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Abstract. We introduce a generalized parabolic Kähler manifold and consider special canon-
ical almost geodesic mappings of type �

�
2.0;F /, � 2 f1;2g between generalized Riemannian

manifolds and between introduced generalized parabolic Kähler manifolds, particularly. Some
invariant geometric objects with respect to these mappings are examined.
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1. INTRODUCTION

The use of a non-symmetric affine connection became especially interesting after
the works of A. Einstein [3] on the Unified Field Theory. In 1951, L.P. Eisenhart
[4] introduced a generalized Riemannian space as a differentiable manifold equipped
with a non-symmetric basic tensor. Eisenhart’s generalized Riemannian space is a
particular case of a non-symmetric affine connection space. Some significant con-
tributions to the study of geometry of non-symmetric affine connection spaces were
made by E. Brinis, F. Graif, M. Prvanović [17] and S.M. Minčić [11–14].

Geodesic lines play an important role in modeling of various physical processes.
A mapping between two manifolds with linear connection, which preserves geodesics
is called a geodesic mapping. Generalizing the notions of geodesic lines and geodesic
mappings, Sinyukov [18] introduced the concept of almost geodesic lines and almost
geodesic mappings of affine connected spaces without torsion. He indicated three
types of almost geodesic mappings of manifolds without torsion, �1, �2 and �3.

The theory of geodesic and almost geodesic mappings of affine connected and
Riemannian spaces is an active field of differential geometry, see for instance [1, 2,
5–10, 21, 23].
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Almost geodesic mappings of type �2.e/; e D˙1, from spaces with affine con-
nection onto Riemannian spaces are considered in [10,23], while the paper [5] is ded-
icated to canonical almost geodesic mappings of type �2.eD 0/ between Riemannian
spaces with an almost affinor structure, and between parabolic Kählerian spaces, par-
ticularly. Several papers are devoted to almost geodesic mappings of type �

�
2.e D

˙1/, � 2 f1;2g and its special cases �
�
2.e D ˙1;F /, � 2 f1;2g between manifolds

with non-symmetric affine connection, see [15, 19, 21]. In the papers [16, 22] some
invariant geometric objects with respect to special almost geodesic mappings of type
�
1
1 and �

1
3, respectively, are examined, by considering equitorsion mappings. In [15]

we presented systems of differential equations of Cauchy type for almost geodesic
mappings of the second type of manifolds with non-symmetric linear connection,
also we found some invariant geometric object of almost geodesic mappings of type
�
�
2.e D�1;F /, � 2 f1;2g under some assumptions.

In the present paper, we extend and improve results from [5]. We consider ca-
nonical almost geodesic mappings of type �

�
2.0;F /, � 2 f1;2g between generalized

Riemannian manifolds. Also, we introduce a generalized parabolic Kähler mani-
fold and consider canonical almost geodesic mappings of type �

�
2.0;F /, � 2 f1;2g

between such manifolds. The wider class of metrics enables us to find more invariant
geometric objects than in the classical (symmetric) case [5].

2. SPECIAL CANONICAL ALMOST GEODESIC MAPPINGS OF GENERALIZED
RIEMANNIAN MANIFOLDS

In the sense of Eisenhart (see [4]) a generalized Riemannian space is a differ-
entiable manifold M equipped with a metric g, which is generally non-symmetric.
Therefore, the metric g can be described as follows

g.X;Y /D g.X;Y /Cg
_

.X;Y /; for all X;Y 2 Tp.M/:

Here g denotes the symmetric part of the metric g and g
_

denotes the skew-symmetric

part of g, i.e.

g.X;Y /D
1

2
.g.X;Y /Cg.Y;X// and g

_

.X;Y /D
1

2
.g.X;Y /�g.Y;X//;

where X;Y 2 Tp.M/ and Tp.M/ is the tangent vector space of M at p 2M .
The non-symmetric linear connection 1r of the generalized Riemannian manifold

with the metric g is explicitly defined by

g.1rXY;Z/D
1

2
.Xg.Y;Z/CYg.Z;X/�Zg.Y;X//; X;Y;Z 2 Tp.M/: (2.1)
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Let us denote byr the Levi-Civita connection corresponding to the symmetric metric
g. This connection is the symmetric part of non-symmetric linear connection 1r, i.e.

rXY D
1

2
.1rXY C

1
rYX/;X;Y 2 Tp.M/:

Also, it is well know that on the manifold M with non-symmetric linear connection
1r can be defined another non-symmetric linear connection 2r in the following way

2
rXY D

1
rYXC ŒX;Y �; X;Y 2X.M/;

where as usual X.M/ denotes the set of smooth vector fields on M and Œ�; �� denotes
the Lie bracket [17].

