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AsstrAcT. By the use of the corresponding shift matrix, the paper gives a criterion
for the unique solvability of linear boundary value problems posed for linear dif-
ferential algebraic equations up to index 2 with well-matched leadinfficizmts.

The solution is constructed by a proper Green function. Another characterisation
of the solutions is based upon the description of arbitrdiipe linear subspaces

of solutions to linear dferential algebraic equations in terms of solutions to the
adjoint equation. When applied to boundary value problems, the result provides a
constructive criterion for unique solvability and allows one to reduce the problem
to initial value problems and linear algebraic equations.
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1. |NTRODUCTION

R THE linear diferential algebraic equations (DAEs for the sake of brevity in what
follows) of the form

A(t) (DOXD)" + B()x(t) = a(t) (1.1)

with continuous, quadratic matrix-valued functiolhdD andB with complex entries,
the “index-1" and “index-2" notion was introduced in [2]. A theorem on the unique
solvability of the properly formulated initial value problems (IVPs) for (1.1) equipped
with these indices was proven. It was shown that, under the same conditions, the
adjoint equation

=D (1) (A" )y (1) + B* Oy (t) = p(t) (1.2)
is of the same index, and the proper IVP for (1.2) is solvable simultaneously with that
for (1.1). Meanwhile, some properties of the inherent ordinafiedintial equation
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(ODE) of (1.1) were investigated. The fundamental matrices for (1.1) and a specific
one called the normalised fundamental matrix were also introduced.

The main goal of this paper is to study the boundary value problems (BVPs) for
(1.1) up to index 2. The assertion on the simultaneous solvability of (1.1) and (1.2)
turns out to be the keystone in the analysis of BVPs.

The paper is organised as follows. In Section 2, we recall the basic definitions and
some propositions concerning equation (1.1). For the sake of completeness, we also
define “index-0" equations. The results of [2] can be extended to “index-0" equations
in a obvious way. The solvability theorem for IVPs posed for the pair (1.1) and (1.2)
is cited in this section. Existence results for two-point BVPs in terms of Green’s
function and shift matrix will be stated in Section 3. In Section 4, we descfibwea
linear subspaces of solutions to (1.1) by the help of solutions to (1.2). The transfer of
boundary conditions (BCs) for BVPs both with separated and non-separated BCs and
the related constructive existence theorem will be the topic of Section 5. The paper
is concluded with some remarks on numerical implementation in the final Section 6.

2. PRELIMINARIES

We consider equations of the form (1.1), whégd> andB are continuousnx m
matrix functions with complex entries on closed interyak [a, b], andq is a con-
tinuous vector-valued function with complex componentsZonParallel to (1.1),
equation (1.2) is involved in our studg,also being a continuous vector-valued func-
tion with complex components ah The pair of leading terms in (1.1) is assumed to
bewell-matchedn the following sense:

Condition C1 ([2]). For everyt € 1, the equality
kerA(t) ® imD(t) = C™ (2.1)

is true, and there exist continuouslytdrentiable functionay, ..., amr anddy, ..., d
such that

kerA(t) = span{ay(t),...,anr(t)}, imD(t) = {di(t),...,d ()}, tel. (2.2)
We proved

Lemma 1([2, Lemma 2.1]) Equation(1.1) has well-matched leading cgieientsA
andD if and only if the leading cggcientsA* and D* of equation(1.2)do so.

If Ris the continuously dierentiable projector function realizing the decompo-
sition (2.1), i. e., keR(t) = kerA(t) and imR(t) = imD(t), t € 7, thenR" is the
projector function corresponding to the decomposition inducedtgndD*.

Remarkl. We are mainly interested in considering singular well-matched leading
pairsA(t) andD(t). Assumption (2.1), however, includes the case where both matri-
cesA(t) andD(t) are nonsingular over the entire intendal Then,r = mandR(t) = |

wherel is themx midentity matrix. The considerations of [2] can be easily extended
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to the case of nonsingular well-matched leading terms. Equation (1.1) turns into a
standard explicit ODE iA(t) = D(t) = I.

Definition 1 ([2, Definition 2.1]) A vector functionx : 7 — C™is called a solution
of (1.1) if xe CL(7) := {x € C(Z) : Dx € C}(Z)} and (1.1) is satisfied pointwise.

A solution of (1.2) is defined similarly. A kind of Lagrange identity is stated.

Lemma 2. Let the matrix function# andD be well-matched. Then, for every pair of
solu_tions_x € CL, y € C3. of the homogeneous equatiqiisl)and(1.2), respectively,
the identity

y (OAD)D(t)x(t) = const forte 1. (2.3)
holds.

