 SOME NOTES ON FIRST STRONGLY GRADED RINGS

RASHID ABU-DAWWAS, ALA’A MESLEH, AND KHALDOUN AL-ZOUBI

Received 10 May, 2016

Abstract. Let G be a group with identity e and R be an associative ring with a nonzero unity 1. Assume that R is first strongly G-graded and $H = \text{supp}(R,G)$. For $g \in H$, define $\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x_{g^{-1}}^{(i)}$ where $x \in C_R(R_e) = \{r \in R : rx = xr \text{ for all } x \in R_e \}$, $r_g^{(i)} \in R_g$ and $t_g^{(i)} \in R_{g^{-1}}$ for all $i = 1, \ldots, n_g$ for some positive integer n_g. In this article, we study $\alpha_g(x)$ and its properties.

2010 Mathematics Subject Classification: 16W50; 13A02; 16D25; 46H10.

Keywords: Graded rings, first strongly graded rings

1. INTRODUCTION

Throughout this article, R is a ring with unity. For a ring R and a subset T of R, $C_R(T) = \{r \in R : rt = tr \text{ for all } t \in T \}$. For a group G, $Z(G) = \{g \in G : gx = xg \text{ for all } x \in G \}$. Let G be a group with identity e. Then R is said to be G-graded if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ where $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. For $x \in R$, $x = \sum_{g \in G} x_g$ where x_g is the component of x in R_g. Also, $\text{supp}(R,G) = \{g \in G : R_g \neq 0 \}$. Moreover, R_e is a subring of R and $1 \in R_e$. For more details, see [4]. Throughout this article, $H = \text{supp}(R,G)$.

First strongly graded rings have been introduced by Refai in [5]. A G-graded ring R is said to be first strongly graded if $1 \in R_g R_{g^{-1}}$ for all $g \in H$. R is first strongly G-graded if and only if H is a subgroup of G and $R_g R_h = R_{gh}$ for all $g, h \in H$. For more details, see [5].

Definition 1 ([4]). Let R be a ring. Suppose that $\alpha : G \to \text{Aut}(R)$ and $\beta : G \times G \to U(R)$ where $\text{Aut}(R)$ is the group of automorphisms of R and $U(R)$ is the group of units of R. In [4], (R,G,α, β) is said to be a crossed system if the following conditions hold for all $g, h, s \in G$ and $a \in R$.

1) $\alpha_g(\alpha_h(a))\beta(g, h) = \beta(g, h)\alpha_g(ha)$.

© 2017 Miskolc University Press
(2) \(\beta(g,h)\beta(gh,s) = \alpha_g(\beta(h,s))\beta(g,h) \).
(3) \(\beta(g,e) = \beta(e,g) = 1 \).

In [2], a \(G \)-graded ring \(R \) is said to be crossed product over the support if \(R_g \cap U(R) \neq \emptyset \) for all \(g \in H \). In [1], it was shown that if \(R \) is crossed product over the support, then \(R \) is first strongly graded and then by [5], \(H \) is a subgroup of \(G \) with \(R_g R_h = R_{gh} \) for all \(g,h \in H \).

Suppose that \(R \) is crossed product over the support. We may choose the family \(\{u_g\}_{g \in H} \) in \(R \) such that \(u_g \in R_g \cap U(R) \) for all \(g \in H \) and assume that \(u_e = 1 \). So, \(R_g = R_e u_g = u_g R_e \) and \(\{u_g\}_{g \in H} \) is a basis for the left (right) \(R_e \)-module \(R \).

Define the map \(\alpha : H \to \text{Aut}(R_e) \) by \(\alpha(g) = \alpha_g \) where \(\alpha_g(a) = u_g a u_g^{-1} \) for all \(g \in H \) and \(a \in R_e \). Also, define \(\beta : H \times H \to U(R_e) \) by \(\beta(g,h) = u_g u_h u_g^{-1} \) for all \(g,h \in H \). Then \(\alpha \) and \(\beta \) satisfy the conditions (1), (2) and (3) above (see [1]). Hence, \((R_e, H, \alpha, \beta) \) is a crossed system.