M.S. Stanković in [19] introduced two kinds of almost geodesic lines, as follows.
Let c W I !M be a curve on a manifold M with non-symmetric linear connection
1r, satisfying the regularity condition c0.t/¤ 0; t 2 I . Denote by �.t/D .c.t/;c0.t//
the tangent vector field along c, and let us put

�
�
1 D

�
r��; �

�
2 D

�
r��

�
1; � 2 f1;2g:

If the vector fields � and �
�
1 are independent at any point (hence the (local) curve c

is not a geodesic one) we can put �D D span.�;�
�
1/, � 2 f1;2g. The curve c is an

almost geodesic line of the kind � (� 2 f1;2g) if and only if �
�
2 2

�D. In [15] we gave

an equivalent definition of almost geodesic lines of manifolds with non-symmetric
linear connection, it is Definition 1.

Definition 1 ([15]). Let c W I!M be a curve on a manifoldM with non-symmetric
linear connection satisfying the regularity condition c0.t/ ¤ 0 and let �.t/ D
.c.t/;c0.t// be the tangent vector field along c. The curve c is called an almost
geodesic of the kind � .� 2 f1;2g/ if there exist vector fields X1 and X2 satisfying
�r�Xi D a

j
i Xj for some differentiable functions aji W I ! R and differentiable real

functions bi .t/ along c such that � D b1X1Cb2X2 holds.

Definition 2 ([15, 19]). A diffeomorphism f WM !M of n-dimensional man-
ifolds with non-symmetric linear connection is called an almost geodesic mapping
of the kind � .� D 1;2/ if any geodesic line of the manifold M turns into an almost
geodesic line of the kind � of the manifold M .

LetM andM be two generalized Riemannian manifolds of dimension n > 2 with
the metrics g and g, respectively. We can consider these manifolds in the common
coordinate system with respect to the diffeomorphism f WM !M . In this coordinate
system the corresponding points p 2M and f .p/ 2M have the same coordinates.
Therefore, we can suppose M �M and for � 2 f1;2g we can put

�P D �
r�

�
r;
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where �P is the tensor field of type .1;2/, called the deformation tensor field of linear
connections �r and �r with respect to the mapping f .

In what follows we will use
P
CS.�;�;�/ to denote the cyclic sum on arguments in

brackets, for instance for an arbitrary tensor field A we haveX
CS.X;Y;Z/

A.X;Y;Z/D A.X;Y;Z/CA.Y;Z;X/CA.Z;X;Y /:

A diffeomorphism f WM !M is an almost geodesic mapping of the kind �; � 2
f1;2g if and only if [15]

P
�
.X1;X2;X3/^

�P.X4;X5/^X6 D 0; Xi 2X.M/; i D 1; : : : ;6;

where �P is the deformation tensor field of connections �r and �r, with respect to
the diffeomorphism f , and P

1
, P
2

, are tensor fields of type .1;3/, defined by

P
1
.X;Y;Z/D

X
CS.X;Y;Z/

1
rZ

1P.X;Y /C 1P.1P.X;Y /;Z/; X;Y;Z 2X.M/

and

P
2
.X;Y;Z/D

X
CS.X;Y;Z/

2
rZ

2P.X;Y /C 2P.Z;2P.X;Y //; X;Y;Z 2X.M/:

Basic equations of canonical almost geodesic mappings of type �
�
2.eD 0/, � 2 f1;2g

between generalized Riemannian manifolds are given by

�P.X;Y /D
X

CS.X;Y /

'.X/FY C .�1/.��1/K.X;Y /; (2.2)

X
CS.X;Y /

�
�
rYFX � .�1/

�K.FY;X/
�
D

X
CS.X;Y /

�
�.X/FY ��.FX/Y

�
; (2.3)

whereX;Y 2X.M/, ' is a 1-form,K is an anti-symmetric tensor field of type .1;2/
defined by