A key tool in the investigation of problems carried out in [2] is a chain of matrix-
valued and subspace-valued functions associated with (1.1), namely,
Go:=AD, Bp:=B;
fori =0,1, Q,Pi, W are projector functionsQ? = Q;, W? = W
N;i := kerGj = im Qi, Pi=1- Qi,
kerW, = imG;,
Gi+1:=Gj + BiQi, Bis1=BiP;,
Sj:={ze cm: Bize imG;j} = kerW;B;.

In the sequelD~ denotes the reflexive generalised inverse (RGI) functiod® of
such thaDD~ = RandD™D = Py; A™ is an RGI function ofA such thatA"A = R
andAA™ = | — Wp; G stands for the RGI function d&; such thatG,;G; = | -

W; andG;G; = Pi. We recall [5] that a matrixT ~ € L(CX, ') is an RGI of a
matrix T € L(C',C¥) if it satisfies the equalitie3 " TT- = T~ andTT-T = T. The
products Bgiz := TT™ and Rge := T™T are projectors. If Rsi1, Prgi2 are given
projectors such that img ;1 = im T and ker B2 = kerT, then they define an RGI
T~ uniquely.

Due to condition C1, diminsg(t) = r. Let dimimGy(t) = r1(t). Based on the
properties of terms in the chain, an index may be assigned to some equations of the
form (1.1) if, in addition to condition C1, another requirement is also fulfilled.

Condition C2 ([2]). The dimensions oD(t)S;(t) andD(t)N4(t) are constant,
dimD(t)S1(t) =: 0 and dimD(t)N(t) =: v, (2.5)

and there exist continuouslyftérentiable functions?, ..., SE andn?,...,nD such
that for allt € 7,

D(t)S1(t) = span{sy(t),..., s (1)},  D()Na(t) = span{n?(t),...,nJ(t)}.
Here, we extend Definition 2.2 from [2] as follows:

(2.4)

Definition 2. Let conditions C1 and C2 be valid. Equation (1.1) is said to be
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(0) an“index-0" tractable DAE if

No(t) = {0}, tel, (2.6)

(1) an“index-1" tractable DAE if
No(t) # {0}, (2.7)
No(t) N Sp(t) = {0}, tel, (2.8)

(2) an“index-2" tractable DAE if
dim Ng(t) N Sp(t) = const> 0, (2.9)
N1(t) N S1(t) = {0}, te 1. (2.10)

Whenr < m, the chain associated with an equation is not uniquely defined due to
the freedom in the choices of the projectors. The index, however, does not depend
on these choices. Thus, the index value, if it exists, is an inherent property of the
equation. One may choose a specific proje€erso that ke (t) = Si(t). The
related terms in the chain will be marked by “*” (a hat). For equations equipped with
an index, the assumptions ensuft) = const=: r;ando=r+ry—m,v=m-ry.

In the “index-0" and “index-1” cases; = m. The functionDP,D~ is a continuously
differentiable projector function: for evetyit projects ontd>S; alongDN; & kerA.

SettingA. = -D*, D, = A", andB, = B*, one can construct a chain similar to
(2.4) starting withA., D., B, i. e., for equation (1.2). The terms derived in this
chain will be marked by an additional first subscrigt (a star).

With the inclusion of the “index-0" equations, Theorem 5.1 of [2] reads as follows:

Theorem 1. Equation(1.1) is of indexu, u = 0, 1,2, if and only if equation(1.2)
possesses this property.

The main point in the proof [2] of this theorem consists in showing that
DS; = R(A*N,1)* = (A*N,1 @ kerD*)*,

A'S,; = R*(DNy)* = (DN; @ kerA)*. (2.11)
The so-called inherent regular ODE for DAE (1.1) has the form
U +DGy*BD'u= Alq (2.12)
in the “index-0" case, and it has the form
U - Ru+ DG'BD u = DG;'q (2.13)
in the “index-1" case. If the DAE is of index 2, then the inherent ODE is
U — (DP;D")'u+ DP;G;'BDu = Nog, (2.14)

where
Noq := DP1G; g+ (DP1D7)YDO:1G5g,  Nog = DP1D™Nog.
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For the inherent ODEs derived from an “index-1” DAE it was shown thai(tf <
im D(f) for somef € 1, thenu(t) € im D(t) for all t € 7. Similarly, in the “index-2”
caseu(®) € im D(E)P. () involvesu(t) € im D(t)P1(t). Equations (2.13) and (2.14) are
independent of the choice & andPg, Py, respectively.

