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1. INTRODUCTION

Let £ be a bounded domain in RV with the smooth boundary 3£2. Consider the
following initial-boundary value problem for a system of reaction-diffusion equations
of the form

ur=ceAu+ f(v) in £2x(0,7T), (1.D
v =¢eAv+g(u) in £2x(0,T), (1.2)
u=0 on 0£2x(0,7), (1.3)
v=0 on 0d2x(0,T), (1.4)
u(x,0) =up(x) >0 in £, (1.5)
v(x,0) =vo(x) >0 in £2, (1.6)

where f:(—00,b1) — (0,00) is C! convex, increasing function with b; = const > 0,

limg_,p, f(s) = +o0, fé’l ]ﬁi(i) < 400, g:(—00,b3) — (0,00) is C! convex, increas-

ing function with by = const > 0, lim,_,p, g(s) = +o0, f(fz % < +o0. The initial

data (uq, vo) is such that ug € Cl(ﬁ), Vo € Cl(é), ug(x) > 01in £2, up(x) =0 on
082, vo(x) > 0 in £2, vo(x) = 0 on 982, sup, e Uo(x) < b2, sup,epn Vo(x) < by.
Here, (0, T) is the maximal time interval of existence of the solution (u,v). The time
T may be finite or infinite. When T is infinite, then we say that the solution u exists
globally. When 7 is finite, then the solution (u,v) develops a singularity in a finite
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time, namely
(lim [ 1) [loo- lim ||v(-»t)||oo) £ (b2.b1),
t—>T t—T

where |[u(-,1)||co = maxyeg |u(x,t)|. Here, (a,b) £ (c,d) means that (a,b) < (c,d)
and at least one of the equalities a = ¢, b = d is valid.

Solutions for systems of semilinear heat equations which quench in a finite time
have been the subject of investigation of several authors (see [3—5] and the references
cited therein). By standard methods based on the maximum principle, the local exist-
ence, uniqueness, global existence, and quenching have been treated. One may also
find in [1,6,7,9, 10] some results about quenching for semilinear heat equations. In
this paper, we are interested in the asymptotic behaviour of the quenching time as &
goes to zero. Our work is motivated by the paper [8] by Friedman and Lacey, where
they consider the initial-boundary value problem

ur=¢cAu+gu) in £2x(0,7), .7
u=0 on 02x(0,7), (1.8)
u(x,0) =up(x) >0 in £, (1.9

where g(s) is a positive, increasing, convex function for the nonnegative values of

s and such that f0+°° % < 4-o00. The initial data u¢ is a positive and continuous

function in £2. Under some additional conditions on the initial data, they showed that
the solution u of (1.7)—(1.9) blows up in a finite time, and its blow-up time goes to
that of the solution «(¢) of the

o' (t) =g(a(t)), t>0, a0)=M, (1.10)

when ¢ goes to zero, where M = sup, ¢ Uo(x) (We say that a solution u blows up in
a finite time if it reaches the value infinity in a finite time). Nabongo and Boni have
obtained in [10] an analogous result in the case of the phenomenon of quenching for
semilinear heat equations. In this article, we get a comparable result for the system
described in (1.1)—(1.6). More precisely, under some hypotheses, we show that if ¢
is small enough, then the solution (u,v) of (1.1)—(1.6) quenches in a finite time, and
its quenching time tends to that of the solution (x(z), 5(¢)) of the differential system
defined below

o' () = f(B@), t>0, (1.11)
B'(1) = g(a(t)), t>0, (1.12)
a(0) = My, (1.13)
B(0) = M>, (1.14)

as & goes to zero, where M| = sup, ¢ to(x), Mz = sup,epo Vo(xX).
Our paper is written in the following manner. In the next section, under some
conditions, we prove that if ¢ is small enough, then the solution (u,v) of (1.1)—(1.6)
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quenches in a finite time, and its quenching time tends to that of the solution of the
differential system defined in (1.11)—(1.14). Finally, in the last section, we give some
numerical results to illustrate our analysis.

