
Miskolc Mathematical Notes HU ISSN 1787-2405
Vol. 23 (2022), No. 1, pp. 457–469 DOI: 10.18514/MMN.2022.1950

MINIMAL DOUBLY RESOLVING SETS OF ANTIPRISM GRAPHS
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Abstract. Consider a simple connected graph G = (V (G),E(G)), where V (G) represents the
vertex set and E(G) represents the edge set respectively. A subset W of V (G) is called a resolving
set for a graph G if for every two distinct vertices x,y∈V (G), there exist some vertex w∈W such
that d(x,w) 6= d(y,w), where d(u,v) denotes the distance between vertices u and v. A resolving
set of minimal cardinality is called a metric basis for G and its cardinality is called the metric
dimension of G, which is denoted by β(G). A subset D of V (G) is called a doubly resolving
set of G if for every two distinct vertices x,y of G, there are two vertices u,v ∈ D such that
d(u,x)− d(u,y) 6= d(v,x)− d(v,y). A doubly resolving set with minimum cardinality is called
minimal doubly resolving set. This minimum cardinality is denoted by ψ(G).

In this paper, we determine the minimal doubly resolving sets for antiprism graphs denoted
by An with n ≥ 3 and for Möbius ladders denoted by Mn, for every even positive integer n ≥ 8.
It has been proved that ψ(An) = 3 for n≥ 3 and

ψ(Mn) =

{
3, if n≡ 0 or 4 (mod 8)
4, if n≡ 2 or 6 (mod 8)

for every even positive integer n≥ 8.
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1. INTRODUCTION AND PRELIMINARY RESULTS

The concept of metric dimension was introduced by Slater in [14] and also inde-
pendently by Harary and Melter in [6]. This concept has different applications in the
diverse areas of network discovery and verification [2], robot navigation [13], and
chemistry.

Consider a simple connected undirected graph G= (V (G),E(G)), where |V (G)|=
n and |E(G)| = m. Let d(x,y) denote the distance between vertices x and y. A
vertex v of graph G is said to resolve two vertices x and y of G if d(v,x) 6= d(v,y).
A vertex set W = {w1,w2, . . . ,wk} of G is a resolving set or a locating set of G
if every two distinct vertices of G are resolved by some vertex of W . The k-tuple
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r(v,W ) = (d(v,w1),d(v,w2), . . . ,d(v,wk)) is called the vector of metric coordinates
of v with respect to W . A resolving set of minimum cardinality is called a metric
basis of G. The cardinality of metric basis, denoted by β(G), is called the metric
dimension of G.

Let F be a family of connected graphs Gn : F = (Gn)n≥1 depending on n as fol-
lows: the order |V (G)| = ϕ(n) and lim

n→∞
ϕ(n) = ∞. If there exists a constant C > 0

such that β(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric
dimension; otherwise F has an unbounded metric dimension. If all graphs in F have
the same metric dimension (which does not depend on n), F is called a family with
constant metric dimension. For recent results on metric dimension of certain classes
of graphs, please consult [7–11].

The doubly resolving set of a graph G is a recent concept introduced by Cáceres
et al.[3]. They proved that the metric dimension of the Cartesian product G2G is
related in a strong way to doubly resolving sets of G with the minimum cardinality.
The vertices x,y of the graph G, n≥ 2, are said to doubly resolve vertices u,v of G if
d(u,x)− d(u,y) 6= d(v,x)− d(v,y). A vertex set D of G is a doubly resolving set of
G if every two distinct vertices of G are doubly resolved by some two vertices of D,
i.e., if there are no two distinct vertices of G with the same difference between their
corresponding metric coordinates with respect to D. The minimal doubly resolving
set is a doubly resolving set with minimum cardinality. The cardinality of minimum
doubly resolving set is denoted by ψ(G). The problem of minimal doubly resolving
set is NP-hard [12].

Note that we have β(G) ≤ ψ(G) always by the definition. Since if x,y doubly
resolve u,v, then d(u,x)−d(v,x) 6= 0 or d(u,y)−d(v,y) 6= 0, and hence x or y resolve
u,v, which follows that a doubly resolving set is also a resolving set. In [11], it
has been proved that metric dimension of antiprism denoted by An, is 3. The metric
dimension of Möbius ladder Mn has been discussed in [1] and it was proved that
Möbius ladder Mn has bounded metric dimension.

