

SOME NOTES ON FIRST STRONGLY GRADED RINGS

RASHID ABU-DAWWAS, ALA'A MESLEH, AND KHALDOUN AL-ZOUBI

Received 10 May, 2016

Abstract. Let G be a group with identity e and R be an associative ring with a nonzero unity 1. Assume that R is first strongly G-graded and H = supp(R, G). For $g \in H$, define $\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)}$ where $x \in C_R(R_e) = \{r \in R : rx = xr \text{ for all } x \in R_e\}$, $r_g^{(i)} \in R_g$ and $t_{g^{-1}}^{(i)} \in R_{g^{-1}}$ for all $i = 1, ..., n_g$ for some positive integer n_g . In this article, we study $\alpha_g(x)$ and it's properties.

2010 Mathematics Subject Classification: 16W50; 13A02; 16D25; 46H10.

Keywords: Graded rings, first strongly graded rings

1. INTRODUCTION

Throughout this article, R is an associative ring with nonzero unity 1. For a ring R and a subset T of R, $C_R(T) = \{r \in R : rt = tr \text{ for all } t \in T\}$. For a group G, $Z(G) = \{g \in G : gx = xg \text{ for all } x \in G\}$. Let G be a group with identity e. Then R is said to be G-graded if there exist additive subgroups R_g of R such that $\mathbf{R} = \bigoplus_{g \in G} \mathbf{R}_g$ where $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. For $x \in R$, $x = \sum_{g \in G} x_g$ where x_g is

the component of x in R_g . Also, $supp(R, G) = \{g \in G : R_g \neq 0\}$. Moreover, R_e is a subring of R and $1 \in R_e$. For more details, see [4]. Throughout this article, H = supp(R, G).

First strongly graded rings have been introduced by Refai in [5]. A *G*-graded ring *R* is said to be first strongly graded if $1 \in R_g R_{g^{-1}}$ for all $g \in H$. *R* is first strongly *G*-graded if and only if *H* is a subgroup of *G* and $\mathbf{R}_g \mathbf{R}_h = \mathbf{R}_{gh}$ for all $g, h \in H$. For more details, see [5].

Definition 1 ([4]). Let *R* be a ring. Suppose that $\alpha : G \to Aut(R)$ and $\beta : G \times G \to U(R)$ where Aut(R) is the group of automorphisms of *R* and U(R) is the group of units of *R*. In [4], (R, G, α, β) is said to be crossed system if the following conditions hold for all $g, h, s \in G$ and $a \in R$.

(1) $\alpha_g(\alpha_h(a))\beta(g,h) = \beta(g,h)\alpha_{gh}(a).$

© 2017 Miskolc University Press

- (2) $\beta(g,h)\beta(gh,s) = \alpha_g(\beta(h,s))\beta(g,hs).$
- (3) $\beta(g, e) = \beta(e, g) = 1.$

In [2], a *G*-graded ring *R* is said to be crossed product over the support if $R_g \bigcap U(R) \neq \phi$ for all $g \in H$. In [1], it was shown that if *R* is crossed product over the support, then *R* is first strongly graded and then by [5], *H* is a subgroup of *G* with $\mathbf{R}_g \mathbf{R}_h = \mathbf{R}_{gh}$ for all $g, h \in H$.

Suppose that *R* is crossed product over the support. We may choose the family $\{u_g\}_{g \in H}$ in *R* such that $u_g \in R_g \cap U(R)$ for all $g \in H$ and assume that $u_e = 1$. So, $R_g = R_e u_g = u_g R_e$ and $\{u_g\}_{g \in H}$ is a basis for the left (right) R_e -module *R*. Define the map $\alpha : H \to Aut(R_e)$ by $\alpha(g) = \alpha_g$ where $\alpha_g(a) = u_g a u_g^{-1}$ for all $g \in H$ and $a \in R_e$. Also, define $\beta : H \times H \to U(R_e)$ by $\beta(g,h) = u_g u_h u_{gh}^{-1}$ for all $g, h \in H$. Then α and β satisfy the conditions (1), (2) and (3) above (see [1]). Hence, (R_e, H, α, β) is a crossed system.