2. QUENCHING SOLUTIONS

In this section, under some assumptions, we prove that if ¢ is small enough, then
the solution (u,v) of (1.1)-(1.6) quenches in a finite time, and its quenching time
goes to that of the solution of the differential system defined in (1.11)—(1.14) as ¢
goes to zero. We start by recalling an important result.

Consider the following eigenvalue problem

—Ap(x) =Ap(x) in £, 2.1
¢(x)=0 on 052, 2.2)
e(x)>0 in £2. 2.3)

It is well known that the above eigenvalue problem admits a solution (¢, A) such that
A > 0. We can normalize ¢ so that [ ¢(x)dx = 1. Now, let us give our first result
about the quenching time.

Theorem 1. Suppose that ug(x) = 0 and vo(x) = 0. Let

b2 i}
f(0) g

If e < %, then the solution (u,v) of (1.1)—(1.6) quenches in a finite time, and its
quenching time T obeys the following estimates

0<T—-Typ<eToA+o(e),

A=Amax{

where Ty is the quenching time of the solution (x(t), B(t)) of the differential system
defined in (1.11)—(1.14).

Proof. Since (0, T') is the maximal time interval of existence of the solution (u, v),
our aim is to show that 7 is finite and satisfies the above estimates. Introduce the
functions w(¢) and z(¢) defined as follows

w(t):Lu(x,t)w(x)dx, z(t)z/gv(x,t)go(x)dx, t€10,7T).

Due to the fact that the initial data (1, vo) is nonnegative in £2, from the maximum
principle, (u,v) is also nonnegative in £2 x (0, 7). Take the derivative of w in ¢ and
use (1.1) to obtain

w'(t) = 8/9 pAudx + /9 f()edx fort e (0,T).



30 THEODORE K. BONI, HALIMA NACHID, AND DIABATE NABONGO

Applying Green’s formula, we arrive at the equality

w'(t) = 8/9 ulApdx + /g f(v)pdx fort € (0,T).
It follows from (2.1) and Jensen’s inequality that
w'(t) > —edw(t) + f(z(t)) fort e (0,T).
In the same way, we also get
Z'(t) > —eArz(t) + g(w(r)) fort e (0,7T).
It is not difficult to see that 0 < w(¢) < b, and 0 < z(¢) < by1. We deduce that
w'(t) > —eAby + f(z(t)) fort € (0,T),
Z/(t) > —eAby + g(w(t)) fort € (0,7T),

whence
W02 FEON =) fort € .1),
, Skbl
z2(t) = gw()(1— g(w(t))) fort € (0,T).
Since f(z(¢)) = f(0) and g(w(z)) > g(0), we arrive at the inequalities
W) = S -Z2) fort € ©.1),
()= gw@))(1— %) fort € (0,T).

2(0)

Taking into account the fact that % < A and 22

g(0)
w'(t) > f(z(t))(1—eA) fort € (0,T),
Z/(t) > g(w(t))(1—eA) fort e (0,T).

< A, we find that

Let us set

wl(t):w( tA) fort € (0,(1—eA)T),

1—¢

z1() =z (
A straightforward computation reveals that
w(t) > f(z1(t)) fort € (0,(1—eA)T), w1(0) = w(0) =0,
21 () > g(wy(t)) forzr e (0,(1—eA)T), 21(0) = z(0) = 0.
From the maximum principle, we get
wi(t) > a(t) fort e (0,Ty),

t
1—8A) fort € (0,(1—cA)T).



QUENCHING TIME FOR A SYSTEM OF SEMILINEAR HEAT EQUATIONS 31

z1(t) = B(t) fort € (0,Ty),
where Tx = min{Ty, (1 —eA)T}, which implies that
To
l1—eAd’
To

In fact, suppose that T > =2+ = T”. We deduce that

(w(T"),2(T")) = (w1(To).z1(To)) = («(To). B(To)) £ (b2.b1).