The problem of determining the minimal cardinality of double resolving sets for
prism graphs denoted by Cn2P2 was studied in [4]. It was proved that the minimal
cardinality is equal to four if n is even and equal to three if n is odd. For more study
on computing the doubly resolving sets of graphs, see [12].

In this paper, we extend this study to antiprism graphs denoted by An and to
Möbius ladders denoted by Mn. We determine the cardinality of minimal doubly
resolving set ψ(An) and ψ(Mn).

2. THE MINIMAL DOUBLY RESOLVING SETS FOR ANTIPRISM GRAPHS An

In this section, we determine the minimal doubly resolving set for antiprism graphs
denoted by An. The antiprism An[5] is a 4-regular graph and for n = 3, it is the oc-
tahedron. The graph of the antiprism An for n≥ 3 consists of V (An) = {x1,x2, . . . ,xn
,y1,y2, . . . ,yn} and E(An) = {xixi+1 : 1≤ i≤ n}∪{yiyi+1 : 1≤ i≤ n}∪{xiyi : 1≤ i≤
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FIGURE 1. The antiprism graph A7.

n}∪{xi+1yi : 1≤ i≤ n}with indices taken modulo n. As a convention, {y1,y2, . . . ,yn}
forms outer cycle and {x1,x2, . . . ,xn} forms inner cycle and we have |V (An)|= 2n and
|E(An)|= 4n for n ≥ 3. Figure 1 displays A7. It has been proved that metric dimen-
sion β(An) is equal to 3, i.e., β(An) = 3 for n ≥ 3. So we have ψ(An) ≥ 3, for every
n≥ 3, since ψ(An)≥ β(An).

Lemma 1. Let Si(y1) = {w ∈ V (An) : d(y1,w) = i} be the set of vertices in V at
distance i from y1. For the graph of antiprism An with n≥ 8, the sets Si(y1) are given
in Table 1 where x−k, y−k denote xn−k, yn−k, respectively.

Proof. By the definition of Si(y1), it is easy to see that Si(y1) is the set of all
v ∈V (An) such that va ∈ E(An) for some a ∈ Si−1(y1) and v /∈ Sl(y1), l < i−1. Now
using the definition of the antiprism An, it immediately follows that

S1(y1) = {x1,x2,y2,yn}.

Let us prove by induction that, for 2≤ i < bn
2c= t

Si(y1) = {xi+1,xn−(i−2),yi+1,yn−(i−1)}. (2.1)

For i = 2, starting from S1(y1), we obtain

S2(y1) = {x3,xn,y3,yn−1}.

Suppose that (2.1) holds for 2≤ i≤ l < bn
2c−1. Starting from Sl(y1), we obtain the

following candidates for the members of Sl+1(y1):

xl,xn−l+1,yl,yn−l,xl+2,xn−l+3,yl+2,yn−l+2.

The first four vertices belong to Sl−1(y1) and consequently cannot belong to Sl+1(y1).
For example xl = x(l−1)+1 ∈ Sl−1(y1). The set of remaining four vertices can be
expressed in the form (2.1) for i = l +1. For i≥ bn

2c, Si(y1) depends on n.
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Case 1: If n = 2t, t ≥ 4.
Starting from St−1(y1), we obtain the following candidates for St(y1):

xt−1,xn−t+4,yt−1,yn−t+3,xt+1,xn−t+2,yt+1.

The first four vertices belongs to St−2(y1) and can be neglected. The set of remaining
three vertices represents set St(y1) for n = 2t. Starting from St(y1), St+1(y1) =∅.

Case 2: If n = 2t +1, t ≥ 4.
Starting from St−1(y1), we obtain the following candidates for St(y1):

xt−1,xn−t+4,yt−1,yn−t+3,xt+1,xn−t+2,yt+1,yn−t+1.

The first four vertices belongs to St−2(y1) and can be neglected. The set of remaining
four vertices represents set St(y1) for n = 2t +1. Starting from St(y1), the candidates
for St+1(y1) are:

xt ,xn−t+3,yt ,yn−t+2,xt+2.