Let x be a solution of equation (1.1). If (1.1) is a DAE of index 0, thigxis a
solution of (2.12). In the “index-1" cas®x is a solution of (2.13). In the “index-2”
case, functioDP; x is a solution of (2.14).

Finally, we recall the solvability statement for IVPs.

Theorem 2([2, Theorems 3.1 and 3.2])etty € 7. Assume that one of the following
conditions is satisfied:
() (1.1)is an “index0” or “index- 1" DAE, the inclusionq € C(Z) holds, and
the initial condition has the form
D(to)X(to) = do with do €im D(to);
(i) (1.1) is an “index2" DAE, the inclusionq € ClDQlG_l(I) holds, and the
initial condition has the form ’
D(to)P1(to)X(to) = do  with do € im D(to) P4 (to). (2.15)
Then there exists a unique solutigof the IVP.

Now, the assertion on simultaneous solvability of DAEs (1.1) and (1.2) with proper
right-hand sides and initial conditions appears to be a direct consequence of Theo-
rems 1 and 2.

Note that for the “index-0" equations the initial condition is equivalent simply to
conditionxg € €™ and the equation may be considered formally a particular case of
“index-1" equations withQp = Wp = 0, r = m. In turn, an “index-1" DAE may
be considered formally a particular case of “index-2" equations @ith= Wy = 0;
theno = r, DP;D™ = R, D(t)Ny(t) = {0}, G2 = G1. Thus, in the next sections it is
suficient to prove the statements only for the “index-2” DAES.

3. THE APPROACH BASED ON GREEN'S FUNCTION

Let equation (1.1) be tractable with indgx u € {0,1,2}. Denote the maximal
fundamental solution matrix normalisedtate I by X(t, o), i. e., X(t,tg) € L(C™)
andX(-, tp) is the matrix-valued solution of the IVP

A(DX) + BX =0, D(tg)P1(to)(X(to) — 1) = 0. (3.1)
We recall from [2] the following properties of the maximal fundamental solutions:

wherellcan, is @ projector function onto the geometric solution space of the homo-
geneous DAE (1.1)f = 0), Sing(t) = imIlcan(t),

Mean, := KPoP1, K :=1 - QoP1G;BPy — Qo@1D~(DQ1D)'D, 3.2)
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U is nonsingular.
Let the RGIX(t, tp)~ € L(C™) of X(t, to) be defined by the relations

X(t’ tO)X(tv 1:O)_ = 1_[canu (t),
X(t, tO)_X(t, tO) = 1_[cany (tO)-
(See Section 2 for the definition of RGI). The usual group properties
X(t1, t2)X(t2, t3) = X(ta, t3), Xt t2)” = X(tz, ta).
hold. It follows from Theorem 2 that, for adj CDQJ-GEl(I) andx® e C™, the IVP

A(DX)’ +Bx =g, D(to)P1(to)(X(to)) - X°) = 0, (3.3)
is uniguely solvable. Due to the linearity, the solution can be split into two terms,
X(t) = X(t, to)x° + X(t), te 7, (3.4)
wherexX'denotes the solution of the IVP
A(DX)’ + Bx=q, D(to)P1(to) X(to) = O. (3.5)

In [2], it was shown that every solution of (1.1) can be represented in theXotm
[canu X + N1q, where

N1q = (PoQ1 + QoP1)G5 g + Qo@D (DQ:G,a) .
Thus, one can obtain the relation

t
K0 = [ XIS+ M. te T (3.6)
to
Now we turn to the BVP for (1.1) with the boundary condition
Kax(a) + Kpx(b) = d, (3.7)

d € Lgc, whereLge := im(K; | Kp) € CMis the linear subspace associated with
the boundary condition. The valug$ e C™ in (3.4) that yield solutions of the BVP
(1.1), (3.7) must satisfy the linear system

MxC = d — Ka%(a) — KpX(b) (3.8)
with the “shift matrix” M,

M := KaX(a, to) + KpX(b, to). (3.9)

Theorem 3. Let DAE(1.1)be tractable with indey, u € {0, 1, 2}. Then, for arbitrary

d e Lgcandqe CéQlG,l(I), the BVP(1.1), (3.7)is uniquely solvable if and only if
2

the shift matrixM satisfies the conditions

kerM = kerIlcan,(to), (3.10)
imM = Lgc. (3.11)
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Proof. By construction, the relations kBan,(to) € kerM, imM C Lgc are true.
Let the BVP (1.1), (3.7) be uniquely solvable fordlE Lgc andq € C DQiG; (D).