T <

2.4)

Since
(Il T oo 10 G T loo) = (w(T7), 2(T"),

we have a contradiction because (0, T') is the maximum time interval of existence of
(u,v). On the other hand, let (u1(x,?),v1(x,2)) be such that

ui(x,t)=a() in £2x][0,Tp).
vi(x,t) =pB() in £2x][0,Tp).
A routine computation reveals that
Uiy =eAug+ f(vy) in 2 x(0,Tp),
vir =eAv1+g(uy) in 2 x(0,Tp),
u1 >0on d82 x(0,Tp), vy > 0on 382 x (0,Tp), and
ui(x,0)>0 in £,
v1(x,0) >0 in £2.
The maximum principle implies that
0<u(x,t) <ujp(x,t)=a(f) in £2x(0,7T°),
0<v(x,t) <vi(x,t)=p@) in £2x(0,T°,
where 70 = min{T, To}. We deduce that
T =Tp. 2.5)
Indeed, assume that T < Ty. We get
(14 T lloos 106 Tloo) < (@(T), B(T)) < (b2.b1),
which is a contradiction because (0, 7") is the maximal time interval of existence of

the solution (u,v). Applying Taylor’s expansion, we obtain

1
m = 1+8A+0(8)

Using (2.4), (2.5) and the relation above, we complete the proof. O
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Now, let us consider the case where the initial data is not null. In the sequel, we
suppose that there exists a € §2 such that

sup Ug(x) =ug(a) and sup vo(x) = vo(a).
xef xeR
Consider the following eigenvalue problem

—AY(x) = As¥(x)

in B(a,d), (2.6)
Y(x)=0 on 0JB(a,d), 2.7
Y(x)>0 in B(a,d), (2.8)

where § > 0, such that, B(a,8) = {x e RV;|x—a| < §} C R2.

It is well known that the above problem has a solution (y, Ag) such that A5 = 2

8_2 >
where A1 is the eigenvalue corresponding to the above eigenvalue problem for § = 1.
We are in position to state our result in the case where the initial data is not null.

Theorem 2. Suppose that M1 = sup,c o uo(x) >0, My =sup,cn Vo(x) > 0, and
let K be an upper bound of the first derivatives of uy and vo. Let

2 2
A:)leaX{K by K bl}.
If

f0) " g(0)

e <min {(M1/2)*,(M2/2)*,(24) 73, (K dist(a, 3R2))*} ,
then the solution (u,v) of (1.1)—(1.6) quenches in a finite time, and its quenching
time T obeys the estimates
0<T—To < (ToA+C)e'/*+o(!3),
where

C— 1

min{3 /(%) 35(*))
and Ty is the quenching time of the solution (x(t),B(t)) of the differential system
defined in (1.11)—(1.14).

Proof. Due to the fact that ug € C!(£2) and v € C1(£2), using the mean value
theorem and the triangle inequality, we get

uo(x) > ug(a)—e'/?

for x € B(a,d) C £2,
vo(x) = vo(a) — &'/

for x € B(a,8) C £2,

where § = % Since the initial data (1¢,vg) is nonnegative in £2, from the max-
imum principle, (1, v) is also nonnegative in §2 x (0, T'). Introduce the functions w(t)
and z(¢) defined as follows

w(f):/B(a’a)u(x,f)l/f(X)dx, z(t):/

B(a,

v(x,tH)¥y(x)dx, te][0,T).
8)
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Take the derivative of w in ¢ and use (1.1) to obtain

w'(t) = 8/ YvAudx +/ f)ydx fort e (0,T).
B(a,8) B(a.5)

Applying Green’s formula, we arrive at

0 d
w’' (1) =8/ qudx—E/ u—wds+8/ w—uds
B(.5) 9B(a.s) IV 0B(a.6) OV

+[ f)ydx fort e (0,7),
B(a,d)

where v is the exterior normal unit vector on dB(a,§). Taking into account (2.6),
(2.7) and the fact that %—’f < 0, we arrive at the relation

w'(t) > —edsw(t) +/ f()ydx fort e (0,T).

B(a,$)

It follows from Jensen’s inequality that

w'(t) > —edsw(t) + f(z(t)) fort e (0,T).
In the same way, we also prove that

7/(t) > —edgz(t) + g(w(t)) fort € (0,T).