As xt ,xn−(t−3),yt ,yn−(t−2) ∈ St−1(y1). So St+1(y1) = {xt+2}. It is easy to see that
similar construction applied to St+1(y1) lead to St+2(y1) = ∅. The following table
displays Si(y1). �

n i Si(y1)
1 {x1,x2,y2,yn}

2≤ i < bn
2c {xi+1,x−(i−2),yi+1,y−(i−1)}

2t t {xt+1,x−(t−2),yt+1}
2t +1 t {xt+1,x−(t−2),yt+1,y−(t−1)}

t +1 {xt+2}
TABLE 1. Si(y1) for An

Theorem 1. For n≥ 3, ψ(An) = 3.

Proof. There are two cases to be discussed.
Case 1: If n = 2t, t ≥ 4.

Consider Table 2 which shows the vectors of metric coordinates of vertices of An with
respect to set D∗ = {y1,y3,yt+2} in a special way.

Starting from Table 2, note that y1 ∈ D∗ therefore the first metric coordinate of a
vector from Si(y1) with respect to D∗ is equal to i. It is easy to check that for each
i ∈ {1,2, . . . , t}, there do not exist two vertices x,y ∈ Si(y1) such that all coordinates
of the vector r(x,D∗)− r(y,D∗) are equal to 0. Also, it can be easily seen that for
each i, j ∈ {1,2, . . . , t}, i 6= j, there do not exist two vertices x ∈ Si(y1) and y ∈ S j(y1)
such that all coordinates of the vector r(x,D∗)− r(y,D∗) are equal to i− j.

Case 2: If n = 2t +1, t ≥ 4.
Consider Table 3 which gives the vectors of metric coordinates of vertices of An with
respect to set D∗ = {y1,y3,yt+2} in a special way.
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i Si(y1) D∗ = {y1,y3,yt+2}
0 y1 (0,2, t−1)
1 x1 (1,3, t−1)

x2 (1,2, t)
y2 (1,1, t)
yn (1,3, t−2)

2 x3 (2,1, t)
xn (2,4, t−2)
y3 (2,0, t−1)

yn−1 (2,4, t−3)
3≤ i≤ t−3 xi+1 (i, i−2, t− i+2)

(t ≥ 6) xn−i+2 (i, i+2, t− i)
yi+1 (i, i−2, t− i+1)

yn−i+1 (i, i+2, t− i−1)
t−2 xt−1 (t−2, t−4,4)

xn−t+4 (t−2, t,2)
yt−1 (t−2, t−4,3)

yn−t+3 (t−2, t,1)
t−1 xt (t−1, t−3,3)

xn−t+3 (t−1, t,1)
yt (t−1, t−3,2)

yn−t+2 (t−1, t−1,0)
t xn−t+1 (t, t−2,2)

xn−t+2 (t, t−1,1)
yn−t+1 (t, t−2,1)

TABLE 2. Vectors of metric coordinates for An, n = 2t, t ≥ 4

Starting from Table 3, it is easy to check that for each i ∈ {1,2, . . . , t +1}, there do
not exist two vertices x,y ∈ Si(y1) such that all coordinates of the vector r(x,D∗)−
r(y,D∗) are equal to 0. Also, it can be easily seen that for each i, j ∈ {1,2, . . . , t +1},
i 6= j, there do not exist two vertices x∈ Si(y1) and y∈ S j(y1) such that all coordinates
of the vector r(x,D∗)− r(y,D∗) are equal to i− j.

Enumeration technique shows that minimal doubly resolving set for A3, A4 is
D∗ = {y1,y2,y3}, for A5, it is D∗ = {y1,y3,y4}, and for A6, A7, it is D∗ = {y1,y3,y5}
respectively.