Assume that \(R \) is first strongly \(G \)-graded. For \(g \in H \), define \(\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_g^{(i)} \\
\) where \(x \in C_R(R_e), r_g^{(i)} \in R_g \) and \(t_g^{(i)} \in R_{g^{-1}} \) for all \(i = 1, \ldots, n_g \) for some positive integer \(n_g \). In this article, we study \(\alpha_g(x) \) and it’s properties.

2. Results

In this section, we introduce our results.

Let \(R \) be a \(G \)-graded ring and \(X \) be a non-empty subset of \(G \). Then \(R_X = \bigoplus_{g \in X} R_g \).

If \(X \) is a subgroup of \(G \), then \(R_X \) is a subring of \(R \). For more details, see [3]. We begin our results by the following.

Theorem 1. Consider the above crossed system \((R_e, H, \alpha, \beta) \). Suppose that \(X \) is a subgroup of \(H \) such that \(X \subseteq Z(H) \cap \text{Ker}(\alpha) \) and \(\beta(x,y) = \beta(y,x) \) for all \((x,y) \in X \times X \). If \(R_e \) is commutative, then \(R_X \) is commutative.

Proof. Consider the family \(\{u_g\}_{g \in H} \) above. Let \(g,h \in X \) and \(a_g, b_h \in R_e \). Then
\[
(a_g u_g)(b_h u_h) = a_g a_h (b_h) \beta(g,h) u_{gh} = a_g b_h \beta(g,h) u_{gh} = b_h a_h (a_g) \beta(h,g) u_{hg} = (b_h u_h)(a_g u_g).
\]

Hence, \(R_X \) is commutative. \(\square \)

Let \(R \) be a first strongly \(G \)-graded ring (not necessary to be crossed product over the support). Then \(R_g R_{g^{-1}} = R_e \) for all \(g \in H \). So, for every \(g \in H \), there exists \(n_g \in \mathbb{Z}^+ \), \(r_g^{(i)} \in R_g \) and \(t_{g^{-1}}^{(i)} \in R_{g^{-1}} \) such that \(l = \sum_{i=1}^{n_g} r_g^{(i)} t_{g^{-1}}^{(i)} \), since \(1 \in R_e \).
Define $\alpha_g(x) = \sum_{i=1}^{n_g} r_g^{(i)} x t_g^{(i)} g_{i-1}$ for all $x \in C_R(R_e)$.

Theorem 2. Let R be a first strongly graded ring. Then α_g is independent of the choice of $r_g^{(i)}$'s and $t_g^{(i)}$'s.

Proof. Let $n_g, n'_g \in \mathbb{Z}^+$ and $r_g^{(i)}, s_g^{(j)} \in R_g, t_g^{(i)} \in R_{g^{-1}}$, $w_g^{(i)} \in R_{g^{-1}}$ such that

$$1 = \sum_{i=1}^{n_g} r_g^{(i)} t_g^{(i)} g_{i-1} = \sum_{j=1}^{n'_g} s_g^{(j)} w_g^{(j)} g_{i-1}.$$

Let $x \in C_R(R_e)$. Then since $w_g^{(j)} t_g^{(i)} g_{i-1} \in R_e$,

$$\sum_{i=1}^{n_g} r_g^{(i)} x t_g^{(i)} g_{i-1} - \sum_{j=1}^{n'_g} s_g^{(j)} x w_g^{(j)} g_{i-1} = 1 - \left(\sum_{i=1}^{n_g} r_g^{(i)} x t_g^{(i)} g_{i-1} \right) - \left(\sum_{j=1}^{n'_g} s_g^{(j)} x w_g^{(j)} g_{i-1} \right) = 0.$$

The next lemma is fundamental for our next results.

Lemma 1. Let R be a first strongly graded ring. If $r \in R$ such that $r R_h = \{0\}$ for some $h \in H$, then $r = 0$.

