)V +
λ

dλ,

where Ỹ+(λ):= (Φ+Y )(λ) and Z̃+(λ):= (Φ+Z)(λ).

Equality given by (3.3) implies that Θ−α1α2
(λ) satisfies

∣∣Θ−α1α2
(λ)
∣∣= 1 for all λ∈R.

Then, we conclude from the explicit formula for the vectors V +
λ

and V −
λ

that

V −
λ

= Θ
−
α1α2

(λ)V +
λ

(λ ∈ R). (3.5)

Lemmas 3 and 4 imply that H−− = H−+. This, together with Lemma 2, verifies that
H=H−−=H−+ and property (3) for U−(s) above has been established for the incoming
and outgoing subspaces.

Hence, Φ− isometrically maps onto L2(R) with the subspace D− mapped onto
H 2
−, and the operators U−(s) are transformed by the operators of multiplication by

eiλs. This means that Φ− (Φ+) is the incoming (outgoing) spectral representation
for the group {U−(s)}. Using (3.5), we can pass from the Φ+-representation of a
vector Y ∈ H to its Φ−-representation by multiplication of the function Θ−α1α2

(λ) :
Ỹ−(λ) = Θ−α1α2

(λ)Ỹ+(λ). Based on [10], the scattering function (matrix) of the group
{U−(s)} with respect to the subspaces D− and D+, is the coefficient by which the
Φ−-representation of a vector Y ∈ H must be multiplied in order to get the corres-
ponding Φ+-representation: Ỹ+(λ) = Θ

−
α1α2

(λ)Ỹ−(λ) and thus we have proved the
following statement.

Theorem 4. The function Θ
−
α1α2

(λ) is the scattering function (matrix) of the group
{U−(s)} or of the self-adjoint operator T−α1α2

).

Let S(λ) be an arbitrary non-constant inner function ([16]) defined on the upper
half-plane (we recall that a function S(λ) analytic in the upper half-plane C+ is called
inner function on C+ if |S(λ)| ≤ 1 for λ ∈ C+, and |S(λ)|= 1 for almost all λ ∈ R).
Setting K = H 2

+	SH 2
+, we can see that K 6= {0} is a subspace of the Hilbert space

H 2
+. We deal with the semigroup of the operators X (s) (s≥ 0) acting in K according

to the formula X (s)u=P
[
eiλsu

]
, u:= u(λ)∈K , where P is the orthogonal projection

from H 2
+ onto K . The generator of the semigroup {X (s)} is represented as B : Bu =

lims→+0[(is)−1(X (s)u− u)]. B is a maximal dissipative operator acting in K and
its domain D(B) consisting of all functions u ∈ K , for which the limit given above
exists. The operator B is called a model dissipative operator (we remark that this
model dissipative operator, which is associated with the names of Lax and Phillips
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[10], is a special case of a more general model dissipative operator constructed by
Sz.-Nagy and Foiaş [16]). It is the basic assertion that S(λ) is the characteristic
function of the operator B .

If we set N = 〈0,H ,0〉, then it is obtained that H = D−⊕N⊕D+. From the
explicit form of the unitary transformation Φ− that under the mapping Φ−, we have

H→ L2(R), Y → Ỹ−(λ) = (Φ−Y )(λ), D−→H 2
−,

D+→Θ
−
α1α2

H 2
+, N→H 2

+	Θ
−
α1α2

H 2
+,

U−(s)Y → (Φ−U
−(s)Φ−1

− Ỹ−)(λ) = eiλsỸ−(λ). (3.6)
The formulas in (3.6) imply that our operator T−α1α2

is unitary equivalent to the model
dissipative operator with the characteristic function Θ−α1α2

(λ). The fact that charac-
teristic functions of unitary equivalent dissipative operators coincide ([13–16]) leads
us the following theorem.

Theorem 5. The characteristic function of the maximal dissipative operator T−α1α2

coincides with the function Θ−α1α2
(λ)given by (3.3).

Weyl function of the self-adjoint operator T+
α1∞, denoted by mα1∞(λ), can be ex-

pressed in terms of the Wronskians of the solutions:

mα1∞(λ) =−
[ϑ,χ](b)
[φ,χ](b)

,

where φ(t,λ) and ϑ(t,λ) are solutions of τ(y) = λy(t ∈ J) and satisfying the condi-
tions

[φ,θ](a) =− 1√
1+α2

1

, [φ,χ](a) =− α1√
1+α2

1

,

[ϑ,θ](a) =
α1√

1+α2
1

, [ϑ,χ](a) =
1√

1+α2
1

.

