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Abstract. We introduce a generalized parabolic Kdhler manifold and consider special canon-
ical almost geodesic mappings of type 752(0, F), 6 € {1,2} between generalized Riemannian

manifolds and between introduced generalized parabolic Kéhler manifolds, particularly. Some
invariant geometric objects with respect to these mappings are examined.
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1. INTRODUCTION

The use of a non-symmetric affine connection became especially interesting after
the works of A. Einstein [3] on the Unified Field Theory. In 1951, L.P. Eisenhart
[4] introduced a generalized Riemannian space as a differentiable manifold equipped
with a non-symmetric basic tensor. Eisenhart’s generalized Riemannian space is a
particular case of a non-symmetric affine connection space. Some significant con-
tributions to the study of geometry of non-symmetric affine connection spaces were
made by E. Brinis, F. Graif, M. Prvanovié¢ [17] and S.M. Minc¢ié [ 1-14].

Geodesic lines play an important role in modeling of various physical processes.
A mapping between two manifolds with linear connection, which preserves geodesics
is called a geodesic mapping. Generalizing the notions of geodesic lines and geodesic
mappings, Sinyukov [ 18] introduced the concept of almost geodesic lines and almost
geodesic mappings of affine connected spaces without torsion. He indicated three
types of almost geodesic mappings of manifolds without torsion, 7, 7w, and 3.

The theory of geodesic and almost geodesic mappings of affine connected and
Riemannian spaces is an active field of differential geometry, see for instance [1, 2,

-10,21,23].
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Almost geodesic mappings of type m2(e), e = £1, from spaces with affine con-
nection onto Riemannian spaces are considered in [10,23], while the paper [5] is ded-
icated to canonical almost geodesic mappings of type 75 (¢ = 0) between Riemannian
spaces with an almost affinor structure, and between parabolic Kéhlerian spaces, par-
ticularly. Several papers are devoted to almost geodesic mappings of type 7912(6 =

+1), 0 € {1,2} and its special cases ng(é’ = =+1,F), 0 € {1,2} between manifolds

with non-symmetric affine connection, see [15, 19,21]. In the papers [16,22] some
invariant geometric objects with respect to special almost geodesic mappings of type
T and 3, respectively, are examined, by considering equitorsion mappings. In [15]

we presented systems of differential equations of Cauchy type for almost geodesic
mappings of the second type of manifolds with non-symmetric linear connection,
also we found some invariant geometric object of almost geodesic mappings of type
Jorz(e =—1,F), 6 € {1,2} under some assumptions.

In the present paper, we extend and improve results from [5]. We consider ca-
nonical almost geodesic mappings of type ng(O, F), 0 € {1,2} between generalized

Riemannian manifolds. Also, we introduce a generalized parabolic Kihler mani-
fold and consider canonical almost geodesic mappings of type 701’2(0, F), 0 €{1,2}

between such manifolds. The wider class of metrics enables us to find more invariant
geometric objects than in the classical (symmetric) case [5].

2. SPECIAL CANONICAL ALMOST GEODESIC MAPPINGS OF GENERALIZED
RIEMANNIAN MANIFOLDS

In the sense of Eisenhart (see [4]) a generalized Riemannian space is a differ-
entiable manifold M equipped with a metric g, which is generally non-symmetric.
Therefore, the metric g can be described as follows

g(X,)Y)=g(X,Y)+g(X.,Y), forall X,Y € T,(M).
- \

Here g denotes the symmetric part of the metric g and g denotes the skew-symmetric
- \

part of g, i.e.
1 1
gX.Y) = E(g(X,Y)Jrg(Y,X)) and g(X,Y) = E(g(X,Y)—g(Y,X)),
where X,Y € T,(M) and T, (M) is the tangent vector space of M at p € M.

The non-symmetric linear connection !V of the generalized Riemannian manifold
with the metric g is explicitly defined by

g(lVxY,Z) = %(Xg(Y,Z)—I—Yg(Z,X)—Zg(Y,X)), XY ZeT,(M). (2.1)
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Let us denote by V the Levi-Civita connection corresponding to the symmetric metric
g. This connection is the symmetric part of non-symmetric linear connection 'V, i.e.