Assume that *R* is first strongly *G*-graded. For $g \in H$, define $\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)}$

where $x \in C_R(R_e)$, $r_g^{(i)} \in R_g$ and $t_{g^{-1}}^{(i)} \in R_{g^{-1}}$ for all $i = 1, ..., n_g$ for some positive integer n_g . In this article, we study $\alpha_g(x)$ and it's properties.

2. Results

In this section, we introduce our results.

Let *R* be a *G*-graded ring and *X* be a non-empty subset of *G*. Then $R_X = \bigoplus_{g \in X} R_g$.

If X is a subgroup of G, then R_X is a subring of R. For more details, see [3]. We begin our results by the following.

Theorem 1. Consider the above crossed system (R_e, H, α, β) . Suppose that X is a subgroup of H such that $X \subseteq Z(H) \bigcap Ker(\alpha)$ and $\beta(x, y) = \beta(y, x)$ for all $(x, y) \in X \times X$. If R_e is commutative, then R_X is commutative.

Proof. Consider the family $\{u_g\}_{g \in H}$ above. Let $g, h \in X$ and $a_g, b_h \in R_e$. Then

$$(a_g u_g)(b_h u_h) = a_g \alpha_g(b_h)\beta(g,h)u_{gh} = a_g b_h\beta(g,h)u_{gh} = b_h \alpha_h(a_g)\beta(h,g)u_{hg} = (b_h u_h)(a_g u_g).$$

Hence, R_X is commutative.

Let R be a first strongly G-graded ring (not necessary to be crossed product over the support). Then $R_g R_{g^{-1}} = R_e$ for all $g \in H$. So, for every $g \in H$, there exists

$$n_g \in \mathbf{Z}^+, r_g^{(i)} \in R_g \text{ and } t_{g^{-1}}^{(i)} \in R_{g^{-1}} \text{ such that } 1 = \sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} \text{ since } 1 \in R_e.$$

548

Define
$$\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)}$$
 for all $x \in C_R(R_e)$

Theorem 2. Let R be a first strongly graded ring. Then α_g is independent of the choice of $r_g^{(i)}$'s and $t_{g-1}^{(i)}$'s.

Proof. Let $n_g, n'_g \in \mathbb{Z}^+$ and $r_g^{(i)}, s_g^{(i)} \in R_g, t_{g^{-1}}^{(i)}, w_{g^{-1}}^{(i)} \in R_{g^{-1}}$ such that

$$1 = \sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} = \sum_{j=1}^{n'_g} s_g^{(j)} w_{g^{-1}}^{(j)}.$$

Let $x \in C_R(R_e)$. Then since $w_{g^{-1}}^{(j)} r_g^{(i)} \in R_e$,

$$\sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)} - \sum_{j=1}^{n'_g} s_g^{(j)} x w_{g^{-1}}^{(j)} = 1. \left(\sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)} \right) - \left(\sum_{j=1}^{n'_g} s_g^{(j)} x w_{g^{-1}}^{(j)} \right).1 = \sum_{j=1}^{n'_g} \sum_{i=1}^{n_g} s_g^{(j)} w_{g^{-1}}^{(j)} r_g^{(i)} x t_{g^{-1}}^{(i)} - \sum_{j=1}^{n'_g} \sum_{i=1}^{n_g} s_g^{(j)} x w_{g^{-1}}^{(j)} r_g^{(i)} t_{g^{-1}}^{(i)} = 0.$$

The next lemma is fundamental for our next results.

Lemma 1. Let R be a first strongly graded ring. If $r \in R$ such that $rR_h = \{0\}$ for some $h \in H$, then r = 0.

Proof. Suppose that $r \in R$ and $h \in H$ such that $rR_h = \{0\}$. Then $r = r.1 \in rR_e = rR_h R_{h^{-1}} = (rR_h) R_{h^{-1}} = \{0\}$, i.e., r = 0.