Putq = 0. For everyd € Lgc, there is anx® € €™ such thatMx? = d. Hence
Lgc € im M, i. e., (3.11) holds.

Moreover, since the homogeneous BVP (1.1), (3.7) withO andg = 0 has only
the trivial solution, the IVP

A(DX)" + Bx=0, D(to)P1(to)(X(to)) - x°) =0, x° € kerM
may have only the identically vanishing solution. This means that
kerM C ker D(to)Pi(to) = kerTlcan,(to)

must be true, and consequently, (3.10) holds.
Conversely, let (3.10) and (3.11) be satisfied. Then, for edegyLgc andq €
DQ s .(7), a solution of the BVP is determined by (3.4) and (3.8). The relations

d=0 andq = 0imply X = 0 andMx® = 0. Thus,x0 € kerM = kerX(t, tg). Now
(3.4) leads us to the solutionwhich equal identically to zero. O

Remark2. The conditions (3.10), (3.11) ensure that rdhlk= o =1 +ry —m.

When (3.10) and (3.11) are true, we can introduce an RGE L(C™) of M such

Theorem 4. Let DAE(1.1) have tractability index, u € {0, 1,2}, and let conditions
(3.10)and(3.11)be satisfied. Then the solution of BYP1), (3.7)withd € Lgc, g €

CEQ - .(I) is given by the formula

b
X(t) = X(t, to)M~d + f G(t, 9 (Nog)(9ds
+ (N10)(t) = X(t, to))M™ {Ka(N10)(@) + Kn(N10)(b)} , (3.12)
where Green'’s functiog is defined as follows:
Gt.9 = X(t )M~ KaX(a, to)X(s,t0)~,  s<t,
=X(t, to) M~ KpX(b, to) X(5,tg)~, s>t.

Proof. It follows from (3.8) thatTlcan,(to)x° = M~(d — KaX(@) — KpX(b)), whereas
from (3.4), one obtains (3.12) by standard calculations. Note that (3.12) is defined in
a unigue manner, while there is freedom in the choicklof O

Remark3. The mapL : C} 5() — C(Z) x Lpc defined by the relation

Lx:= (ADX)’ + Bx Kax(@) + Kpx(b)), x € CL(Z)
is linear and bounded. It acts bijectively betw@:%’(f) andC DOy Gl(I)>< Lgc. Recall
that, in the case whene = 2, the seIClQ 55 (L) is a proper dense subset©f7).
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Hence, whem = 2, £ has a densely defined unbounded invefs& However, if we
equipCéQle,l(I) with a natural norm and considg} as a mapping’ : Cé(]) -
2

CéQlG_l(I) x Lgc, in this setting,£ has a bounded inverse.
2

4. AFFINE LINEAR SUBSPACES OF SOLUTIONS

In [1], for a subclass of homogeneous “index-1" DAEs (1.1) vtk Pp and con-
tinuously diferentiable coficientsA, Py andB, we described the linear subspaces of
solutions in terms of the adjoint equation. In this section, we formulate and prove an
analogous theorem for théime linear subspaces of the solutions for DAE (1.1) with
an arbitrary functiorD well-matched withA. The DAE is assumed to be of index
u, 1€ {0,1,2}, and it is not necessarily homogeneous. The smoothness conditions
on the cofficientsA, D andB are exactly as in Section 2, i. e., they must allow for
assignment of an index only. The functigris assumed to be of the class required
by Theorem 2; in the “index-0" and “index-1" casepis only continuous, whereas

qe CéQlG_l(I) in the “index-2” case.
2

A set of functionsM c Cé(I) is called an #ine linear subspace of functions
x € CL(X) if M=%+ L, whereXe CL(Z7) and Ly c CL(Z) is a linear subspace.

Let us put

M) ={veC™:v=xt), xe M}
and
Lv) ={fwe C™:w=2(t), ze L}
If dim Ly (t) = const=: |, then dimM :=dim L :=I.