1
VyY = E(IVXY +1Vy X), X, Y € T,(M).

Also, it is well know that on the manifold M with non-symmetric linear connection
1V can be defined another non-symmetric linear connection 2V in the following way

2VxY ='Vy X +[X.Y], X.Y € X(M),

where as usual X (M) denotes the set of smooth vector fields on M and [-,-] denotes
the Lie bracket [17].

M.S. Stankovi¢ in [19] introduced two kinds of almost geodesic lines, as follows.
Let ¢ : I — M be a curve on a manifold M with non-symmetric linear connection
1V, satisfying the regularity condition ¢’(¢) # 0,¢ € I. Denote by £(1) = (c(t),c’(t))
the tangent vector field along ¢, and let us put

£1=0VeE, £,=0ViE, 6e{1,2).
0 0 0
If the vector fields & and £ are independent at any point (hence the (local) curve ¢
0
is not a geodesic one) we can put D = span(§,&;), 6 € {1,2}. The curve ¢ is an
0

almost geodesic line of the kind 6 (6 € {1,2}) if and only if £, €  D. In [15] we gave
0

an equivalent definition of almost geodesic lines of manifolds with non-symmetric
linear connection, it is Definition 1.

Definition 1 ([15]). Letc : I — M be a curve on a manifold M with non-symmetric
linear connection satisfying the regularity condition ¢’(¢) # 0 and let &(¢) =
(c(2),c’(t)) be the tangent vector field along ¢. The curve ¢ is called an almost
geodesic of the kind 0 (6 € {1,2}) if there exist vector fields X1 and X, satisfying
Ve X; = a] X; for some differentiable functions a/ : I — R and differentiable real
functions b’ (¢) along ¢ such that § = b' X; + b2 X holds.

Definition 2 ([15, 19]). A diffeomorphism f : M — M of n-dimensional man-
ifolds with non-symmetric linear connection is called an almost geodesic mapping
of the kind 6 (8 = 1,2) if any geodesic line of the manifold M turns into an almost
geodesic line of the kind # of the manifold M.

Let M and M be two generalized Riemannian manifolds of dimension 7 > 2 with
the metrics g and g, respectively. We can consider these manifolds in the common
coordinate system with respect to the diffeomorphism f : M — M . In this coordinate
system the corresponding points p € M and f(p) € M have the same coordinates.
Therefore, we can suppose M = M and for # € {1,2} we can put

OP — gv_gv’
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where P is the tensor field of type (1,2), called the deformation tensor field of linear
connections °V and *V with respect to the mapping f .

In what follows we will use ZC S O denote the cyclic sum on arguments in
brackets, for instance for an arbitrary tensor field A we have

> AXY.Z)=AX.Y.Z)+ A(Y.Z.X)+ A(Z.X.Y).
CS(X,Y,Z)

A diffeomorphism f : M — M is an almost geodesic mapping of the kind 6, 0 €
{1,2} if and only if [15]

g(Xl,xz,Xs)AeP(X4,X5)AX6 =0, X; e X(M),i=1,....6,

where ? P is the deformation tensor field of connections V and ?V, with respect to
the diffeomorphism f, and 1?, I;, are tensor fields of type (1,3), defined by

P(X.Y.Z) = Z WlP(X,Y)+'PP(X,Y),Z), X,Y,Z € X;(M)

CS(X,)Y,Z2)
and
P(X.Y.Z) = > VZP(X.Y)+?P(ZP(X.Y)), X.Y.Z € X(M).
CS(X,Y,Z)

Basic equations of canonical almost geodesic mappings of type ng(e =0), 6 €{1,2}

between generalized Riemannian manifolds are given by

PxY)= > oX)FY+(-DOVK(X.Y), 2.2)
CS(X,Y)
3 ("VYFX—(—l)"K(FY,X))= Y (WX)FY —u(FX)Y)., (23)
CS(X,Y) CS(X,Y)

where X,Y € X (M), ¢ is a 1-form, K is an anti-symmetric tensor field of type (1,2)
defined by

