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Abstract. We study equivalent conditions to those given in Penrose equations for an element to
be the Moore–Penrose inverse of a given element in a ring with involution, using the concept
of EP, normal, bi–EP, bi–normal, l–(or r–)quasi–EP, l–(or r–)quasi–normal and *-cancellable
elements. The mentioned conditions are weaker that the one of being self–adjoint.
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1. INTRODUCTION

Let R be an associative ring with the unit 1. An involution a 7! a� in a ring R is
an anti-isomorphism of degree 2, that is,

.a�/� D a; .aCb/� D a�
Cb�; .ab/� D b�a�:

An element a 2R is self-adjoint if a� D a. An element a 2R satisfying aa� D a�a

is called normal.
The Moore–Penrose inverse of a 2R is the element x 2R, if the following Pen-

rose equations hold [7]:

.1/ axaD a; .2/ xax D x; .3/ .ax/� D ax; .4/ .xa/� D xa:

There is at most one x such that above conditions hold, and such x is denoted by a�.
The set of all Moore–Penrose invertible elements of R will be denoted by R�. In
the last decades, the Moore-Penrose inverse has found a wide range of applications
in many areas of science and became a useful tool for dealing with optimization
problems, data analysis, the solution of linear integral equations, etc.

If ı � f1;2;3;4g and x satisfies the equations .i/ for all i 2 ı, then x is a ı–inverse
of a. The set of all ı–inverse of a is denote by afıg. Notice that af1;2;3;4g D fa�g.
Recall that x 2 af1;4g if and only if x� 2 a�f1;3g.

The following result is frequently used in the rest of the paper.

Theorem 1 ([1]). For any a 2R�, the following is satisfied:
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(a) .a�/� D a;
(b) .a�/� D .a�/�.

An element a 2R is said to be EP if a 2R� and aa� D a�a. Observe that a is EP
if and only if a� is EP.

We recall the reader that a 2R is called (i) bi–normal if aa�a�a D a�aaa�; (ii)
bi–EP if a 2R� and aa�a�a D a�aaa�; (iii) l–quasi–normal if aa�a D a�aa; (iv)
r–quasi–normal if aaa� D aa�a; (v) l–quasi–EP if a 2R� and aa�a D a�aa; (vi)
r–quasi–EP if a 2R� and aaa� D aa�a [2, 4, 6].

An element a 2R is: left *-cancellable if a�ax D a�ay implies ax D ay; it is
right *-cancellable if xaa� D yaa� implies xa D ya; and it is *-cancellable if it is
both left and right *-cancellable. Notice that a is left *-cancellable if and only if a�

is right *-cancellable. In C �-algebras all elements are *-cancellable. A ring R is
called *-reducing if every element of R is *-cancellable. This is equivalent to the
implication a�aD 0) aD 0 for all a 2R.

Malik and Thome [6] investigated weaker conditions than those given by Penrose
for an operator to be the Moore–Penrose inverse of a given bounded linear operator
between two Hilbert spaces, using operator matrices.

In this paper, applying a purely algebraic technique, we characterize the Moore–
Penrose inverse of an element in a ring with involution in terms of EP, normal,
bi–EP, bi–normal, l–quasi–EP, r–quasi–EP, l–quasi–normal, r–quasi–normal and *-
cancellable elements, generalizing the results from [6]. Thus, we show that the prop-
erties of operator matrices are not necessary for the characterization of the Moore–
Penrose inverse.

2. RESULTS

In the first theorem, if x is an 1–inverse of a, we present necessary and sufficient
conditions for x to be a 3–inverse of a.

Theorem 2. Let a 2R such that af1g ¤¿. If x 2 af1g, then the following state-
ments are equivalent:

(i) ax is self–adjoint;
(ii) ax is EP;

(iii) ax is right *-cancellable and normal;
(iv) ax is bi–EP;
(v) ax is *-cancellable and bi–normal;

(vi) ax is l–quasi–EP;
(vii) ax is r–quasi–EP;

(viii) ax is left *-cancellable and l–quasi–normal;
(ix) ax is right *-cancellable and r–quasi–normal.

Proof. (i) ) (ii)–(ix): Because ax is self–adjoint idempotent, we deduce that
ax 2R� and .ax/� D ax. So, the statements (ii)–(ix) hold.