Proof. Suppose that $r \in R$ and $h \in H$ such that $r R_h = \{0\}$. Then $r = r \cdot 1 \in r R_e = r R_h R_{h^{-1}} = (r R_h) R_{h^{-1}} = \{0\}$, i.e., $r = 0$. □

Theorem 3. Let R be a first strongly graded ring and $g \in H$. Then $\alpha_g(x)$ is the only element of R satisfying $\alpha_g(x) a_g = a_g x$ for all $a_g \in R_g$. Moreover, $\alpha_g(x) \in C_R(R_e)$ if and only if $x \in Z(R_e)$.

Proof. Let $a_g \in R_g$. Then $t_{g^{-1}}^{(i)} a_g \in R_{g^{-1}} R_g = R_e$ and $t_{g^{-1}}^{(i)} a_g$ commutes with $x \in C_R(R_e)$ for all $i = 1, \ldots, n_g$. So,

$$\alpha_g(x) a_g = \sum_{i=1}^{n_g} r_g^{(i)} x t_g^{(i)} g_{i-1} a_g = \sum_{i=1}^{n_g} r_g^{(i)} t_g^{(i)} g_{i-1} a_g x = a_g \left(\sum_{i=1}^{n_g} r_g^{(i)} t_g^{(i)} g_{i-1} \right) x$$

$$= a_g . 1 . x = a_g x.$$

Let $x \in C_R(R_e)$ and $y \in R$ such that $r_g^{(i)} x = y r_g^{(i)}$ for all $i = 1, \ldots, n_g$. Then
\[\alpha_g(x) = \sum_{i=1}^{n_g} r^{(i)}_g x t^{(i)}_{g-1} = \sum_{i=1}^{n_g} y r^{(i)}_g t^{(i)}_{g-1} = y \left(\sum_{i=1}^{n_g} r^{(i)}_g t^{(i)}_{g-1} \right) = y \cdot 1 = y, \]

i.e., \(\alpha_g(x) \) is the only element satisfies \(\alpha_g(x)a_g = a_gx \) for all \(a_g \in R_g \). Since \(R \) is first strongly graded, if \(x \in R_e \), then \(\alpha_g(x) \in R_e \). In particular, if \(x \in Z(R_e) \), then \(\alpha_g(x) \in Z(R_e) \). So, for \(x \in Z(R_e) \) and \(s \in R_e \),

\[s \alpha_g(x) = 1.s \alpha_g(x) = \sum_{i=1}^{n_g} \sum_{j=1}^{n_g} r^{(i)}_g x t^{(i)}_{g-1} = \sum_{j=1}^{n_g} \sum_{i=1}^{n_g} r^{(i)}_g x t^{(i)}_{g-1} = \alpha_g(x).s.1 = \alpha_g(x)s. \]

If \(a_g \in R_g \) and \(w \in R_e \), then \(w a_g \in R_e R_g = R_g \) and then

\[(\alpha_g(x)w)a_g = \alpha_g(x)(wa_g) = (wa_g)x = w(a_gx) = w(\alpha_g(x)a_g) = (w \alpha_g(x))a_g \]

Which implies that \((\alpha_g(x)w - w \alpha_g(x))R_g = \{0\} \). By Lemma 1, \(\alpha_g(x)w = w \alpha_g(x) \) and hence \(\alpha_g(x) \in C_R(R_e) \).

Theorem 4. Let \(R \) be a first strongly graded ring. Then the following hold:

1. \(\alpha_g \circ \alpha_h = \alpha_{gh} \) for all \(g, h \in H \).
2. \(\alpha_g^{-1} = \alpha_{g^{-1}} \) for all \(g \in H \).
3. \(\alpha_g(xb) = \alpha_g(x)\alpha_g(b) \) for all \(g \in H \) and \(x, b \in C_R(R_e) \).