In this way, D∗ is a minimal doubly resolving set for An, n ≥ 3 and Theorem 1
holds. �
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i Si(y1) D∗ = {y1,y3,yt+2}
0 y1 (0,2, t)
1 x1 (1,3, t)

x2 (1,2, t +1)
y2 (1,1, t)
yn (1,3, t−1)

2 x3 (2,1, t)
xn (2,4, t−1)
y3 (2,0, t−1)

yn−1 (2,4, t−2)
3≤ i≤ t−2 xi+1 (i, i−2, t− i+2)

(t ≥ 5) xn−i+2 (i, i+2, t− i+1)
yi+1 (i, i−2, t− i+1)

yn−i+1 (i, i+2, t− i)
t−1 xt (t−1, t−3,3)

xn−t+3 (t−1, t +1,2)
yt (t−1, t−3,2)

yn−t+2 (t−1, t,1)
t xn−t (t, t−2,2)

xn−t+2 (t, t,1)
yn−t (t, t−2,1)

yn−t+1 (t, t−1,0)
t +1 xn−t+1 (t +1, t−1,1)

TABLE 3. Vectors of metric coordinates for An, n = 2t +1, t ≥ 4

3. THE MINIMAL DOUBLY RESOLVING SETS FOR MÖBIUS LADDERS Mn

The Möbius ladder Mn is a cubic circulant graph which consist of an even num-
ber of vertices. It can be constructed from an n-cycle by adding new edges (called
”rungs”) which connects the opposite pair of vertices in the cycle. The applica-
tions of Möbius ladders can be found in electronics, computer science, chemistry
and chemical stereography. We assume that the vertices of Möbius ladder Mn are
numbered {v1,v2, . . . ,vn} counter clockwise in cycle Cn and opposite pairs of ver-
tices are connected by adding edges between them, where n is an even number. In
[1], it has been proved that the metric dimension β(Mn)≥ 3 for n≥ 8. Thus, we have
ψ(Mn)≥ β(Mn)≥ 3, i.e., ψ(Mn)≥ 3 for every n≥ 8.

Lemma 2. Let Si(v1) = {w ∈ V (Mn) : d(v1,w) = i} be the set of vertices in V at
distance i from v1. For Mn with n≥ 8, sets Si(v1) are given in Table 4.

Proof. There are four cases to be discussed n ≡ 0,2,4 or 6 (mod 8) i.e. n =
8k, 8k+2, 8k+4 or 8k+6 f or k≥ 1. Let us consider the case when n≡ 0 (mod 8),
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FIGURE 2. The Möbius ladder M12.

so n = 8k f or k ≥ 1. By definition of Si(v1), it is easy to see that Si(v1) is the set of
all v ∈ V (Mn) such that va ∈ E(Mn) for some a ∈ Si−1(v1) and v /∈ Sl(v1), l < i−1.
Now using the definition of Mn, it immediately follows that

S1(v1) = {v2,v4k+1,vn}.

Let us prove by induction that, for 2≤ i≤ 2k

Si(v1) = {vi+1,vn−i+1,v4k+2−i,v4k+i}. (3.1)

For i = 2, starting from S1(v1), we obtain

S2(v1) = {v3,vn−1,v4k,v4k+2}.

Suppose that (3.1) holds for 2≤ l < 2k. Starting from Sl(v1), we obtain the following
candidates for members of Sl+1(v1):

vl,vn−l,v4k+1−l,v4k−1+l,vl+2,vn−l+2,v4k+3−l,v4k+1+l.

The first four vertices belong to Sl−1(v1) and consequently cannot belong to Sl+1(v1).
For example vl = v(l−1)+1 ∈ Sl−1(v1). The set of remaining four vertices can be
expressed in form (3.1) for i = l + 1. The sets Si(v1) for other three cases can be
obtained in the same way. The following table displays Si(v1). �

Note that the sets Si(v1), defined in Lemma 2 can be used to determine the distance
between two arbitrary vertices in V (Mn) in the following way.
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n i Si(v1)
8k 1 {v2,v4k+1,vn}

2≤ i≤ 2k {vi+1,vn−i+1,v4k+2−i,v4k+i}
8k+2 1 {v2,v4k+2,vn}

2≤ i≤ 2k {vi+1,vn−i+1,v4k+3−i,v4k+1+i}
2k+1 {v2k+2,v6k+2}

8k+4 1 {v2,v4k+3,vn}
2≤ i≤ 2k+1 {vi+1,vn−i+1,v4k+4−i,v4k+2+i}

8k+6 1 {v2,v4k+4,vn}
2≤ i≤ 2k+1 {vi+1,vn−i+1,v4k+5−i,v4k+3+i}

2k+2 {v2k+3,v6k+5}
TABLE 4. Vectors of metric coordinates for Mn, n = 8k, k ≥ 1

As symmetry of Mn displays the fact that d(vi,v j) = d(v1,v j−i+1) for j > i. Con-
sequently if we know the distance d(v1,w) for every w ∈ V (Mn) then we can recon-
struct the distance between every two vertices from V (Mn).