The setMing, Of all solutions of the DAE (1.1) is anfléne linear subspace of
dimensiono = r + r; —min Cé(]). This fact follows immediately from the repre-
sentation (3.4). The linear subspdag, ., (t) € C™ corresponding to thefine linear
subspacéMing,(t) describes the geometric constraint to which every solution of the
homogeneous equation is subjected. It reads as follows:

L Ming,, (1) = Sindu(t) = im Hean(t).
Lemma 3. The setMinq, admits an equivalent description in the form
{x e CL(I) : WoBX=Woa, Hx = H(q)} (4.1)
where the matrix functioi is defined by the relation
H=DQD[AB-(DQ:D7)D] (4.2)
and the linear maH : CéQngl(I) — C(Z) is given by the formula

H(g) = DD~ [A"q - (DQ:G3 ) | (4.3)
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Proof. Let us denote the set (4.1) bfft Multiplying equation (1.1) by, we get
the first required relation, while the second oHe; = H(q), is the so-called hidden
constraint derived in [2]. ThusV{ing, € M. Now itis enough to study the kernels of
WpB andH (argument is omitted). Instead of showing that dikerWpB n kerH) =

o, we check the intersection of kernelsWw§BK andHK with invertible matrix func-
tion K from (3.2), noting that the identitia&hBK = WyG, and

HK = DO1D~A Gy(l — P1Py)
can be verified by direct computation (we omit the details for the sake of brevity).
If WoG2x = 0, then there exisy : y = Poy, x = G, 1ADy = P1Pgy = Ply, i e.,
Q.x = 0. If, additionally, 0= HKx = DO;D~A"Gy(I — P1Pg)x, then 0= DQ;Pyy,

i. e. Gzy ADy. Thereforeﬁzy Gox, i. €.,X = y. Finally, X = y = Poy = PoXx =
PoP1x. This yields ketH N kerWpB = im KPoP; = im Meany- O

Remark4. Observe thatingo(t) coipcides withC™ becausaNp = 0 andQlA = 0.
Foru = 1, Wp is non-trivial while Q1 vanishes. Fou = 2, bothWy and Q; are
non-trivial, and the hidden constraiH{(t)z = H(q)(t) is active.

For the purposes of the following assertions, we decompose equation (1.1) using
the identity

| = Qp+ Qilpio + |5:1P:o- (4.4)
We obtain

QjOBx = Qjoq, (4.5)
Qi ADX) + Qi P.oBx = Q;Piya, (4.6)
Pr ADX) + P2, P:oBx= P P a. 4.7)

Equations (4.6) and (4.7) are equivalent to
AT QADDX) + A Q,ProBx = ATQ, PG, (4.8)
AP ADX) + AP, PioBx= AP P g, (4.9)

SinceQ*,Q*,B = Q*,AD, it follows from (4.5) that
A Q:ADXx = A Q1 Qlo0 (4.10)

Due to Condition C2 and Theorem 1, the projectét®.1 A~ and A*P,,A*~ are
differentiable functions, therefore so are the funcﬂAﬁs*Q* A and A *P* At

immediately gives thaf\*~ *Qileoq e Clis a necessary condition for a functiom
to be a solution. One can check, however, that

DOG = A QL Q. (4.11)

Further, due t\D = G,P;PoandAD = —P?P*, G, the identitieDP; = DG,AD =
~DG;AD = A”*P*,AD hold. Thus, in Theorem 2, we could use matrix functions
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associated with equation (1.2), i. e., we could suppose
A*_*Qle:Oq ech,
and replace (2.15) by
P1(to)A(to) D(to)X(to) = d,  d € im P, (to)A(to) D(to).
If x € C3, then the first term in (4.8) rewrites as
AT QL AAT QL ADY) — (A Q1 A)' DX].
Thus, combined with (4.10), i. e., with (4.5), equation (4.8) rewrites as
AT QL AR QL QL) — (A" Q1A DX = AT Q) Plo(d - BY.  (4.12)
This is exactly the so-called hidden constraint = #{(q) in a different form. Indeed,
since ket\p = kerQ, and (4.5) hold, the multipliel—Wo may be inserted before the

termq - Bxin (4.12). On the other hand, the relation kKéy = kerQy, involves that
(4.5) andWpBx = Wpq are equivalent. In fact, we checked the following statement:

Lemma 4. A functionx € C}, satisfies (4.5) and (4.6) if and onlysfe Ming,.
Using (4.5) and (4.12), we can rewrite (4.9) as a regular ODE
U — (AP AY U - (AP AA T BG,; Au
= [(A7"P11A)D — AP PLoBIG S Qlod + AT PI1Plog

*

(4.13)

foru:= A*‘*I521A(Dx). Equation (4.13) is nothing else but the inherent ODE (2.14)
in terms connected with (1.2). Indeed, the term by term coincidence can be verified by
direct computation. The forms (4.12) and (4.13) show that both the hidden constraint
and the inherent ODE are independent of the chosen projegoRs since so are

P.o, P.1; this assertion was proven in [2] in afidirent way.