Theorem 3. Let R be a first strongly graded ring and $g \in H$. Then $\alpha_g(x)$ is the only element of R satisfies $\alpha_g(x)a_g = a_g x$ for all $a_g \in R_g$. Moreover, $\alpha_g(x) \in C_R(R_e)$ and if $x \in Z(R_e)$, then $\alpha_g(x) \in Z(R_e)$.

Proof. Let $a_g \in R_g$. Then $t_{g^{-1}}^{(i)} a_g \in R_{g^{-1}} R_g = R_e$ and $t_{g^{-1}}^{(i)} a_g$ commutes with $x \in C_R(R_e)$ for all $i = 1, ..., n_g$. So,

$$\alpha_g(x)a_g = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)} a_g = \sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} a_g x = a_g \left(\sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} \right) x$$

$$= a_g \cdot 1 \cdot x = a_g x \cdot x$$

Let $x \in C_R(R_e)$ and $y \in R$ such that $r_g^{(i)}x = yr_g^{(i)}$ for all $i = 1, ..., n_g$. Then

$$\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)} = \sum_{i=1}^{n_g} y r_g^{(i)} t_{g^{-1}}^{(i)} = y \left(\sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} \right) = y.1 = y,$$

i.e., $\alpha_g(x)$ is the only element satisfies $\alpha_g(x)a_g = a_g x$ for all $a_g \in R_g$. Since R is first strongly graded, if $x \in R_e$, then $\alpha_g(x) \in R_e$. In particular, if $x \in Z(R_e)$, then $\alpha_g(x) \in Z(R_e)$. So, for $x \in Z(R_e)$ and $s \in R_e$,

$$s\alpha_g(x) = 1.s\alpha_g(x) = \sum_{i=1}^{n_g} \sum_{j=1}^{n'_g} r_g^{\prime(j)} t_{g^{-1}}^{\prime(j)} sr_g^{(i)} x t_{g^{-1}}^{(i)}$$

Since $t'^{(j)}_{g^{-1}} s r^{(i)}_g \in R_e$,

$$s\alpha_g(x) = \sum_{i=1}^{n_g} \sum_{j=1}^{n'_g} r_g^{\prime(j)} x t_{g^{-1}}^{\prime(j)} s r_g^{(i)} t_{g^{-1}}^{(i)} = \left(\sum_{j=1}^{n'_g} r_g^{\prime(j)} x t_{g^{-1}}^{\prime(j)}\right) . s. \left(\sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)}\right) = \alpha_g(x) . s. 1 = \alpha_g(x) s.$$

If $a_g \in R_g$ and $w \in R_e$, then $wa_g \in R_e R_g = R_g$ and then

 $(\alpha_g(x)w)a_g = \alpha_g(x)(wa_g) = (wa_g)x = w(a_gx) = w(\alpha_g(x)a_g)$

$$=(w\alpha_g(x))a_g$$

Which implies that $(\alpha_g(x)w - w\alpha_g(x))R_g = \{0\}$. By Lemma 1, $\alpha_g(x)w = w\alpha_g(x)$ and hence $\alpha_g(x) \in C_R(R_e)$. \square

Theorem 4. Let *R* be a first strongly graded ring. Then the following hold:

- (1) $\alpha_g \circ \alpha_h = \alpha_{gh}$ for all $g, h \in H$.
- (2) $\alpha_g^{-1} = \alpha_{g^{-1}}$ for all $g \in H$. (3) $\alpha_g(xb) = \alpha_g(x)\alpha_g(b)$ for all $g \in H$ and $x, b \in C_R(R_e)$.

Proof. Since $1 \in R_e$, $x = 1 \cdot x = \alpha_e(x) \cdot 1 = \alpha_e(x)$ for all $x \in C_R(R_e)$. Let $g, h \in R_e$ $H, a_g \in R_g$ and $a_h \in R_h$. Then $a_g a_h \in R_g R_h = R_{gh}$ and then

$$\alpha_{gh}(x)(a_ga_h) = (a_ga_h)x = a_g(a_hx) = a_g(\alpha_h(x)a_h) = (a_g\alpha_h(x))a_h$$

$$= (\alpha_g(x)(\alpha_h(x))a_g)a_h = \alpha_g(x)(\alpha_h(x))(a_ga_h)$$

for all $x \in C_R(R_e)$ which implies that $\alpha_g(\alpha_h(x)) = \alpha_{gh}(x)$ by Lemma 1 as $a_g a_h$ generates the R_e -submodule R_{gh} .