K.X;Y /D
1

2

�
1P.X;Y /� 1P.Y;X/

�
D
1

2

�
2P.Y;X/� 2P.X;Y /

�
;

and F is a tensor field of type .1;1/ satisfying

F 2 D 0:

If the affinor structure F satisfies an additional condition

Tr.F /D F pp D 0;

then we denote by �
�
2.0;F /, � 2 f1;2g.
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A canonical almost geodesic mapping f WM !M of type �
�
2.0;F /, � 2 f1;2g

has the property of reciprocity if its inverse mapping f �1 WM !M is a canonical
almost geodesic mapping of type �

�
2.0;F /. Since the deformation tensor fields 1P

and 1P of linear connections 1r and 1r with respect to the mappings f and f �1,
respectively, satisfy the relation

1P .X;Y /D�1P.X;Y /; X;Y 2X.M/;

without loss of generality we can suppose

' D�'; F D F; K D�K;

or in components

'i D�'i ; F
h

i D F
h
i ; K

h

ij D�K
h
ij : (2.4)

Almost geodesic mappings of manifolds with non-symmetric linear connection, which
satisfy the property of reciprocity are investigated in [15, 19, 21, 22]. A necessary
and sufficient condition for an almost geodesic mapping f WM !M of type �

�
2,

� 2 f1;2g to have the property of reciprocity is expressed by

F 2 D ˛I CˇF;

where I is the identity matrix and ˛, ˇ are some scalar functions.

2.1. Invariants

We use traditional tensor calculus approach “by components”. In local coordin-
ates, with respect to a local chart .U;'/; ' D .x1; : : : ;xn/, we have

1
ri

@

@xj
D
1
r @

@xi

@

@xj
D � hij

@

@xh
; 2

ri
@

@xj
D
2
r @

@xi

@

@xj
D � hji

@

@xh
;

and

ri
@

@xj
Dr @

@xi

@

@xj
D � hij

@

@xh
;

where ij signifies a symmetrization with division and the functions � hij are general-
ized Christoffel symbols.

A. Einstein [3] used two kinds of covariant differentiation of a tensor aij :

aij j
1

m D a
i
j;mC�

i
pma

p
j ��

p
jma

i
p; aij j

2

m D a
i
j;mC�

i
mpa

p
j ��

p
mja

i
p;

where aij;m denotes the partial derivative of a tensor aij with respect to xm.
S.M. Minčić [11] has used two more kinds of covariant differentiation of tensors:

aij j
3

m D a
i
j;mC�

i
pma

p
j ��

p
mja

i
p; aij j

4

m D a
i
j;mC�

i
mpa

p
j ��

p
jma

i
p:
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Also, we can consider covariant differentiation with respect to the Levi-Civita con-
nection r, that is

rma
i
j � a

i
j Im D a

i
j;mC�

i
pma

p
j ��

p
jma

i
p;

where � ipm is the symmetric part of � ipm.
Let us denote by j

�

and jj
�

, � D 1; : : : ;4, the covariant derivatives with respect to the

generalized Christoffel symbols � hij and � hij , respectively.
In local coordinates the basic equation (2.2) reads

� hij ��
h
ij D '.iF

h
j /CK

h
ij ; (2.5)

where 'i is the covariant vector corresponding to the linear form ', while F hi and
Khij are components of tensor fields F and K, respectively.

By using covariant differentiation of the first kind and the equation (2.5) we obtain

F hi jj
1

j DF
h
i j
1

j C'pF
p
i F

h
j CK

h
pjF

p
i �K

p
ijF

h
p : (2.6)

After contracting the relation (2.6) over the indices j and h and by using (2.4) we get

F
˛

i jj
1

˛C
1

2
K
˛

p˛F
p

i �
1

2
K
p

i˛F
˛

p D F
˛
i j
1

˛C
1

2
K˛p˛F

p
i �

1

2
K
p
i˛F

˛
p ; (2.7)

i.e. the tensor A
1
i defined by

A
1
i D F

˛
i j
1

˛C
1

2
K˛p˛F

p
i �

1

2
K
p
i˛F

˛
p ; (2.8)

is invariant with respect to the mapping f .
Analogously, by using covariant differentiation of the kind � .� D 2;3;4/ we can

prove that the tensors A
�
i , � D 2;3;4 given by

A
2
i D F

˛
i j
2

˛C
1

2
K˛˛pF

p
i �

1

2
K
p
˛iF

˛
p ;