Let us adopt the following notations:

k(λ): =
[φ,θ](b)
[ϑ,χ](b)

, m(λ): = mα1∞(λ),

Θ
+(λ): = Θ

+
α1α2

(λ): =
m(λ)k(λ)−α2

m(λ)k(λ)−α2
. (3.7)

Let

W −
λ
(t,ξ,ς) = 〈e−iλξ,βm(λ)[(m(λ)k(λ)−α2)[[ϑ,v](b)]−1

φ(t,λ),Θ
+
(λ)e−iλς〉.

By means of the vector W −
λ

, we set the transformation ϒ− : Y → Ỹ−(λ) given by
(ϒ−Y )(λ):= Ỹ−(λ):= 1√

2π
(Y,W −

λ
)H on the vector Y = 〈u−,y,u+〉 in which u−,u+,

and y are smooth, compactly supported functions. The proof of the next result is
similar to that of Lemma 3.
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Lemma 5. The transformation ϒ− isometrically maps H+
− onto L2(R). For all

vectors Y,Z ∈ H+
−, we obtain the Parseval equality and the inversion formula given

by:

(Y,Z)H = (Ỹ−, Z̃−)L2 =
∫

∞

−∞

Ỹ−(λ)Z̃−(λ)dλ, Y =
1√
2π

∫
∞

−∞

Ỹ−(λ)W −
λ

dλ,

where Ỹ−(λ) = (ϒ−Y )(λ) and Z̃−(λ) = (ϒ−Z)(λ).

Let

W +
λ
(t,ξ,ς) = 〈Θ+(λ)e−iλξ,βm(λ)[(m(λ)k(λ)−α2)[ϑ,χ](b)]−1

φ(t,λ),e−iλς〉.

With the help of the vector W +
λ
(t,ξ,ς), define the transformation ϒ+ : Y → Ỹ+(λ)

on vectors Y = 〈u−,y,u+〉 by setting (ϒ+Y )(λ):= Ỹ+(λ):= 1√
2π
(Y,W +

λ
)H. Here, we

consider u−, u+, and y as smooth, compactly supported functions.

Lemma 6. The transformation ϒ+ isometrically maps H+
+ onto L2(R), and for all

vectors Y,Z ∈ H+
+, the Parseval equality and the inversion formula hold:

(Y,Z)H = (Ỹ+, Z̃+)L2 =
∫

∞

−∞

Ỹ−(λ)Z̃−(λ)dλ, Y =
1√
2π

∫
∞

−∞

Ỹ+(λ)W +
λ

dλ,

where Ỹ+(λ):= (ϒ+Y )(λ)and Z̃+(λ):= (ϒ+Z)(λ)

It follows from (3.7) that the function Θ+
α1α2

(λ) satisfies
∣∣Θ+

α1α2
(λ)
∣∣= 1 for λ ∈R.

Then, the explicit formula for the vectors W +
λ

and W −
λ

implies that

W −
λ

= Θ
+
α1α2

(λ)W +
λ
, λ ∈ R. (3.8)

Lemmas 5 and 6 result in H+
− = H+

+. By means of Lemma 2, we can conclude that
H= H+

− = H+
+. According to the formula (3.8), we can see that the passage from the

ϒ−-representation of a vector Y ∈ H to its ϒ+-representation is achieved as follows:
Ỹ+(λ) = Θ

+
α1α2

(λ)Ỹ−(λ). Hence, according to [10], the following theorem follows.

Theorem 6. The function Θ
+
α1α2

(λ) is the scattering matrix of the group {U+(s)}
of the self-adjoint operator T+

α1α2
).

We derive from the explicit form of the unitary transformation Φ− that

H→ L2(R), Y → Ỹ−(λ) = (ϒ−Y )(λ), D−→H 2
−,

D+→Θ
+
α1α2

H 2
+, N→H 2

+	Θ
+
α1α2

H 2
+,

U+(s)Y → (ϒ−U
+(s)ϒ−1

− Ỹ−)(λ) = eiλsỸ−(λ). (3.9)

The formulas given by (3.9) state that the operator T+
α1α2

is a unitary equivalent to
the model dissipative operator with characteristic function Θ+

α1α2
(λ). We have thus

proved the next assertion.
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Theorem 7. The characteristic function of the maximal dissipative operator T+
α1α2

coincides with the function Θ+
α1α2

(λ)defined by (3.7).