Let
$$g \in H$$
, $s_{g^{-1}}^{(j)} \in R_{g^{-1}}$ and $w_g^{(j)} \in R$, $j = 1, ..., n_{g^{-1}}$ such that $1 = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} w_g^{(j)}$.

Then for every $x \in C_R(R_e)$,

$$\alpha_{g^{-1}}(\alpha_{g}(x)) = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} \left(\sum_{i=1}^{n_{g}} r_{g}^{(i)} x t_{g^{-1}}^{(i)}\right) w_{g}^{(j)} = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} \left(\sum_{i=1}^{n_{g}} r_{g}^{(i)} x t_{g^{-1}}^{(i)} w_{g}^{(j)}\right) = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} \left(\sum_{i=1}^{n_{g}} r_{g}^{(i)} t_{g^{-1}}^{(i)} w_{g}^{(j)} x\right) = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} \left(\sum_{i=1}^{n_{g}} r_{g}^{(i)} t_{g^{-1}}^{(j)}\right) w_{g}^{(j)} x = \sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} .1.w_{g}^{(j)} x = \left(\sum_{j=1}^{n_{g^{-1}}} s_{g^{-1}}^{(j)} w_{g}^{(j)}\right) x$$

= 1.x = x

which implies that $(\alpha_g)^{-1} = \alpha_{g^{-1}}$. For $x, b \in C_R(R_e)$ and $a_g \in R_g$,

$$\alpha_g(xb)a_g = a_g(xb) = (a_gx)b = (\alpha_g(x)a_g)b = \alpha_g(x)(a_gb) = \alpha_g(x)(\alpha_g(b)a_g) = (\alpha_g(x)\alpha_g(b))a_g.$$

By Lemma 1, $\alpha_g(xb) = \alpha_g(x)\alpha_g(b)$.

Theorem 5. Let R be a first strongly graded ring. If $x \in C_R(R_e)$ and $g \in H$, then $xR_g = R_g x$ (x centralizes R_g) if and only if $\alpha_g(x) = x$.

Proof. Suppose that R_g is centralized by x. Then for every $a_g \in R_g$,

$$\alpha_g(x)a_g = \left(\sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)}\right) a_g = \sum_{i=1}^{n_g} r_g^{(i)} x t_{g^{-1}}^{(i)} a_g$$

Since $t_{g^{-1}}^{(i)}r_g^{(i)} \in R_e$,

$$\alpha_g(x)a_g = \sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} a_g x = \left(\sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)}\right) a_g x = 1.a_g x = a_g x = xa_g$$

as x centralizes R_g . By Lemma 1, $\alpha_g(x) = x$. Conversely, for every $a_g \in R_g$, $a_g x = \alpha_g(x)a_g = xa_g$, i.e., x centralizes R_g

Corollary 1. Let R be a first strongly graded ring. Then $Z(R) = \{x \in C_R(R_e) : \alpha_g(x) = x \text{ for all } g \in H\}.$

Proof. Since *R* is first strongly graded,

 $Z(R) = \bigcap_{g \in H} C_R(R_g) = \{ x \in C_R(R_e) : x \in C_R(R_g) \text{ for all } g \in H \}. \text{ Note that if }$

 $g \notin H$, then $R_g = \{0\}$ and then $C_R(R_g) = R$. By Theorem 5, $x \in C_R(R_g)$ if and only if $\alpha_g(x) = x$ and hence $Z(R) = \{x \in C_R(R_e) : \alpha_g(x) = x \text{ for all } g \in H\}$. \Box

Remark 1. Also, it is nice to see that If R is a first strongly graded ring, then $C_R(R_e) =$

$$\begin{cases} x = \sum_{g \in H} x_g \in R : x_g \in R_g \text{ with } cx_g = x_g c \text{ for all } g \in H \text{ and for all } c \in R_e \end{cases} \\ = \begin{cases} x = \sum_{g \in H} x_g \in R : x_g \in (R_g \bigcap C_R(R_e)) \text{ for all } g \in H \end{cases} \\ = \bigoplus_{g \in H} (R_g \bigcap C_R(R_e)). \end{cases}$$

Note that for $g \notin H$, $R_g = \{0\}$ and then $x_g = 0$.