K(X,Y) = %(IP(X, Y)-'P(Y, X)) = %(ZP(Y,X)—ZP(X, Y)),
and F is a tensor field of type (1, 1) satisfying
F?=0.
If the affinor structure F satisfies an additional condition
Tr(F) = F} =0,
then we denote by 7;2(0, F),0e{l1,2}.
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A canonical almost geodesic mapping f : M — M of type 7012(0, F), 0 €{1,2}

has the property of reciprocity if its inverse mapping f~' : M — M is a canonical
almost geodesic mapping of type ng(O, F). Since the deformation tensor fields ! P

and ! P of linear connections !V and 'V with respect to the mappings f and f~!,
respectively, satisfy the relation

"'P(x,Y)=-1P(X.Y), X,Y € X(M),
without loss of generality we can suppose
¢=_§0’ FZF, KZ_K,
or in components
_ —h =
i =—¢i. F;=F' K;=-K} (24)

Almost geodesic mappings of manifolds with non-symmetric linear connection, which
satisfy the property of reciprocity are investigated in [15, 19,21, 22]. A necessary
and sufficient condition for an almost geodesic mapping f : M — M of type 7{32,

0 € {1,2} to have the property of reciprocity is expressed by
F? =al + BF,
where [ is the identity matrix and «, 8 are some scalar functions.
2.1. Invariants

We use traditional tensor calculus approach “by components”. In local coordin-

ates, with respect to a local chart (U, ¢), ¢ = (x!,...,x"), we have
0 0 d 0 0 0
1 1 _rh 9 2y, Y _2 _ _rh 7
Vigel = Vit = ligen Viges = Vo = igeh
and
0 0 0
SR Ry
dx/ axi 0x/ Y gxh

where ij signifies a symmetrization with division and the functions F h are general-
ized Christoffel symbols.

A. Einstein [3] used two kinds of covariant differentiation of a tensor a;:

i i p i i )4 V4
ajlm_ +Fpm/ F/m p 4im= +FmP j Fm/ p’
2

where a’ m denotes the partial derivative of a tensor ' i with respect to x"”
S.M. Mincié [ ] has used two more kinds of covariant differentiation of tensors:

i 17 V4 i _ i y4
jlm +FPm J ij p’ aj|m - +Fm17 J 1—}m p’
3 4
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Also, we can consider covariant differentiation with respect to the Levi-Civita con-
nection V, that is

| | i P p
Vma-_a-; +Fpm/ F/m -

where F;;m is the symmetric part of Flfm

Let us denote by | and ||, 6 = 1,... .4, the covariant derivatives with respect to the
0 0

generalized Christoffel symbols F h and F als , respectively.
In local coordinates the basic equatlon (2 2) reads

Tl =Tl =oiF)+KE, (2.5)

where ¢; is the covariant vector corresponding to the linear form ¢, while Fih and
K fj are components of tensor fields F and K, respectively.
By using covariant differentiation of the first kind and the equation (2.5) we obtain

h Drh h pp P rh
Fl|1|J 1|J+§0pF F +K F K F (26)

After contracting the relation (2.6) over the indices j and 4 and by using (2.4) we get

1— _
+-K,, F’ 2KPF =F% 4+ K“FP——KPF“ (2.7)

leloc 7 pa iat' p zla 7 pa

i.e. the tensor 1;1,' defined by

1 1
+ - K“FP——KPF“ (2.8)

Iili: z|a 7 e ia" p>

is invariant with respect to the mapping f.
Analogously, by using covariant differentiation of the kind 6 (8 = 2,3,4) we can
prove that the tensors 151,-, 0 = 2,3,4 given by