Lemma 3. For n≥ 8, ψ(Mn) = 3 when n≡ 0 or 4 (mod 8).

Proof. Case 1: If n≡ 0 (mod 8).
We have n = 8k for k ≥ 1. Consider the following table which shows the vectors

of metric coordinates of vertices of Mn with respect to set D∗ = {v1,v2k+1,v4k+1} in
the following way.

i Si(v1) D∗ = {v1,v2k+1,v4k+1}
0 v1 (0,2k,1)
1 v2 (1,2k−1,2)

v4k+1 (1,2k,0)
vn (1,2k,2)

2≤ i≤ 2k−1 vi+1 (i,2k− i, i+1)
vn−i+1 (i,2k− i+1, i+1)
v4k+2−i (i,2k− i+1, i−1)
v4k+i (i,2k− i+2, i−1)

2k v2k+1 (2k,0,2k)
v6k+1 (2k,1,2k)
v2k+2 (2k,1,2k−1)
v6k (2k,2,2k−1)

TABLE 5. Vectors of metric coordinates for Mn, n = 8k, k ≥ 1

Case 2: If n≡ 4 (mod 8).
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We have n = 8k+4 for k ≥ 1. Consider the following table which shows the vec-
tors of metric coordinates of vertices of Mn with respect to set D∗ = {v1,v2k+2,v4k+3}
in the following way.

i Si(v1) D∗ = {v1,v2k+2,v4k+3}
0 v1 (0,2k+1,1)
1 v2 (1,2k,2)

v4k+3 (1,2k+1,0)
vn (1,2k+1,2)

2≤ i≤ 2k vi+1 (i,2k− i+1, i+1)
vn−i+1 (i,2k− i+2, i+1)
v4k+4−i (i,2k− i+2, i−1)
v4k+2+i (i,2k− i+3, i−1)

2k+1 v2k+2 (2k+1,0,2k+1)
v6k+4 (2k+1,1,2k+1)
v2k+3 (2k+1,1,2k)
v6k+3 (2k+1,2,2k)

TABLE 6. Vectors of metric coordinates for Mn, n = 8k+4, k ≥ 1

Since v1 ∈ D∗, Tables 5 and 6 show us that the first metric coordinate of a vector
from Si(v1) with respect to D∗ is equal to i. It is easy to check that, there do not exist
two vertices x,y ∈ Si(v1) such that all coordinates of the vector r(x,D∗)− r(y,D∗) are
equal to 0. Also, it can be verified that there do not exist two vertices x,y such that x∈
Si(v1) and y∈ S j(v1) with i 6= j, so that all coordinates of the vector r(x,D∗)−r(y,D∗)
are equal to i− j.

In this way, we have found minimal doubly resolving set D∗ = {v1,v2k+1, v4k+1}
for Mn when n ≡ 0 (mod 8) and D∗ = {v1,v2k+2,v4k+3} when n ≡ 4 (mod 8). This
proves the statement of Lemma 3. �

Lemma 4. ψ(Mn)> 3 for n≡ 2(mod 8).

Proof. We know that ψ(Mn) ≥ 3 and thus we should prove that every subset D
of vertex set V (Mn) with |D| = 3 is not a doubly resolving set for Mn. We may
assume that v1 ∈ D. In Table 7, one can find all possible types of such set D and the
corresponding non-doubly resolving pair of vertices from V (Mn).