Proof. Since \(1 \in R_e \), \(x = 1.x = \alpha_e(x).1 = \alpha_e(x) \) for all \(x \in C_R(R_e) \). Let \(g, h \in H \), \(a_g \in R_g \) and \(a_h \in R_h \). Then \(a_ga_h \in R_g R_h = R_{gh} \) and then

\[\alpha_{gh}(x)(a_ga_h) = a_g(a_hx) = a_g(\alpha_h(x)a_h) = (a_g\alpha_h(x))a_h \]

\[= (\alpha_g(x)(\alpha_h(x))a_h = \alpha_g(x)(\alpha_h(x))(a_ga_h) \]

for all \(x \in C_R(R_e) \) which implies that \(\alpha_g(\alpha_h(x)) = \alpha_{gh}(x) \) by Lemma 1 as \(a_ga_h \) generates the \(R_e \)-submodule \(R_{gh} \).

Let \(g \in H \), \(s^{(j)}_{g-1} \in R_{g-1} \) and \(w^{(j)}_g \in R \), \(j = 1, \ldots, n_g-1 \) such that \(1 = \sum_{j=1}^{n_g-1} s^{(j)}_{g-1} w^{(j)}_g \).

Then for every \(x \in C_R(R_e) \),

\[\alpha_g(x) = \sum_{i=1}^{n_g} r^{(i)}_g x t^{(i)}_{g-1} = \sum_{i=1}^{n_g} y r^{(i)}_g t^{(i)}_{g-1} = y \left(\sum_{i=1}^{n_g} r^{(i)}_g t^{(i)}_{g-1} \right) = y \cdot 1 = y, \]
\[\alpha_g^{-1}(\alpha_g(x)) = \sum_{j=1}^{n_g-1} s^{(j)} g^{-1} \left(\sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} \right) w^{(j)} g = \]

\[\sum_{j=1}^{n_g-1} s^{(j)} g^{-1} \left(\sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} w^{(j)} g \right) = \sum_{j=1}^{n_g-1} s^{(j)} g^{-1} \left(\sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} w^{(j)} g x \right) = \]

\[= 1.x = x \]

which implies that \((\alpha_g)^{-1} = \alpha_g^{-1}\). For \(x, b \in C_R(R_e)\) and \(a_g \in R_g\),

\[\alpha_g(xb)a_g = \alpha_g(xb) = (a_g x)b = (a_g(x)a_g)b = \alpha_g(x)(a_g b) = \alpha_g(x)(\alpha_g(b)a_g) = (\alpha_g(x)\alpha_g(b))a_g. \]

By Lemma 1, \(\alpha_g(xb) = \alpha_g(x)\alpha_g(b)\).

Theorem 5. Let \(R\) be a first strongly graded ring. If \(x \in C_R(R_e)\) and \(g \in H\), then \(x R_g = R_g x\) (\(x\) centralizes \(R_g\)) if and only if \(\alpha_g(x) = x\).

Proof. Suppose that \(R_g\) is centralized by \(x\). Then for every \(a_g \in R_g\),

\[\alpha_g(x)a_g = \left(\sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} \right) a_g = \sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} a_g. \]

Since \(t^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} \in R_e\),

\[\alpha_g(x)a_g = \sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} x t^{(i)} g_{g^{-1}} a_g x = \left(\sum_{i=1}^{n_g} r^{(i)} g_{g^{-1}} \right) a_g x = 1.a_g x = a_g x = xa_g \]

as \(x\) centralizes \(R_g\). By Lemma 1, \(\alpha_g(x) = x\). Conversely, for every \(a_g \in R_g\),

\[a_g x = a_g(x)a_g = xa_g, \text{ i.e., } x \text{ centralizes } R_g. \]

Corollary 1. Let \(R\) be a first strongly graded ring. Then \(Z(R) = \{x \in C_R(R_e) : \alpha_g(x) = x \text{ for all } g \in H\}\).