As in the proof of Theorem 1, we get

w'(t) > f(z(1)) (1 - 8;?5)2) fort € (0,7),
Z(t) > g(w(?)) (1 — 8A8b1) fort € (0,T),
£(0)

which implies that

1/3)L K2b2
w @) > fee) [ 1=22222 ) o e (0,T),
f(0)
1/3)1K2%b
20 = gw@) [ 1= 2220 forr e (0,7),
£(0)
because Ag = :sh = );12_532 Consequently,

w'(t) > f(z(t)) (1 —81/3A) fort € (0,T),
w(0) > My —¢'/3,
and

Z(t) > g(w(1)) (1 —81/3A) fort € (0,7),
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2(0) = My —¢'/3,
We have |
w'(1) 2 fO) (1 =62 4) = - f(M/2)

for t € (0,T). In the same way, we get z'(¢t) > %g(M1/2) for t € (0,7T), which
implies that
1 1
(1) > —. (1) > —
wi)zs. 2z 5
for ¢t € (0,T). Using the mean value theorem, we get
w(Ce'?) =My, z(Ce'?) > M.

Set

_ 4 1/3
wi(t) = w(—1_81/3A +Ce )

fort € (0.(T — Cs'/3H( —81/314)), and

_ 4 1/3
z71(t) =z (—1—81/3A +Ce )

fort € (0,(T —Ce'/3)(1—¢'/34)). A straightforward computation reveals that

wi (1) > f(z1(t)) fort e (0,(T —Ce'/3)(1-¢'34)),
w(0) > M,

and

25 (1) > g(wi (1)) fort € (0,(T —Ce3)(1—£/34)),
21(0) = M.
It follows from the maximum principle that
wy(t) > at) forte(0,TF),
z1(t) = B@) fort e (0,T%),
where T* = min{Ty, (T — Ce'/3)(1—¢£!/3 A)}. We deduce that
To 1/3
Indeed, suppose that
Ty

1/3 _ o
>—1_81/3A—|—C8 T.

T
We get

(w(T"),z(T")) = (w1(To).21(To)) = ((To), B(To)) £ (b2.b1).
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Since ([ (. T oo V(. T") o) = (w(T"),z(T")), we have a contradiction because
(0,T) is the maximal time interval of existence of the solution (#,v). On the other
hand, setting

wa(x,t) =a(t) in £2x][0,Tp),
Z2(x,t) =B(t) in £2x][0,Tp),
it is not difficult to see that
(w2)r =eAwa+ f(z2) in £2x(0,Tp),
(z2)r =eAza+g(w2) in £2x(0,Tp),
wy >0 on 082 x(0,Tp),
z2>0 on 082 x(0,Tp),
wa(x,0) > ug(x) in £,
Z2(x,0) > vo(x) in £.
It follows from the maximum principle that
a(t) =wa(x,1) >u(x,t) in £2x(0,T)),
B(t) = z2(x,1) > v(x,t) in £2x(0,T)),
where T, = min{Tp, T'}. We deduce that
T >Tp. (2.10)
Indeed, suppose that T < Tp. We get
(I T lloos (. o) < ((T), B(T)) < (b2,b1).

which is a contradiction because (0, 7") is the maximal time interval of existence of
the solution (u,v). Applying Taylor’s expansion, we obtain

1 _ 1/3 1/3
1_8—1/3/1 =1 +¢ + 0(8 )
Using (2.9), (2.10) and the above relation, we complete the proof. 0

3. NUMERICAL EXPERIMENTS

In this section, we give some computational results to confirm the theory estab-
lished in the previous section. We consider the radial symmetric solution of the prob-
lem (1.1)=(1.6) in the case where 2 = B ={x e RV;||x|| <1}, 02 =S ={x €
RY: x| =1}, f(v) = (1—v)"?, g(u) = (2—u)~9 with p > 0, ¢ > 0. The above
problem may be rewritten in the following form

u)+(1—v)"?, re(,1), te(0,T), @G

ur = e+

N -1

vy = e(vpr + v )+ R2—-u)"?, re(,1), t€(0,7), (3.2)
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u(0,1)=0, u(l,r)=0, 1€(0,7), (3.3)
v(0,1) =0, v(l,/)=0, 1€(0,T), (3.4)
u(r,0) =g¢(r), re(0,1), (3.5)
v(r,0) =y (r), re(,1). (3.6)