Let us prove that the vertices v4k+1,v4k+2 are not doubly resolved by any two
vertices from set {v1,vi,v j}, 2≤ i≤ 2k, 4k+3≤ j ≤ 6k+2. Using distances from
Table 4, it follows that

(i) d(v1,v4k+1) = 2 and d(v1,v4k+2) = 1.
(ii) d(vi,v4k+1) = d(v1,v4k+2−i) = i+1 and d(vi,v4k+2) = d(v1,v4k+3−i) = i for

2≤ i≤ 2k−1.
(iii) d(v2k,v4k+1) = d(v1,v2k+2) = 2k+1 and d(v2k,v4k+2) = d(v1,v2k+3) = 2k.
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D Non-doubly resolved pair
{v1,vi,v j}, 2≤ i, j ≤ 4k+1, i 6= j {v4k+2,vn}
{v1,vi,v j}, 4k+3≤ i, j ≤ n, i 6= j {v2,v4k+2}

{v1,v4k+2,vi}, 2≤ i≤ 2k+1 or 6k+3≤ i≤ n {v2k+2,v6k+2}
{v1,v4k+2,vi}, 2k+2≤ i≤ 4k+1 or 4k+3≤ i≤ 6k+2 {v2k+1,v6k+3}

{v1,vi,v j}, 2≤ i≤ 2k, 4k+3≤ j ≤ 6k+2 {v4k+1,v4k+2}
{v1,vi,v j}, 2≤ i≤ 2k, 6k+3≤ j ≤ n {v1,v4k+2}
{v1,v2k+1,vi}, 4k+3≤ i≤ 6k+1 {v1,vn}

{v1,v2k+1,v6k+2} {v4k+2,vn}
{v1,v2k+1,vi}, 6k+3≤ i≤ n {v2k+2,v6k+2}

{v1,v2k+2,vi}, 4k+3≤ i≤ 6k+2 {v2k+1,v6k+3}
{v1,v2k+2,v6k+3} {v2,v4k+2}

{v1,v2k+2,vi}, 6k+4≤ i≤ n {v4k+2,v4k+3}
{v1,vi,v j}, 2k+3≤ i≤ 4k+1, 4k+3≤ j ≤ 6k+2 {v2k+1,v6k+3}
{v1,vi,v j}, 2k+3≤ i≤ 4k+1, 6k+3≤ j ≤ n {v1,v2}

TABLE 7. Non-doubly resolved pairs of Mn for n = 8k+2, k ≥ 1

(iv) d(v j,v4k+1) = d(v1,v j−4k) = j− 4k− 1 and d(v j,v4k+2) = d(v1,v j−4k−1) =
j−4k−2 for 4k+3≤ j ≤ 6k+2.

From (i), (ii), (iii) and (iv), we have

d(v1,v4k+1)−d(v1,v4k+2) = d(vi,v4k+1)−d(vi,v4k+2)

= d(v j,v4k+1)−d(v j,v4k+2) = 1,

i.e., {v1,vi,v j}, 2 ≤ i ≤ 2k, 4k + 3 ≤ j ≤ 6k + 2 is not a doubly resolving set of
Mn. Similarly, we can consider all other types of D from Table 7 and verify their
corresponding non-doubly resolved pairs of vertices. �

Lemma 5. ψ(Mn)> 3 for n≡ 6(mod 8).

Proof. The proof is similar to the proof of Lemma 4. The following table displays
all possible types of set D with |D|= 3 and the corresponding non-doubly resolving
pair of vertices.

�

Lemma 6. For every n≥ 8, ψ(Mn) = 4 when n≡ 2 or 6 (mod 8).

Proof. From Lemmas 4 and 5, it is clear that ψ(Mn)> 3, therefore it is enough to
show that there exist a subset of V (Mn) with cardinality 4 such that it doubly resolves
each pair of vertices from V (Mn). Consider the following two tables:

(i) n≡ 2 (mod 8).
We have n = 8k + 2 for k ≥ 1. Consider the following table which shows the

vectors of metric coordinates of vertices of Mn with respect to set D∗ = {v1, v2k+1,
v4k+2,v6k+2} in the following way.
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D Non-doubly
resolved pair

{v1,vi,v j}, 2≤ i, j ≤ 4k+3, i 6= j {v4k+4,vn}
{v1,vi,v j}, 4k+5≤ i, j ≤ n, i 6= j {v2,v4k+4}