ON THE MOORE–PENROSE INVERSE IN RINGS WITH INVOLUTION 349

(ii)) (i): Since ax is EP, then ax 2R� and .ax/�ax D ax.ax/�. Thus,

ax D ax.ax/�ax D axax.ax/� D ax.ax/�

is self–adjoint.
(iii)) (i): If ax is right *-cancellable and normal, then .ax/� is left *-cancellable

and ax.ax/� D .ax/�ax: Multiplying this equality by ax from the left side, it fol-
lows

ax.ax/� D ax.ax/�ax:

Using *-cancellation, we get .ax/� D .ax/�ax, i.e. ax D .ax/�ax is self–adjoint.
(iv)) (i): Suppose that ax is bi–EP, that is, ax 2R� and

ax.ax/�.ax/�ax D .ax/�axax.ax/�:

Now, we get

Œ.ax/��� D Œ.ax/�ax.ax/��� D Œ.ax/�axax.ax/���

D Œax.ax/�.ax/�ax�� D .ax/�axax.ax/�

D .ax/�ax.ax/� D .ax/�;

which implies .ax/� D
�
Œ.ax/���

��
D Œ.ax/��� D ax.

(v)) (i): Let ax be *-cancellable and bi–normal. Then

ax.ax/�.ax/�ax D .ax/�axax.ax/�

gives
ax.ax/�ax D .ax/�ax.ax/�:

Multiplying the previous equality by ax from the left side, we obtain

ax.ax/�ax D ax.ax/�ax.ax/�: (2.1)

Since ax and .ax/� are *-cancellable, by (2.1), ax D ax.ax/� is self–adjoint.
(vi)) (i): Because ax is l–quasi–EP, we have that ax 2R� and

ax.ax/�ax D .ax/�axax

implying ax D .ax/�ax is self–adjoint.
(vii)) (i): Similarly as (vi)) (i).
(viii)) (i): Assume that ax is left *-cancellable and l–quasi–normal. We deduce

that .ax/� is right *-cancellable and

ax.ax/�ax D .ax/�axax D .ax/�ax;

which yield ax.ax/� D .ax/�. Hence, ax.ax/� D ax is self–adjoint.
(ix)) (i): In the same way as in the part (viii)) (i). �

The following result can be checked similarly as Theorem 2.

Corollary 1. Let a 2 R such that af1g ¤ ¿. If x 2 af1g, then the following
statements are equivalent:
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(i) ax is self–adjoint;
(ii) ax is EP;

(iii) ax 2R� and ax is normal;
(iv) ax is bi–EP;
(v) ax 2R� and ax is bi–normal;

(vi) ax is l–quasi–EP;
(vii) ax is r–quasi–EP;

(viii) ax 2R� and ax is l–quasi–normal;
(ix) ax 2R� and ax is r–quasi–normal.

Proof. Since ax 2R�, by [5, Theorem 5.3], we deduce that ax is *-cancellable.
The rest of this proof follows as in the proof of Theorem 2. �

For an 1–inverse x of a, several equivalent conditions which insure that x is 4–
inverse of a are given now.

Theorem 3. Let a 2R such that af1g ¤¿. If x 2 af1g, then the following state-
ments are equivalent:

(i) xa is self–adjoint;
(ii) xa is EP;

(iii) xa is left *-cancellable and normal;
(iv) xa is bi–EP;
(v) xa is *-cancellable and bi–normal;

(vi) xa is r–quasi–EP;
(vii) xa is l–quasi–EP;

(viii) xa is right *-cancellable and r–quasi–normal;
(ix) xa is left *-cancellable and l–quasi–normal.

Proof. For x 2 af1g such that xa satisfies any of the conditions (i)–(ix), we have
that x� 2 a�f1g such that a�x� satisfies any of the conditions (i)–(ix) of Theorem 2.
Applying Theorem 2, we verify this result. �

In the main result of this article, weaker conditions than those given in Penrose
equations for an element x to be the Moore–Penorose inverse of a are given.

Theorem 4. Let a 2R such that af1;2g ¤¿ and x 2 af1;2g. If ax satisfies any
of the conditions (ii)–(ix) of Theorem 2 and xa satisfies any of the conditions (ii)–(ix)
of Theorem 3, then x is the Moore–Penrose inverse of a.

Proof. This result is a consequence of Theorem 2 and Theorem 3. �

The preceding theorems hold in rings with involution assuming in some conditions
that ax and xa are left or (and) right *-cancellable which is automatically satisfied
in C �–algebras and *-reducing rings. Thus, we recover the results in [6] for Hilbert
space operators.
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In a unital C �–algebra A, since a 2A is Moore–Penrose invertible if and only if
af1g ¤¿ (see [3]), we get the following result as a consequence of Theorem 4.

Corollary 2. Let a 2A such that af1g ¤ ¿ and x 2 af1;2g. If both ax and xa
satisfy any of the statements:

(i) EP;
(ii) normal;
(iv) bi–EP;
(v) bi–normal;

(vi) l–quasi–EP;
(vii) r–quasi–EP;

(viii) l–quasi–normal;
(ix) r–quasi–normal,

then x is the Moore–Penrose inverse of a.

By corresponding examples in [6], it is showed that conditions (i)–(ix) of Corollary
2 are weaker that one of being self–adjoint and can be adopted to define the Moore–
Penrose inverse.
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