1 1

p p
Ai = H@+ZQQF—5K¢F“
1 1
p p
4= Flat 3 Kpa 7 =3 Kai B’ (2.9)
p p
4; = lm+2K%F ——K " FY

are invariant with respect to the mapping f.
In the nontrivial case, when F’ l.h # 0, which is of particular importance for us, there

* * * .
exists a (1, 1) tensor F f’ = 0 such that F % FO’? = n. After contracting (2.6) with F ]J1
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we find
—F% ) FB— K% FBFP + K2, FBFe
nepF =(Ejlp = Filp) Fa = Ky +Kig : (2.10)
1
From (2.4) we have
h _ Th
Fi =Fy, (2.11)
so we can conclude
* *
h _ Th
Also, the condition (2.4) ensures the relation
1 _
h h h
Now, from (2.6) by using (2.10)—(2.13) we obtain
h Tnh
B = B,],
where the tensor llilhj is defined by
Bl =Fl . — ( oyt s F”—lK” Fe)FEFh 4 IK” FV—lKVFh
14 '1 Iﬂ 2 %3 2 2ty
_ (2.14)
and the tensor Blhj is defined by
1— 1 1— 1—y —h
=h =B y
B _Fl||j (F,Hﬂ—l— KyﬂF lﬂFy)F F +2K F 2K,-ij.

Analogously, we can prove that the tensors glhj 0 = 2,3,4, defined by

1 1 1 * 1 1
h Fo v Loy ray B ph h gy y h
§ij—F,|, GRS ZKﬁlF VELF! + K} F) =K} F).
Bh — —l(F 1 o 1 F“)FﬂFh—|—1Kh FV—leFh
3l llj n Iﬂ 2 v b 2 ﬂl 27 2 Jt

1 1 1
h _ 14 14 B rh h v Y h
E’j l|J n( 3+ KﬂyF ——K F“)F F; +2KNF ——Klij,

(2.15)
are also invariant with respect to the mapping f.
The previous discussion generalize Theorem 1 from [5] to the case of generalized

Riemannian manifolds. Namely, the tensors Alhj, 0 =1,...,4, given by (2.8) and

(2.9) are generalizations of the tensor A; = F , while the tensors B h ,0=1,....4,
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given by (2.14) and (2.15) are generalizations of the tensor B;’j given by
1 *
B}, :E?./—;Fi?ﬂFgF/h’ (2.16)

where (;) denotes covariant differentiation with respect to the Levi-Civita connection.
When (;) denotes covariant differentiation with respect to the symmetric part V of

non-symmetric linear connection 'V, it is obvious that the tensors 4; = Fi";‘a and Bl}-’j

are invariant with respect to the mapping f of generalized Riemannian manifolds.

3. SPECIAL CANONICAL ALMOST GEODESIC MAPPINGS OF GENERALIZED
PARABOLIC KAHLER MANIFOLDS

We use Eisenhart’s idea of generalized Riemannian spaces to generalize the notion
of a parabolic Kdhler manifold. Namely, we consider a parabolic Kidhler manifold
with a non-symmetric metric. M.S. Stankovié et al. [20] have already considered
similar generalization for classical (elliptic) Kdhler manifolds. They assumed that
the affinor F is covariantly constant with respect to both of connections !V and 2V.
We use weaker condition, by assuming that the affinor F is covariantly constant with
respect to the symmetric part of non-symmetric linear connection ''V.

Definition 3. A generalized Riemannian manifold M with a metric g is called a
generalized parabolic Kiihler manifold if there exists a (1, 1) tensor field F on M
such that

F2=0, VF=0, g(X.Y)=wg(X.FY), o=l forall X.Y € T,(M),

where V denotes the Levi-Civita connection corresponding to the symmetric part g
of metric g.