Remarks. SinceQ;,G;, = Q;,B, (4.5) defines the projection of the functigronto
imG_;Q;,G.,:

G2 QioGliX = G5 Qo0 (4.14)
This is an equivalent of the first equation in formula (4.1) of Lemma 3. A combination

of (4.14) with the second equatidihx = H(q) in (4.1) defines another projection of
the functionx. Namely, we can obtain the relations

GV Gox = G5 [Qi(Ply - Qip)d - QAR Q Q50| (4.15)
V =[P+ AT(APLATYA|Qu. VE=V, VQo=QuV =0

and, therefore, the system of equations in (4.1) becomes equivalent to system (4.14)—
(4.15) which defines two projections of the functianThis observation will be used
in Section 5.
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Theorem 5. Let (1.1) be tractable with index, u € {0,1,2} andq € CéQlG,l(I).
2

Then a setk c C%)(I) is ak-dimensional gine linear subspace of solutions of the
DAE (1.1)if and only if, for allt € 7,

K(t) = {w e €™: y" OADDOw + " (t) = 0. w € Ming(t)} (4.16)

wherey : 7 — L(C3C™), dimimy(t) =sv: 7 - C3% s=p0-k,and
—D*(A*y) + By =0, (4.17)
v +q'y=0. (4.18)

Theorem 5 states that anffiae linear subspace within the whole solution set can
be segregated by the help of functions that are solutions of the homogeneous adjoint
DAE and solutions of an explicit ODE.

Proof. We denote the set on the right-hand side of (4.16Xift) and provide the
proof foru = 2.

LetK € C,lj(I) be ak—dimensional fiine linear subspace of solutions of the DAE
(1.1) of index 2 and choose an arbitragye K. Let

L«::{é’eCé(I):f:x—xa, xe?(}

be the linear subspace of functions correspondiriyf ndLg(t) e C™, te I, te I,
be the corresponding subspaces. Note that, for dyerg haveD(t)Q1(t)Lk (t) = {0}
and dimD(t)Lk (t) = dimLk(t). Fixtg € 7. Let

L (to) := (D(to)Lx(to) ® DNa(to) & kerA(to))™".
One has
dimL(t)) =m—-[k+v+(Mm-r)]=r-k-v=s
Thus, there exiss linearly independent vecto@, L2 spanning_g((to). Since
L% (to) € (DN1(to) @ kerA(to))" = A*(to)S.a(to),
the IVPs for the homogeneous equation (112¥(0) with the initial conditions
At)Paltoylto) =z, i=1....s

have unique solutiong.
The above solutiong;, . . ., ys of the homogeneous equation (1.2) are linearly in-
dependent. Indeed, assume the contrary, that is for the solution

£t) = ) ciwi(t)
i=1

with at least one non-zer, the equality£(f) = 0 holds for somd. The IVP for
homogeneous equation (1.2) with initial conditiai(f)P.1(f)y(f) = 0 has the unique
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solutiony = 0. This is in contradiction to the fact that
S
A (to)Palto)é(to) = ) 6z # 0.
i=1

Sety? = —2*D(to)Xa(to) and letsj : 7 — € be the solution of the IVP for the ODE
v/ + gy = 0 satisfyingui(to) = 0.
Letx e K. Then

(i AMDE)X(E) + vf (1) =
| A®Y DO] X(W) + 4 © [AODEXV) ] - 4 Oa(t) =
y; (OBOX() + yi (O[act) — BEX®)] — y; (Ha(t) = 0.
Thus,
yi (OAQD)X() + o] () = y; (to)Ato) D(to) X(to) + v (to)- (4.19)
Note that A
A" (t0) Q.1(to)yi(to) = O.
Thus, the expression in right-hand side of (4.19) can be brought to the form
y; (to) P71 (to)A(to) D(to) X(to) — 2" D(to)Xa(to) = Z D(to)[X(to) — Xa(to)]-

Sincex(tp) — Xa(to) € Ly (to), the latter expression vanishes by construction.

Lety : I — L(C3C™ be defined “columnwise” by vector-valued functions
yi, i = 1,...,s asy(t) := (y1(t),...,ys(t)). Clearly,y is a solution of DAE (4.3).
Similarly,v: 7 — CS,0(t) := (va(t), ..., vs(t)) satisfies ODE (4.4).

Thus, we checked that fore K c Minq, and every fixed € 7, w := X(t) belongs
to the set(t).

