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Abstract. We study the solutions of a special matrix equation, particularly, their eigenvalues.
These matrix solutions have an interesting relationship to unitary matrices.
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1. INTRODUCTION

In this note, we study the matrix equation

AEA� DE; (1.1)

where
E D ..�1/rır;nC1�j /

n
r;jD1 ; nD 2k; 1� k <C1; (1.2)

ır;j is the Kronecker delta, and A is an n�n matrix over the complex numbers C:
This study is motivated by the theory of differential operators where this equation
plays a critical role in the characterization of self-adjoint domains [1–4].

2. EIGENVALUES

In this section we characterize the eigenvalues of matrix solutions of equation
(1.1). Let 1 denote the identity matrix.

Lemma 1. We have

EE D�1; E� DE�1 D�E; det.E/D 1: (2.1)

If A is a solution of (1.1), then

det.A/D˙1: (2.2)
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Proof. The properties of E follow from a direct computation. For (2.2) note that
det.A/D det.A�/ and thus

det.AEA�/D det.A/det.E/det.A�/D Œdet.A/�2 D 1: (2.3)

�

Remark 1. The simple examples AD 1 and AD i1 show that both signs can occur
in (2.2).

Lemma 2. If A is a solution of (1.1), then�

�.A�1/D �.A�/: (2.4)

Proof. From (1.1) and (2.1) we get AEA�E D EE D �1. Hence .AE/�1 D
�A�E and A� D�EA�1E, A�1 D�EA�E. Therefore,

det.A�1��1/D det.�EA�E��E.�E/1/

D det.�E/det.A���1/det.E/

D det.A���1/;

and (2.4) follows. �

Remark 2. Of course (2.4) holds for any unitary matrix U , because U � D U�1.
All eigenvalues of a unitary matrix lie on the unit circle of the complex plane. Below
we derive the corresponding result for matrix solutions A of (1.1). We will see that
the eigenvalues of A need not lie on the unit circle but those which do are related to
each other in interesting ways and also those which are not on the unit circle have
interesting relationships to each other.

Let the spectrum of A have the form

�.A/D f�j D rj e
i�j W j D 1; : : : ;ng; (2.5)

where rj > 0 and �� < �j � � for j D 1; : : : ;n. We can now give our main result.

Theorem 1. Let A be a solution of (1.1). Then the following properties hold:
(1) If, for some j , an eigenvalue �j of A is not on the unit circle, i. e., rj ¤ 1,

then 1
rj
ei�j is also an eigenvalue of A.

(2) Let l be the number of pairs of eigenvalues of A not on the unit circle,
given by (1) and counting multiplicity, then l can be any one of the num-
bers 0;1;2; : : : ;k.

(3) Assume that there exist l .0� l � k/ pairs of eigenvalues

r1e
i�1 ;

1

r1
ei�1 ; : : : ; rle

i�l ;
1

rl
ei�l

�As usual, the symbol �.A/ stands for the spectrum of A.
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of A which are not on the unit circle, where rj > 0, rj ¤ 1, j D 0;1; : : : ; l
.j D 0 means that there are no such eigenvalues, i. e., all eigenvalues are on
the unit circle), then there exist d D 2.k� l/ eigenvalues of A,

ei�lC1 ; � � � ; ei�lCd

on the unit circle and �j satisfy the relations

lX
jD1

2�j C

dX
jD1

�lCj 2 fj� W j D 0;˙2; : : : ;˙2.k�1/;2kg (2.6)

if det.A/D 1, and the relations
lX

jD1

2�j C

dX
jD1

�lCj 2 fj� W j D˙1;˙3;˙5; : : : ;˙.n�1/g (2.7)

if det.A/D�1.

Proof. By Lemma 2, we have �.A�1/D �.A�/, i. e.,�
1

�j
W j D 1; : : : ;n

�
D fx�h W hD 1; : : : ;ng:

Therefore, for any x�h 2 �.A�/, there exist 1
�j

such that x�h D 1
�j

, i. e.,

rhe
�i�hrj e

i�j D 1:

Hence, rhrj D 1 and �j D �h (or �j � �h D 2�). Therefore, if for some j , rj ei�j

with rj > 0, �� < �j � � , and rj ¤ 1 is an eigenvalue of A, then 1
rj
ei�j is also an

eigenvalue of A.
By (1), the eigenvalues not on the unit circle occur in pairs where each pair has the

same angle and the conclusion follows.
Conditions (2.6) and (2.7) follow from the fact that det.A/D

Qn
jD1�j D˙1. �

Remark 3. Let A satisfy (1.1). Then A may have all its eigenvalues on the unit
circle or there may be none on the unit circle. In all other cases there are an even
number of eigenvalues not on the unit circle and these can be paired so that any
one pair has the same angle; the angles of the eigenvalues are related to each other
according to (2.6) and (2.7). The examples in the next section will illustrate these
points further.

3. EXAMPLES

In this section we give some examples to illustrate Theorem 1.
Example 1. Let nD 2. In the second order case either both eigenvalues are on the

unit circle or neither one is.
CASE 1. Both eigenvalues are on the unit circle, i. e., �.A/D

˚
ei�1 ; ei�2

	
:
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(1) When det.A/ D 1, we have ei.�1C�2/ D 1 and �2 D ��1 or �1C �2 D 2� .
Therefore, �.A/D fei� ; e�i�g. Note that the eigenvalues of A are symmetric
with respect to the real axis. When �D 1 or �D�1 is an eigenvalue, then it
must have multiplicity 2.

(2) If det.A/ D �1, then we have �1C �2 D � and the eigenvalues of A are
symmetric about the imaginary axis. When �D i or �D�i is an eigenvalue,
then it must be a double eigenvalue.