The next result is a generalization of Corollary 1.

Theorem 6. Let R be a first strongly graded ring and X be a subgroup of H. Then $C_R(R_X) =$

$$\left\{ t = \sum_{g \in H} t_g \in R : t_g \in C_R(R_e) \bigcap R_g, \alpha_x(t_g) = t_{xgx^{-1}} \text{ for all } g \in H \text{ and for all } x \in X \right\}$$
$$= \{ t \in C_R(R_e) : \alpha_x(t) = t \text{ for all } x \in X \}.$$

Proof. Let $t = \sum_{g \in H} t_g \in C_R(R_X)$ where $t_g \in R_g$. Since $R_e \subseteq R_X$, $t \in C_R(R_e)$

and then by Remark 1, $t_g \in C_R(R_e)$ for all $g \in H$. Let $x \in X$. Then for every $s_x \in R_x$,

$$s_x \sum_{g \in H} t_g = \sum_{g \in H} t_g s_x$$

since $t \in C_R(R_X)$. As $t_g \in C_R(R_e)$, by Theorem 3,

$$\sum_{g \in H} \alpha_x(t_g) s_x = \sum_{g \in H} t_g s_x.$$

Since $R_x R_g R_{x^{-1}} R_x = R_{xg}$, for all $g \in H$ and for all $x \in X$,

$$\alpha_x(t_g)s_x = t_{xgx^{-1}}s_x \text{ for all } s_x \in R_x.$$

Choose $a_x^{(i)} \in R_x$ and $b_{x^{-1}}^{(i)} \in R_{x^{-1}}$ where $i = 1, ..., n_x$ for some positive integer n_x such that

$$1 = \sum_{i=1}^{n_x} a_x^{(i)} b_{x^{-1}}^{(i)}$$

Then

$$\alpha_{x}(t_{g}) = \alpha_{x}(t_{g}) \cdot 1 = \alpha_{x}(t_{g}) \sum_{i=1}^{n_{x}} a_{x}^{(i)} b_{x^{-1}}^{(i)} = \sum_{i=1}^{n_{x}} \alpha_{x}(t_{g}) a_{x}^{(i)} b_{x^{-1}}^{(i)} =$$
$$\sum_{i=1}^{n_{x}} t_{xgx^{-1}} a_{x}^{(i)} b_{x^{-1}}^{(i)} = t_{xgx^{-1}} \sum_{i=1}^{n_{x}} a_{x}^{(i)} b_{x^{-1}}^{(i)} = t_{xgx^{-1}}.$$

For the converse, Suppose that $t = \sum_{g \in H} t_g \in R$ where $t_g \in C_R(R_e) \bigcap R_g$ and $\alpha_x(t_g) =$ $t_{xgx^{-1}}$ for all $g \in H$ and for all $x \in X$. Then for every $s_x \in R_x$,

$$s_{x}t = \sum_{g \in H} s_{x}t_{g} = \sum_{g \in H} \alpha_{x}(t_{g})s_{x} = \sum_{g \in H} t_{xgx^{-1}}s_{x} = \sum_{r \in H} t_{r}s_{x} = ts_{x}$$
mplies that $t \in C_{P}(R_{Y})$.

which implies that $t \in C_R(R_X)$.

Theorem 7. Let R be a first strongly graded ring such that R_e is commutative. If X is a subgroup of H such that $X \subseteq Z(G)$ and $\alpha_g(a) = a$ for all $g \in H$ and $a \in R_e$, then $J \cap C_R(R_X) \neq \{0\}$ for every non-zero two sided ideal J of R.