For the second part, for eatlet the seK(t) be given. We have

y*AD = y'IT* ,,, AD = y*ADIlcan 2= y*ADP;.
On the other hand, by construction, the equality

s=dimimy = dimimA"y

holds. Thus,
dim(kery"ANDS;) =(M-9) —[v—-(M-r)]=r—-s—-v=r—(o-K -v=Kk
i. e., dimK(t) = k.

Fix~at~ € 7. Due to the above considerations, there exigise C™ such that
wo € K(f) and there exisk linearly independent vectors, ..., wx € C™ such that

y" OAOD@®wi =0
and
wi = Hcanwi.
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Let us consider the solutioxy of (1.1) with initial valuexg(f) = wo and solutions
X1, ..., Xk of homogeneous equations (1.1) with initial valug$) = wi, i = 1,...,k,
respectively. For everly we have

Xo(t) + span{xa(t), ..., %} c K(t).

A similar reasoning that we applied when showing the linear independence of the so-
lutions of the homogeneous adjoint equation with linearly independent initial values
yields that for each, the dfine linear seko(t) + span{xi(t), . . ., x(t)} is of dimension
k. Thus,

K(t) = xo(t) + span{xy(t), ..., X(t)}.
On the other handxp + span{x,..., X} is an dfine linear solution set as it was
claimed. ]

5. TRANSFER OF BOUNDARY CONDITIONS

5.1. Separated boundary conditions.First let us consider the BVP for (1.1) with
separated boundary condition (3.7), i.k;, = (K, | 0), Ki = (0| K§,), d* = (d; |
d3), whereKy € L(C™, C™), Kpz € L(C™, C™), d; € C™, d € C™, and the symbol
0 stands for the zero matrix of the appropriate dimension.
Both sets of solutions defined by one and the other boundary conditions, i. e.,
Ka = {X € Mind2 : KaX(a) = d1}
and
Kb = {X € Mind2 : KpX(b) = dy}
are dfine linear solution sets and so%s := K5 Kb, the solution set of BVP. Due
to Remark 5%, andK,; admit the equivalent representation
Ka = {X € Ming2 : Kux(@) = di},
Kb = {X € Ming2 : KeoX(b) = 0o},

where
Ka1 = KaG3()(1 - Qp(a) - V*(2))G., (@), (5.1)
Kbz = Kp2G5 (b)(I - Qio(b) — V*(b))Gl,(b), (5.2)
di = di - G (A(P:1(8)Qip(a) + Q1 (BA)P:o(a))d(@) (5.3)
- Q1 (AA@)(A™Q;; Q;00) ()], (5.4)
dz = d2 - G5 (D)[(P;1(b)Q(b) + Q1 (b)P(b))ai(b) (5.5)
— Q1 (B)AD) (A Q;; Qo) (b)].
Note that

(I = Qiot) = VI(1)G2(t) = —[I + AB(A™ QA (DA™ (D] PL1 (DA D().
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We can always assume that the boundary conditions are given in their modified form
and the matricek,1, K41 are of full rank. Let us set

Yaa := K*(a)A*_(a)D*_(a)Kél
and

yob = K. (D)A™ (B)D*~ (b)Ky,
wherekK, is the counterpart dk from (3.2), i. e.,

Ko =1 = QPGB P.o — QuoQuA™ (A" QuA™) A’
Clearly, the condition&a1x(a) = dy andyz.A@)D(a)x(a) = d are identical, and the
same is true for the pair of conditiolg,x(b) = d, andyj A(@)D(a)x(a)x(b) = d,.
Let y, andyy, be the solutions of (4.17) with initial valugg(a) = yaa andyp(a) =

yob- In parallel, letv, anduy, be the solutions of (4.18) constructed with the corre-
spondingy, andyy, and initial values(a) = d; ando(b) = dy, respectively. Due to

Theorem 5, a functiox € Cé is a solution of BVP (1.1) if and only if, for eveny
X(t) satisfies the system

A OADDOX() = —v3(t) (5.6)

Y OADDOX() = —uj(1), (5.7)
VA (OGL()X(1) = QL (O(P(t) — Qo)a(t)

— Qi (OAMA ™ QL QLea) (1), (5.8)

Qio(MBMX() = Qlp(tya(t). (5.9)

By construction, the first pair of equations is linearly independent of the second one.
Let7 :=dimim(ya | yp). Also by construction, the equalities

dimimD*A” (ya | yb) = dimim (ya | yb) = diMim (yaa | ybo)
hold. We have proved above that dwi{t) = r + r; — m. The Fredholm alternative

for (5.6)—(5.9) now yields the following statement.