CASE 2. The eigenvalues ofA are not on the unit circle, i. e., �.A/D
˚
rei� ; 1

r
ei�
	
;

where r > 0 and r ¤ 1.

(1) When det.A/D 1, we have ei.2�/ D 1 and � D 0 or � . Then the eigenvalues
of A are r and 1

r
, or �r and �1

r
.

(2) If det.A/ D �1, then we have ei.2�/ D �1 and � D �
2

or ��
2

. Then the
eigenvalues of A are ri and 1

r
i , or �ri and �1

r
i .

Example 2. Assume that n D 4. Then exactly one of the following three cases
must hold:

(1) All the eigenvalues are on the unit circle, i. e., �.A/D
˚
ei�1 ; ei�2 ; ei�3 ; ei�4

	
;

where the numbers �i are such that
P4
jD1 �j D 0;˙2�;4� if det.A/ D 1,

and
P4
jD1 �j D˙�;˙3� if det.A/D�1.

(2) One pair of eigenvalues is not on the unit circle and the other two eigenvalues
are on the unit circle, i. e.,

�.A/D

�
ei�1 ; ei�2 ; rei� ;

1

r
ei�
�
;

where r > 0 and r ¤ 1. In this case �1;�2, and � satisfy �1C �2C 2� D
0;˙2�;4� when det.A/D 1, and �1C�2C2� D˙�;˙3� when det.A/D
�1.

(3) No eigenvalue of A is on the unit circle. In this case there are two pairs of
eigenvalues each pair having the same angle, i. e.,

�.A/D

�
r1e

i�1 ;
1

r1
ei�1 ; r2e

i�2 ;
1

r2
ei�2

�
;

where rj > 0 and rj ¤ 1, and the numbers �1, �2 satisfy �1C�2D 0;˙�;2�
when det.A/D 1, and �1C�2D˙�2 ;˙

3�
2

when det.A/D�1. Here �1 and
�2 are not necessarily distinct.

Example 3. Assume that nD 6. There are exactly four subcases:

(1) All eigenvalues are on the unit circle, i. e.,

�.A/D
n
ei�1 ; ei�2 ; ei�3 ; ei�4 ; ei�5ei�6

o
;
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where the numbers �j satisfy
P6
jD1 �j D 0;˙2�;˙4�;6� if det.A/ D 1,

and
P6
jD1 �j D˙�;˙3�;˙5� , if det.A/D�1.

(2) One pair is not on the unit circle and the other four eigenvalues are on the
unit circle , i. e.,

�.A/D

�
ei�1 ; ei�2 ; ei�3 ; ei�4 ; rei� ;

1

r
ei�
�
;

where r > 0, r ¤ 1, and the numbers �j and � satisfy
4X

jD1

�j C2� D 0;˙2�;˙4�;6�

when det.A/D 1, and
4X

jD1

�j C2� D˙�;˙3�;˙5�

when det.A/D�1.
(3) Two pairs are not on the unit circle and the other two eigenvalues are on the

unit circle, i. e.,

�.A/D

�
ei�1 ; ei�2 ; r1e

i�3 ;
1

r1
ei�3 ; r2e

i�4 ;
1

r2
ei�4

�
;

where rj > 0 and rj ¤ 1, and the numbers �j satisfy

�1C�2C2�3C2�4 D 0;˙2�;˙4�;6�;

when det.A/D 1, and

�1C�2C2�3C2�4 D˙�;˙3�;˙5�:

when det.A/D�1.
(4) No eigenvalue is on the unit circle, i. e.,

�.A/D

�
r1e

i�1 ;
1

r1
ei�1 ; r2e

i�2 ;
1

r2
ei�2 ; r3e

i�3 ;
1

r3
ei�3

�
;

where rj > 0 and rj ¤ 1, and the numbers �j satisfy
3X

jD1

�j D 0;˙�;˙2�;3� (3.1)

when det.A/D 1, and
3X

jD1

�j D˙
�

2
;˙
3�

2
;˙
5�

2
(3.2)

when det.A/D�1.
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Example 4. Let

AD

�
r1e

i�1 0 0 0 0 0

0 r2e
i�2 0 0 0 0

0 0 r3e
i�3 0 0 0

0 0 0 1
r3
ei�3 0 0

0 0 0 0 1
r2
ei�2 0

0 0 0 0 0 1
r1
ei�1

�

(3.3)

ThenA satisfies (1.1) for any rj >0 and �j 2 .��;��: Choosing rj D 1 for j D 1;2;3
all six eigenvalues are on the unit circle and their angles satisfy the equations (3.1)
or (3.2). By choosing three distinct �j we get three distinct eigenvalues each with
multiplicity 2, by choosing �1D �2¤ �3 we get two distinct eigenvalues, one having
multiplicity 2, the other 4. Finally by choosing �1 D �2 D �3 we get one eigenvalue
with multiplicity 6. Clearly this example extends to n D 2k for k > 3 and can be
used to show that the eigenvalues on the unit circle can have multiplicity m for any
m; mD 2;4;6; : : : ;2k.

Remark 4. Just as in the above examples, for nD 2k there are exactly kC1 cases
ranging from exactly j pairs not on the unit circle for j D 1;2; : : : ;k to all eigenvalues
on the unit circle.

Remark 5. It is interesting to compare matrices satisfying (1.1) with unitary ma-
trices. Clearly equation (1.1) is equivalent with

.AE/.EA/� D 1 (3.4)

which can be compared to
UU � D 1;

but as Theorem 1 shows there are major differences, as well as similarities, in the
behavior of the eigenvalues of the matrices satisfying these two equations. Lemma 1
holds for unitary matrices since U�1DU � but all the eigenvalues of a unitary matrix
lie on the unit circle. The fact that oneE in (3.4) is “on the wrong side” is significant.
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