Proof. Since \(R\) is first strongly graded,

\[Z(R) = \bigcap_{g \in H} C_R(R_g) = \{x \in C_R(R_e) : x \in C_R(R_g) \text{ for all } g \in H\}. \]

Note that if \(g \notin H\), then \(R_g = \{0\}\) and then \(C_R(R_g) = R\). By Theorem 5, \(x \in C_R(R_g)\) if and only if \(\alpha_g(x) = x\) and hence \(Z(R) = \{x \in C_R(R_e) : \alpha_g(x) = x \text{ for all } g \in H\}. \]
Remark 1. Also, it is nice to see that if R is a first strongly graded ring, then $CR(R_e) = \left\{ x = \sum_{g \in H} x_g \in R : x_g \in R_g \text{ with } c x_g = x_g c \text{ for all } g \in H \text{ and for all } c \in R_e \right\}$

\[
= \left\{ x = \sum_{g \in H} x_g \in R : x_g \in \left(R_g \cap CR(R_e) \right) \text{ for all } g \in H \right\} \\
= \bigoplus_{g \in H} \left(R_g \cap CR(R_e) \right).
\]

Note that for $g \in H$, $R_g = \{0\}$ and then $x_g = 0$.

The next result is a generalization of Corollary 1.

Theorem 6. Let R be a first strongly graded ring and X be a subgroup of H. Then $CR(R_X) = \left\{ t = \sum_{g \in H} t_g \in R : t_g \in CR(R_e) \bigcap R_g \right\}$

\[
= \left\{ t \in CR(R_e) : \alpha_x(t) = t_{xg^{-1}} \text{ for all } g \in H \text{ and all } x \in X \right\}.
\]

Proof. Let $t = \sum_{g \in H} t_g \in CR(R_X)$ where $t_g \in R_g$. Since $R_e \subseteq R_X$, $t \in CR(R_e)$ and then by Remark 1, $t_g \in CR(R_e)$ for all $g \in H$. Let $x \in X$. Then for every $s_x \in R_x$,

\[
s_x \sum_{g \in H} t_g = \sum_{g \in H} t_g s_x
\]

since $t \in CR(R_X)$. As $t_g \in CR(R_e)$, by Theorem 3,

\[
\sum_{g \in H} \alpha_x(t_g) s_x = \sum_{g \in H} t_g s_x.
\]

Since $R_x R_g R_{x^{-1}} R_x = R_{xg}$, for all $g \in H$ and for all $x \in X$,

\[
\alpha_x(t_g) s_x = t_{xg^{-1}} s_x
\]

Choose $a^{(i)}_x \in R_x$ and $b^{(i)}_{x^{-1}} \in R_{x^{-1}}$ where $i = 1, \ldots, n_x$ for some positive integer n_x such that

\[
1 = \sum_{i=1}^{n_x} a^{(i)}_x b^{(i)}_{x^{-1}}.
\]

Then
we choose for some positive integer \(n \) \(\alpha_x(t_g) = \alpha_x(t_g).1 = \frac{\alpha_x(t_g)}{\alpha_x(t_g)} \sum_{i=1}^{n_x} \alpha_x(t_g) a_x^{(i)} b_x^{(i)} x^{-1} = \sum_{i=1}^{n_x} \alpha_x(t_g) a_x^{(i)} b_x^{(i)} x^{-1} = t x g x^{-1}. \)

For the converse, Suppose that \(t = \sum_{g \in H} t_g \in R \) where \(t_g \in C_R(R_e) \cap R_g \) and \(\alpha_x(t_g) = t x g x^{-1} \) for all \(g \in H \) and for all \(x \in X \). Then for every \(s_x \in R_x \),

\[
 s_x t = \sum_{g \in H} s_x t_g = \sum_{g \in H} \alpha_x(t_g) s_x = \sum_{g \in H} t x g x^{-1} s_x = \sum_{r \in H} t_r s_x = t s_x
\]

which implies that \(t \in C_R(R_X) \). \(\square \)

Theorem 7. Let \(R \) be a first strongly graded ring such that \(R_e \) is commutative. If \(X \) is a subgroup of \(H \) such that \(X \subseteq Z(G) \) and \(\alpha_g(a) = a \) for all \(g \in H \) and \(a \in R_e \), then \(\bigcap_{X \subseteq Z(G)} \ker(K_{s_x}) \neq \{0\} \) for every non-zero two sided ideal \(J \) of \(R \).