Here, we take

o(r)=asin(xr),
Y(r) =bsin(xr),
with a € [0,2), b € [0, 1). We begin by the construction of some adaptive schemes as
follows.
Let I be a positive integer and let 7 = 1/1. Define the grid x; = ih, 0 <i <1,
and approximate the solution (u,v) of (3.1)~(3.6) by the solution (U h(n), Vh(")) of the
explicit scheme

—_— — =¢ - @
Aty h?
=~ Y - EN—

1— Vo(n))—P’

+(2-u)™

U(n+1) U(n)

ih 2h

+(1- V(”)) L l<i<I-1,

V‘”*” W (Vfﬂ WPV (V=D Vi Vf:’i)

ih 2h

+2-U™7, 1<i<I-1,

) _ ) _
v =0, v =0

U® =asin(zih), 0<i<I,

(0) =bsin(wih), 0<i<I,
where n > 0 and U}f") = (Uén), Ul(n),...,UI("))T, Vh(") = (Vo(n), Vl(n),...,VI("))T.
In order to permit the discrete solution to reproduce the property of the continuous

one when the time ¢ approaches the quenching time 7', we need to adapt the size of
the time step so that we take

h2
Aty = min W h2( HV(n)H )p+l 2(2_HU}§n)Hoo)q+1
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We also approximate the solution (u,v) of (3.1)—(3.6) by the solution (U }E"), Vh("))
of the following implicit scheme:

Uén+1) _ Uo(n) N 2U1(n+1) _2Uén+1)

+ (1 _ Vo(n))—P’

Aty B h?
(n+1) (n) (n+1) (n+1)
Vo W 2Vy —2Vy (n)\—4
T:F)N hz +(2—U0n) s
n

i+1 i+1 i—1
h? ih 2h

Ui(n+1) _ Ul(n) B

U@+ _2Ui(n+1) 4 Ui(fil-l) N (N —1) y @+ _U(n+1))

1—VMYP o 1<i<I-1,

Vi(n-i—l)_Vi(n) (V(n+1)—2Vi(n+1)+Vl-(f:_1) (N —1) V(n_H)_Vi(fiH))
=¢ +

i+1 i+1
Aty h? ih 2h

+(2-U") 1<i<I-—1,

Ul(n+1) —0. Vl(n+1) —0.
Ul-(o) =asin(wih), 0<i<I,
v = bsin(rin), 0<i<I.
Here, similarly to the case of the explicit scheme, we choose
— i 2 (n) p+l ;2 n) g+1
Aty =min {7 (1= [V, )7 02 2= [0 )"

‘We note that

. ur (r7 t)
lim
r—0

Hence, if 1 = 0, then we have

ur(0,1) = eNupr(0,2) + (1 —v(0,2))" 7.

This observation has been used in the construction of our schemes when i = 0. Let
us notice that in the explicit scheme, the restriction on the time step ensures the
nonnegativity of the discrete solution. For the implicit scheme, the existence and
nonnegativity are also guaranteed by standard methods (see, e. g., [2]).

- urr(o,t).

We need the following definition.

Definition 1. We say that the discrete solution (U }f”), Vh(n)) of the explicit or im-
plicit scheme quenches in a finite time if

: (n) : (n)
(,im 10 o Tim 19,7 ) £ 2.1
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: +o00 . +o00 . .
and the series ), ~( At, converges. The quantity ) =0 At, is called the numerical
quenching time of the solution (U ;En) , Vh(n)).