1

DOLG;! andd; € im Ky, dp € im Ky, @ unique solutiorx

Theorem 6. Foranyge C

exists if and only if
r+ri—-m-7=0.

5.2. Non-separated boundary conditions By using Moszyski’s trick [4], we trans-

form the problem into an equivalent one with separated boundary conditions. For
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te[a (a+h)/2], set

o[ X —o . a®
X(1) = (x(b ra- t))’ q(t) = (q(b ra- t))’
At) := diag(A(t), Ab +a—1)), D(t) := diagD(t), D(b + a—t)),
B(t) := diag®B(t), -B(b + a—t)),

- _[Ka Kp - (0 O - (d

(5 5) ey ) o= (0)
wherel, is themxmidentity matrix. Obviously, the original boundary value problem
is equivalent to the BVP of doubled dimension on the halved inteevéa [+ b)/2]

with the above data. This latter problem folis a BVP with separated boundary
conditions, and all considerations of the previous subsection apply.

6. FINAL REMARKS

Remark6. The homogeneous IVPs for (1.2) with our initial dat@) = yaa and

y(b) = ypp in Section 5 are always solvable. Thus, integrating system (1.2) from
each of the interval ends up to an arbitrary common pigintne obtainga(tp) and

yp(to). In parallel, the IVPs for equation (4.18) are to be solved. One should compute
(preserve) the values only at poiritwhere the solutiorx is needed. At these points,

the other two matricesG.,(f)V(f) and B*(f)Q.o(f), should also be calculated. If the
linear system (5.6)—(5.9) is nonsingular at an arbittasyto, then so is it for alf, and

one can establish the solvability and uniqueness of the solution and get the solution
at allf.

Remark7. To go in line with this program, a reliable integrator for (1.2) is needed
and all of the other cd&cients occurring in (5.6)—(5.9) must be available. It is worth
noting that in this system we need om/(t)y(t) = A*(t)P,1y(t), i. e., the solution of

the inherent ODE of the adjoint equation. One may prefer solving this homogeneous
inherent ODE instead of the homogeneous DAE (1.2). Practically, there idfao di
ence in computational complexity. A reliable integrator for any DAE would use its
inherent ODE to keep the numerical solution in the corresponding subspace at least
implicitly [3].

RemarkB. Theoretically, a properly discretised version of the transfer method would
yield an algorithm for the numerical solution of the BVPs for (1.1). However, the
resulting procedure may be very sensitive to the accumulation of numerical errors.
This phenomenon may appear even when the BVP is well-conditioned and the rele-
vant subspaces vary slowly. Therefore, a modification of the transfer algorithm seems
reasonable. That modification would rely on the orthonormalisation of basis vectors
of the subspaces in question at the meshpoints or it would build a smoothly varying
basis on the whole interval. These issues will be reported in another publication.
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Remarkd. There is no gain in the complexity if one avoids using the adjoint equation
and the method relies upon any kind of shooting. In that case the computational
effort is spent on keeping either a fundamental matrix (not necessarily the maximal
normalised fundamental matrix) of the homogeneous DAE (1.1) in the corresponding
subspace or some solutions of the DAE (1.1) in the correspondiimg &ubspace.

To achieve this aim, one must use projectors not simpler than those in our analysis.

REFERENCES

[1] Barra, K.: Linear subspaces for linear DAEs of indéxComputers and Mathematics with Appli-
cations,31(1996), No. 45, 81-86.

[2] Barra, K. anp Mirz, R.: A unified approach to linear gferential algebraic equations and their
adjoints Zeitschrift ur Analysis und ihre Anwendunge®l1 (2002), No. 3, 783—-802.

[3] Hicueras, |. axp MRz, R.. Differential-algebraic equations with properly stated leading terms
Computers and Mathematics with Applications, to appear.

[4] Moszynski, K.: A method of solving the boundary value problem for a system of linear ordinary
differential equationsAlgoritmy, 11 (1964), No. 3, 25-43.

[5] Zeike, G.: Motivation und Darstellung von verallgemeinerten Matrixinverdeitr. Num. Math.,
7(1979), 177-218.

Authors’ Addresses

Katalin Balla:

CoMPUTER AND AUTOMATION RESEARCH INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, H-1518 BIDAPEST,
P. O. Box 63, HuNGARY

E-mail addressballa@sztaki.hu

Roswitha Marz:
HumsoLbT UNIVERSITY, INSTITUTE OF M ATHEMATICS, D-10099 B:RLIN, GERMANY
E-mail addressiam@mathematik.hu-berlin.de