Proof. Let \(J \) be a nonzero two sided ideal of \(R \). Let \(x \in X \) and \(s_x \in R_x \). Define \(K_{s_x}: R \to R \) by

\[
 K_{s_x}(t) = K_{s_x} \left(\sum_{g \in H} t_g \right) = s_x \sum_{g \in H} t_g - \sum_{g \in H} t_g s_x = \sum_{j \in H} k_j.
\]

Note that \(k_x = s_x t_e - t_e s_x = \alpha_x(t_e) s_x - t_e s_x = t_e s_x - t_e s_x = 0 \). On the other hand, \(k_{x g} = s_x t_g - t_g s_x \in R_{x g} = R x g \) might be zero or nonzero. Thus the number of elements in \(\text{supp}(K_{s_x}(t)) \) is less than \(\text{supp}(t) \). Moreover,

\[
 C_R(R_X) = \bigcap_{x \in X, s_x \in R_x} \ker(K_{s_x}).
\]

Let \(t = \sum_{g \in H} t_g \in J \) be a nonzero element. We may assume that \(t_e \neq 0 \). Otherwise, there exists a nonzero \(t' = \sum_{g \in H} t'_g \in J \) such that \(t'_e \neq 0 \). So, there exists \(y \in G \) such that \(t_y \neq 0 \). Also, there exists \(b_{y-1}^{(i)} \in R_{y-1} \) such that \(b_{y-1}^{(i)} t_y \neq 0 \) where \(i = 1, \ldots, n_y \) for some positive integer \(n_y \), this is because if \(b_{y-1}^{(i)} t_y = 0 \) for all \(i = 1, \ldots, n_y \), then we choose \(a_y^{(i)} \in R_y \) such that

\[
 \sum_{i=1}^{n_y} a_y^{(i)} b_{y-1}^{(i)} = 1
\]
and then
\[t_y = 1 \cdot t_y = \sum_{i=1}^{n_y} a_{y}^{(i)} b_{y-1}^{(i)} t_y = 0. \]

Hence, for every \(t \in J \) there exists \(b_{y-1}^{(i)} t = t' = \sum_{g \in H} t'_g \) in \(J \) such that \(t'_e = b_{y-1}^{(i)} t_y \neq 0 \) and \(|supp(t)| \geq |supp(t')| \geq 1\). Now, we assumed that \(t = \sum_{g \in H} t_g \in J \) such that \(t_e \neq 0 \). If \(t \in C_R(R_X) \), then it is done. Suppose that \(t \notin C_R(R_X) \). Then there exists \(x \in X \) and \(s_x \in R_X \) such that \(K_{s_x}(t) \neq 0 \). Since \(K_{s_x}(t) \in J \), we find an element in \(J \) with smaller support. Keep on this procedure, we will stop since \(supp(t) \) is finite. Thus, we will find an element \(\xi = \sum_{g \in H} \xi_g \in J \bigcap C_R(R_X) \) such that \(\xi_e \neq 0 \). \(\square \)

Acknowledgement

The authors give great thanks to the referee who contributed to the wonderful output of the article.

References

Authors’ addresses

Rashid Abu-Dawwas
Yarmouk University, Department of Mathematics, 21163 Irbid, Jordan
E-mail address: rrashid@yu.edu.jo

Ala’a Mesleh
Yarmouk University, Department of Mathematics, 21163 Irbid, Jordan
E-mail address: alaa.mesleh99@gmail.com

Khaldoun Al-Zoubi
Jordan University of Science and Technology, Department of Mathematics and Statistics, 22110 Ramtha, Jordan
E-mail address: kfzoubi@just.edu.jo