Let S represent the linear operator acting in the Hilbert space H with the domain
D(S). We know that a complex number λ0 is called an eigenvalue of an operator S
if there exists a non-zero vector z0 ∈ D(S) satisfying the equation Sz0 = λ0z0; here,
z0 is called an eigenvector of S for λ0. The eigenvector for λ0 spans a subspace of
D(S), called the eigenspace for λ0 and the geometric multiplicity of λ0 is the dimen-
sion of its eigenspace. The vectors z1,z2, ...,zk are called the associated vectors of
the eigenvector z0 if they belong to D(S) and Sz j = λ0z j + z j−1, j = 1,2, ...,k. The
non-zero vector z ∈ D(S) is called a root vector of the operator S corresponding to
the eigenvalue λ0, if all powers of S are defined on this element and (S−λ0I)mz = 0
for some integer m. The set of all root vectors of S corresponding to the same eigen-
value λ0 with the vector z = 0 forms a linear set Mλ0 and is called the root lineal. The
dimension of the lineal Mλ0 is called the algebraic multiplicity of the eigenvalue λ0.
The root lineal Mλ0 coincides with the linear span of all eigenvectors and associated
vectors of S corresponding to the eigenvalue λ0. As a result, the completeness of the
system of all eigenvectors and associated vectors of S is equivalent to the complete-
ness of the system of all root vectors of this operator.

Characteristic function of a maximal dissipative operator T±α1α2
carries complete

information about the spectral properties of this operator ([9, 13–16]). For example,
when a singular factor θ±(λ) of the characteristic function Θ±α1α2

(λ) in the factoriza-
tion Θ±α1α2

(λ) = θ±(λ)B±(λ) (where B±(λ) is a Blaschke product) is absent, we are
sure that system of eigenfunctions and associated functions (or root functions) of the
maximal dissipative Sturm-Liouville operator T±α1α2

is complete.

Theorem 8. For all values of α1where ℑα1 > 0, with the possible exception of
a single value α1 = α0

1, and for a fixed α2 (ℑα2 = 0 or α2 = 0), the characteristic
function Θ−α1α2

(λ) of the maximal dissipative operator T−α1α2
is a Blaschke product,

and the spectrum of T−α1α2
is purely discrete, and lies in the open upper half plane.

The operator T−α1α2
(α1 6= α0

1) has a countable number of isolated eigenvalues having
finite multiplicity and limit points at infinity, and the system of all eigenfunctions and
associated functions (or all root functions) of this operator is complete in the space
L2

r (J).

Proof. It can be seen from the explicit formula (3.3) that Θ−α1α2
(λ) is an inner

function in the upper half-plane and, besides, it is meromorphic in the whole λ-plane.
Therefore, we can factorize it in the following way

Θ
−
α1α2

(λ) = eiλl(α1)Bα1α2(λ), l (α1)≥ 0, (3.10)

where Bα1α2(λ) is a Blaschke product. Using (3.10), we find that∣∣Θ−α1α2
(λ)
∣∣≤ e−l(α1)ℑλ, ℑλ≥ 0. (3.11)
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Additionally, if we express m∞α2(λ) in terms of Θ−α1α2
(λ) and use (3.3), we get

m∞α2(λ) =
α1Θ−α1α2

(λ)−α1

Θ
−
α1α2(λ)−1

. (3.12)

For a given value α1 (ℑα1 > 0), if l (α1)> 0 then we have lims→+∞ Θ−α1α2
(is) = 0 by

(3.11). This, together with (3.12), results in lims→+∞ m∞α2(is) = α1. Since m∞α2(λ)
is independent of α1, l(α1) can be non-zero at not more than a single point α1 = α0

1
(and, further, α0

1 = lims→+∞ m∞α2(is)). Then, the theorem is proved. �

The next result can be proved in a similar manner in the proof of Theorem 8.

Theorem 9. For all values of α2 with ℑα2 > 0, with the possible exception of a
single value α2 = α0

2, and for a fixed α1 (ℑα1 = 0 or α1 = ∞), the characteristic
function Θ+

α1α2
(λ) of the maximal dissipative operator T+

α1α2
is a Blaschke product,

and the spectrum of T+
α1α2

is purely discrete, and lies in the open upper half-plane.
The operator T+

α1α2
(α2 6= α0

2) has a countable number of isolated eigenvalues having
finite multiplicity and limit points at infinity, and the system of all eigenfunctions and
associated functions (or all root functions) of this operator is complete in the space
L2

r (J).
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