In what follows we consider only generalized parabolic Kihler manifolds for
which @ = 1 in Definition 3. Let M and M be two generalized parabolic Kihler
manifolds of dimension n > 2, with the metrics g and g, respectively and the affinor
structure F'. As in the case of usual parabolic K&hler manifolds, the conditions

F?>=0 and Tr(F)=F} =0

are satisfied.
The non-symmetric linear connection !V, defined by (2.1), can be represented as
follows

1
IVXY:VXY—i-ElT(X,Y), (3.1

where V denotes the symmetric part of non-symmetric connection !V and ! 7 is the
torsion tensor field of connection V.
For an anti-symmetric tensor field K given by

K(X,Y)= %(IT(X, Y)-'T(X.Y)), (3.2)



CANONICAL ALMOST GEODESIC MAPPINGS OF TYPE 75(0, F), 6e{1,2} 477

according to (3.1) we have
Wy FX+K(Y,FX)=VyFX + %IT(Y, FX)+ %IT(Y, FX)— %IT(Y, FX)
=Vy FX + %IT(Y, FX).
Analogously, we can prove the relation
2VyFX—K(Y,FX)=VyFX + %ZT(Y, FX).

Therefore the basic equations (2.2) and (2.3) in the case of canonical almost geodesic
mappings of type 7612(0, F), 0 € {1,2} (with a priori defined affinor F') between gen-

eralized parabolic Kéhler manifolds have the following form

Px.Y)= ) oX)FY+(-DOVK(X.Y),

CS(X,Y)
1 _
3 Y Ty Fx)y= Y (w(X)FY—u(FX)Y),
CS(X,Y) CS(X,Y)

where X,Y € X (M), ¢ is a 1-form and K is the anti-symmetric tensor field of type
(1,2) given by (3.2).

It is well known that the affinor structure F is locally integrable if and only if on
a manifold exists a symmetric linear connection V such that VF = 0. Therefore, the

affinor structure F of a generalized parabolic Kdhler manifold is locally integrable.
%

This fact enables us to consider another affinor structure F' such that [5]

* *
FhFpe 4 phpe = st (3.3)

holds on each local chart U of a generalized parabolic Kidhler manifold.
In [5] it was proved that the geometric object

1 *
[—vh Fh I Fﬂ
b py1 G DB @ (G.4)

is invariant with respect to the canonical almost geodesic mapping of type 72 (e = 0)
between parabolic Kédhler manifolds. In what follows we give some generalizations
of the geometric object given by (3.4), to the case of a canonical almost geodesic
mapping of type ng(O, F), 6 € {1,2} between generalized parabolic Kihler mani-

folds.

Theorem 1. Let f : M — M be a canonical almost geodesic mapping of type
ng(O,F), 0 € {1,2} between generalized parabolic Kihler manifolds M and M.
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Then the geometric objects g z}'lj’ 0=1,...,4, given by

ch =rh_ (FP;:qul[ o 18 Lpe pppy Ly F“;‘,B]I*:‘P
10 = T n4+1 iqpnplﬂa 2T vBTatp 5 Tpgty Talti
1 * 1
S D g h S ph
+2Kin1’)Ff] LTk
()]
(3.5)
h _ rh__ P*qla*ﬂla*ﬂy_l)/ a*ﬂ*P
ch=r |:n+1(1“inp+n[Fp2ﬂFa+2KﬂyFan S Ky, Fy FO1F]
1 * 1
D q h h
+§Kinp)Fj] +3KD.
@)
(3.6)
h _ rh_ P*q l o *ﬂ l o *ﬂ y_l y a*ﬂ p
Cij =1 [nH(Finﬁn[ pipFat s KypFaly =5 Ky, By FalF]
1 * 1
S P rq h " xh
+2Kif1FP>F’} ok
@)
(3.7)
h _ rh prg Yrra 58 Ve 2oy Loy pabpyirp
gij_Fij |:n+1(Finp+n[ piﬂFa+2KﬁyFaFP 2KpﬂFVF“]Fi
1 * 1
P rq h h
+§Kl.qu)Fj] +3kh.
@
(3.8)
are invariant with respect to the mapping f .
k.
Proof. Contracting the basic equation (2.5) with F {l we obtain
TP _ P\pa Ppa FapP o kP Fa
(Fig = Ti Fp =i by Fp g Fp " + Ky Fp
* * * *
=ngi +¢g(FLFF + FJF} - FIF!)+ K[ F}
(3.3) q P P rq
= ng;i +9q0; —pg FJF; + K, Fp-
Therefore,
TP _ Py AP _ pP g
(n+De; :(Fiq_['iq)Fp"i"qup Fi _KinP
G Fp _peypa L d d
= (Fl-q—Fl-q)FZ-i-;[( ;\l\g—F;lﬂ)Fg_KgﬂFgFg (3.9)