In the following tables, in rows, we present the numerical quenching times, the
numbers of iterations, CPU times and the orders of the approximations corresponding
to meshes of 16, 32, 64, 128, 256. We take for the numerical quenching time

n—1
T" = ZAIJ',
j=0

which is computed at the first time when
T _n| < 10716,
The order s of the method is computed according to the formula
o log((Tan — Tan)/ (Tan — Tr)) ‘
log(2)
3.1. Numerical experimentsfor p=1,q=1,a=0,b=0, N =2

3.1.1. First case: & = -

10

I T" n CPU time | s

16 | 1.011490 | 8172 - -
32 | 1.010694 | 31009 1 -
64 | 1.010360 | 118245 |4 1.26
128 | 1.010207 | 450669 | 30 1.13
256 | 1.010135 | 1714170 | 230 1.10

TABLE 1.

explicit Euler method.

Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the

1

Tn

n CPU time | s
16 | 1.015745 | 9004 - -
32 | 1.014494 | 34740 3 -
64 | 1.014196 | 134302 | 16 2.08
128 | 1.014124 | 518394 | 118 2.06
256 | 1.014107 | 1996487 | 954 2.09

TABLE 2. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method.
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3.1.2. Second case: ¢ =

1

100
1 T" n CPU time | s
16 | 1.000142 | 8084 - -
32 | 1.000100 | 30610 1 -
64 | 1.000088 | 116756 |4 1.81
128 | 1.000022 | 454329 | 31 2.46
256 | 1.000006 | 1726227 | 231 2.05

TABLE 3.

explicit Euler method.

Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the

1 T" n CPU time | s
16 | 1.000288 | 8087 - -
32 | 1.000134 | 30620 1 -
64 | 1.000100 | 116520 | 14 2.18
128 | 1.000093 | 443127 | 101 2.28
256 | 1.000091 | 1681491 | 861 1.81

TABLE 4.

implicit Euler method.

3.2. Numerical experimentsfor p =1, q=1,a=0,b=0, N =2

3.2.1. First case: ¢ =

1

Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the

100
1 T" n CPU time | s
16 |0.393420 | 11468 - -
32 1 0.393698 | 43641 1 -
64 |0.393784 | 166383 1.70
128 | 0.393809 | 633406 | 45 1.78
256 | 0.393817 | 2405445 | 338 1.65

TABLE 5. Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the
explicit Euler method.
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1 T" n CPU time | s
16 | 0.393440 | 11469 - -
32 10.393703 | 43641 2 -
64 | 0.393785 | 166384 | 19 1.69
128 | 0.393810 | 633407 | 153 1.72
256 | 0.393817 | 2405445 | 1093 1.84

TABLE 6.

implicit Euler method

1

3.2.2. Second case: € = =+

Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the

500
1 T" n CPU time | s
16 | 0.375615| 11613 - -
32 | 0.375680 | 44079 -
64 | 0.375702 | 167676 |6 1.57
128 | 0.375709 | 636904 | 45 1.66
256 | 0.375711 | 2413063 | 354 1.81

TABLE 7.

explicit Euler method.

Numerical quenching times, numbers of iterations, CPU
times (seconds), and orders of the approximations obtained with the

1 T" n CPU time | s
16 | 0.375619 | 11613 - -
32 | 0.375682 | 44079 3 -
64 | 0.375702 | 167677 | 19 1.66
128 | 0.375709 | 636904 | 150 1.52
256 | 0.375711 | 2413063 | 1120 1.81

TABLE 8. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method.

Remark. If we consider the problem (3.1)—(3.6) in the case where the initial data
isnull and p =1, ¢ = 1, it is not difficult to see that the quenching time of the
solution of the differential system defined in (1.11)—(1.14) equals one. We observe
from Tables 14 that when ¢ diminishes, then the numerical quenching time tends to
one. This result has been proved in Theorem 1.

When the initial data (¢(r), ¥ (r)) are such that ¢(r) = %sin (r) and ¥ (r) =

%sin (zr), and p = 1, ¢ = 1, then we see that the quenching time of the solution
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of the differential system defined in (1.11)—(1.14) equals 0.375. We observe from
Tables 5-8 that when & diminishes, then the numerical quenching time decays to
0.375. This result has been established in Theorem 2.
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