Proof. Let J be a nonzero two sided ideal of R. Let $x \in X$ and $s_x \in R_x$. Define $K_{s_x}: R \to R$ by

$$K_{s_x}(t) = K_{s_x}\left(\sum_{g \in H} t_g\right) = s_x \sum_{g \in H} t_g - \sum_{g \in H} t_g s_x = \sum_{j \in H} k_j.$$

Note that $k_x = s_x t_e - t_e s_x = \alpha_x (t_e) s_x - t_e s_x = t_e s_x - t_e s_x = 0$. On the other hand, $k_{xg} = s_x t_g - t_g s_x \in R_{gx} = R_{xg}$ might be zero or nonzero. Thus the number of elements in $supp(K_{s_x}(t))$ is less than supp(t). Moreover,

$$C_R(R_X) = \bigcap_{x \in X, s_x \in R_x} Ker(K_{s_x}).$$

Let $t = \sum_{g \in H} t_g \in J$ be a nonzero element. We may assume that $t_e \neq 0$. Otherwise,

there exists a nonzero $t' = \sum_{g \in H} t'_g \in J$ such that $t'_e \neq 0$. So, there exists $y \in G$ such that $t_y \neq 0$. Also, there exists $b_{y^{-1}}^{(i)} \in R_{y^{-1}}$ such that $b_{y^{-1}}^{(i)} t_y \neq 0$ where $i = 1, ..., n_y$ for some positive integer n_y , this is because if $b_{y^{-1}}^{(i)} t_y = 0$ for all $i = 1, ..., n_y$, then we choose $a_v^{(i)} \in R_v$ such that

$$\sum_{i=1}^{n_y} a_y^{(i)} b_{y^{-1}}^{(i)} = 1$$

and then

$$t_y = 1.t_y = \sum_{i=1}^{n_y} a_y^{(i)} b_{y^{-1}}^{(i)} t_y = 0.$$

Hence, for every $t \in J$ there exists $b_{y^{-1}}^{(j)}t = t' = \sum_{g \in H} t'_g$ in J such that $t'_e = b_{y^{-1}}^{(j)}t_y \neq 0$ and $|supp(t)| \ge |supp(t')| \ge 1$. Now, we assumed that $t = \sum_{g \in H} t_g \in J$ such that

 $t_e \neq 0$. If $t \in C_R(R_X)$, then it is done. Suppose that $t \notin C_R(R_X)$. Then there exists $x \in X$ and $s_x \in R_x$ such that $K_{s_x}(t) \neq 0$. Since $K_{s_x}(t) \in J$, we find an element in *J* with smaller support. Keep on this procedure, we will stop since supp(t) is finite. Thus, we will find an element $\xi = \sum_{g \in H} \xi_g \in J \bigcap C_R(R_X)$ such that $\xi_e \neq 0$. \Box

ACKNOWLEDGEMENT

The authors give great thanks to the referee who contributed to the wonderful output of the article.

REFERENCES

- [1] R. Abu-Dawwas, "More on crossed product over the support of graded rings," International Mathematical Forum, vol. 5, no. 63, pp. 3121-3126, 2010.
- [2] R. Abu-Dawwas and M. Refai, "Further results on graded prime submodules," International Journal of Algebra, vol. 4, no. 28, pp. 1413-1419, 2010.
- [3] G. Karpilovsky, The algebraic structure of crossed products. North Holland, Amsterdam: North Holland Mathematics Studies, 118, 1987.
- [4] C. Nastasescu and F. Oystaeyen, Methods of graded rings. Berlin: Springer, Lecture Notes in Mathematics, 2004, vol. 1836.
- [5] M. Refai, "Various types of strongly graded rings." Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series)., vol. 4, no. 2, pp. 9-19, 1995.

Authors' addresses

Rashid Abu-Dawwas

Yarmouk University, Department of Mathematics, 21163 Irbid, Jordan E-mail address: rrashid@yu.edu.jo

Ala'a Mesleh

Yarmouk University, Department of Mathematics, 21163 Irbid, Jordan E-mail address: alaa.mesleh99@gmail.com

Khaldoun Al-Zoubi

Jordan University of Science and Technology, Department of Mathematics and Statistics, 22110 Ramtha, Jordan

E-mail address: kfzoubi@just.edu.jo