+ K, FEFB|FP — K? F4
pBy Tt iq” p*
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Now, after changing (3.9) into the basic equation (2.5), we get

1 _ * *
Th _ h P _ppD 94 o o ﬂ y
Py =13 +—+1[<(Fiq FigFp+ [( L Fpm)F —KypFafp

+KY FEFB]F? - Kf’ng)F"] +KD
@)

From the previous equation, by using (2.10)—(2.13), we obtain the following relation

Th U (7r 1 =6 L zu FEEY y BIE

rij— |:n+1(quFp—|— [ p\l\ﬂFa+§KyﬂFan KﬂFyFa]

P —=h 1—p,
+5 quFZ)F/ oKy
G 2

1 1 1
—rh p B B 14 B
_pl.j_[Hl(rqung [MF oK FBEY Ky RS FAIFY

1 1
P g\ rh h
+ 2Kqup)F ] +5Kh.
@)
which proves that the geometric object (17 lhj defined by (3.5) is invariant with respect

to the mapping f.

In a similar manner one can conclude that the geometric objects C f’j, 0 =2,3,4,

determined by (3.6)—(3.8) are invariant with respect to the mapping f O

When we consider a mapping between two affine connected manifolds with tor-
sion, we can consider the so called equitorsion mapping, it is a mapping which pre-
serves the torsion tensor.

Definition 4 ([16,22]). An almost geodesic mapping f : M — M of affine con-
nected manifolds M and M with the torsion tensors T? and Tl /- respectively, is an
equitorsion almost geodesic mapping if the following condition holds

Equation (3.2) in local coordinates reads Kihj = %(Tlhj — TZ?) Therefore the geo-
metric objects C h o=1,...4, given by (3.5)—(3.8), with respect to an equitorsion
canonical almost geodesic mapping of type 7;2(0, F), 0 € {1,2} between generalized
parabolic Kéhler manifolds take the following forms

1
gg:rg [ +1(rl{;Fg+ F“lﬁFﬂF”)L”),9:1,...,4. (3.10)
1
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Note that the geometric objects given by (3.5)—(3.8) and (3.10) are not tensors, since
the generalized Christoftel symbols Flf are not tensors (see [14], p. 10).
The geometric object

1 *
h _ph_ _ - rph B
Cij—FQ n+1Fl.Fj°)’ﬂFa, 3.11)

where Flf is the symmetric part of Fli’, is evidently invariant with respect to the
canonical almost geodesic mapping of type 7912(0, F), 0 € {1,2} between generalized

parabolic Kidhler manifolds. This geometric object is a tensor as well as the geometric
object given by (3.4).

Remark 1. The geometric objects, given by (3.5)—(3.8), (3.10) and (3.11) are gen-
eralizations of the tensor, given by (3.4).

4. CONCLUSION

Invariant geometric objects of canonical almost geodesic mappings of type
7;2(0, F), 0 € {1,2} are examined. Since the available literature does not contain

any results about invariants of almost geodesic mappings of type 7912(6), 0 € {1,2}

for e = 0, this paper somewise fills the gap in the theory of almost geodesic mappings
of manifolds with non-symmetric affine connection.

A generalized parabolic Kihler manifold is introduced and some results concern-
ing invariant geometric objects of canonical almost geodesic mappings of type 72 (e =
0), between parabolic Kihler manifolds are extended. This fact opens up possibilities
for further extension of results from usual parabolic Kéhler manifolds to generalized
parabolic Kédhler manifolds.
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