{v1,v4k+4,vi}, 2≤ i≤ 2k+2 or 6k+6≤ i≤ n {v2k+3,v6k+5}
{v1,v4k+4,vi}, 2k+3≤ i≤ 4k+3 or 4k+5≤ i≤ 6k+5 {v2k+2,v6k+6}
{v1,vi,v j}, 2≤ i≤ 2k+2, 4k+5≤ j ≤ 6k+5 {v2k+2,v2k+3}
{v1,vi,v j}, 2≤ i≤ 2k+2, 6k+6≤ j ≤ n {v1,v4k+4}

{v1,vi,v j}, 2k+3≤ i≤ 4k+3, 4k+5≤ j ≤ 6k+5 {v2k+2,v6k+6}
{v1,vi,v j}, 2k+3≤ i≤ 4k+3, 6k+6≤ j ≤ n {v6k+5,v6k+6}

TABLE 8. Non-doubly resolved pairs of Mn for n = 8k+6, k ≥ 1

i Si(v1) D∗ = {v1,v2k+1,v4k+2,v6k+2}
0 v1 (0,2k,1,2k+1)
1 v2 (1,2k−1,2,2k)

v4k+2 (1,2k+1,0,2k)
vn (1,2k+1,2,2k)

2≤ i≤ 2k vi+1 (i,2k− i, i+1,2k+1− i)
vn−i+1 (i,2k+2− i, i+1,2k+1− i)
v4k+3−i (i,2k+2− i, i−1,2k+3− i)
v4k+1+i (i,2k+2− i, i−1,2k+1− i)

2k+1 v2k+2 (2k+1,1,2k,2)
v6k+2 (2k+1,1,2k,0)

TABLE 9. Vectors of metric coordinates for Mn, n = 8k+2, k ≥ 1

(ii) n≡ 6 (mod 8).
We have n = 8k + 6 for k ≥ 1. Consider the following table which shows the

vectors of metric coordinates of vertices of Mn with respect to set D∗ = {v1,v2k+2,
v4k+4, v6k+5} in the following way.

Since v1 ∈ D∗, Tables 9 and 10 show us that the first metric coordinate of a vector
from Si(v1) with respect to D∗ is equal to i. It is easy to check that, there do not exist
two vertices x,y ∈ Si(v1) such that all coordinates of the vector r(x,D∗)− r(y,D∗) are
equal to 0. Also, it can be verified that there do not exist two vertices x,y such that x∈
Si(v1) and y∈ S j(v1) with i 6= j, so that all coordinates of the vector r(x,D∗)−r(y,D∗)
are equal to i− j.

In this way, we have found minimal doubly resolving set D∗ = {v1,v2k+1, v4k+2,
v6k+2} for Mn when n ≡ 2 (mod 8) and D∗ = {v1,v2k+2, v4k+4, v6k+5} when n ≡
6 (mod 8). This proves the statement of Lemma 6. �
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i Si(v1) D∗ = {v1,v2k+2,v4k+4,v6k+5}
0 v1 (0,2k+1,1,2k+2)
1 v2 (1,2k,2,2k+1)

v4k+4 (1,2k+2,0,2k+1)
vn (1,2k+2,2,2k+1)

2≤ i≤ 2k+1 vi+1 (i,2k+1− i, i+1,2k+2− i)
vn−i+1 (i,2k+3− i, i+1,2k+2− i)
v4k+5−i (i,2k+3− i, i−1,2k+4− i)
v4k+3+i (i,2k+3− i, i−1,2k+2− i)

2k+2 v2k+3 (2k+2,1,2k+1,2)
v6k+5 (2k+2,1,2k+1,0)

TABLE 10. Vectors of metric coordinates for Mn, n = 8k+6, k ≥ 1

Theorem 2. For every even positive integer n≥ 8, we have

ψ(Mn) =

{
3, i f n≡ 0 or 4 (mod 8)
4, i f n≡ 2 or 6 (mod 8)

.

Proof. The proof follows by combining the results of Lemmas 3 and 6. �

4. CONCLUSION

In this paper, we theoretically determine the minimal cardinality ψ(An) and ψ(Mn)
of doubly resolving sets for the antiprism graphs and Möbius ladders. The future
work will be focused on determining some other invariants of generalized Petersen
graphs related to the metric dimension and doubly resolving sets.
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