A
3
i D F

˛
i j
3

˛C
1

2
K˛p˛F

p
i �

1

2
K
p
˛iF

˛
p ;

A
4
i D F

˛
i j
4

˛C
1

2
K˛˛pF

p
i �

1

2
K
p
i˛F

˛
p ;

(2.9)

are invariant with respect to the mapping f .
In the nontrivial case, when F hi ¤ 0, which is of particular importance for us, there

exists a .1;1/ tensor
�

F hi ¤ 0 such that
�

F ˛
ˇ
F
ˇ
˛ D n. After contracting (2.6) with

�

F
j

h
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we find

n'pF
p
i D.F

˛
i jj
1

ˇ �F
˛
i j
1

ˇ /
�

F ˇ˛ �K
˛
pˇ

�

F ˇ˛F
p
i CK

p

iˇ

�

F ˇ˛F
˛
p : (2.10)

From (2.4) we have

F hi D F
h
i ; (2.11)

so we can conclude
�

F hi D
�

F hi : (2.12)

Also, the condition (2.4) ensures the relation

Khij D
1

2
.Khij �K

h
ij /: (2.13)

Now, from (2.6) by using (2.10)–(2.13) we obtain

B
1

h
ij D B

1

h
ij ;

where the tensor B
1

h
ij is defined by

B
1

h
ij D F

h
i j
1

j �
1

n
.F ˛i j

1

ˇ C
1

2
K˛
ˇF



i �

1

2
K



iˇ
F ˛
 /

�

F ˇ˛F
h
j C

1

2
Kh
jF



i �

1

2
K


ijF

h

 ;

(2.14)
and the tensor B

1

h
ij is defined by

B
1

h
ij D F

h

i jj
1

j �
1

n
.F

˛

i jj
1

ˇ C
1

2
K
˛


ˇF



i �
1

2
K



iˇF
˛


 /
�

F ˇ˛F
h

j C
1

2
K
h


jF



i �
1

2
K



ijF
h


 :

Analogously, we can prove that the tensors B
�

h
ij ; � D 2;3;4, defined by

B
2

h
ij D F

h
i j
2

j �
1

n
.F ˛i j

2

ˇ C
1

2
K˛ˇ
F



i �

1

2
K



ˇi
F ˛
 /

�

F ˇ˛F
h
j C

1

2
Khj
F



i �

1

2
K


jiF

h

 ;

B
3

h
ij D F

h
i j
3

j �
1

n
.F ˛i j

3

ˇ C
1

2
K˛
ˇF



i �

1

2
K



ˇi
F ˛
 /

�

F ˇ˛F
h
j C

1

2
Kh
jF



i �

1

2
K


jiF

h

 ;

B
4

h
ij D F

h
i j
4

j �
1

n
.F ˛i j

4

ˇ C
1

2
K˛ˇ
F



i �

1

2
K



iˇ
F ˛
 /

�

F ˇ˛F
h
j C

1

2
Khj
F



i �

1

2
K


ijF

h

 ;

(2.15)
are also invariant with respect to the mapping f .

The previous discussion generalize Theorem 1 from [5] to the case of generalized
Riemannian manifolds. Namely, the tensors A

�

h
ij ; � D 1; : : : ;4, given by (2.8) and

(2.9) are generalizations of the tensor Ai D F ˛i I˛; while the tensors B
�

h
ij ; � D 1; : : : ;4,
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given by (2.14) and (2.15) are generalizations of the tensor Bhij given by

Bhij D F
h
i Ij �

1

n
F ˛i Iˇ

�

F ˇ˛F
h
j ; (2.16)

where .I/ denotes covariant differentiation with respect to the Levi-Civita connection.
When .I/ denotes covariant differentiation with respect to the symmetric part r of

non-symmetric linear connection 1r, it is obvious that the tensors Ai DF ˛i I˛ and Bhij
are invariant with respect to the mapping f of generalized Riemannian manifolds.

3. SPECIAL CANONICAL ALMOST GEODESIC MAPPINGS OF GENERALIZED
PARABOLIC KÄHLER MANIFOLDS

We use Eisenhart’s idea of generalized Riemannian spaces to generalize the notion
of a parabolic Kähler manifold. Namely, we consider a parabolic Kähler manifold
with a non-symmetric metric. M.S. Stanković et al. [20] have already considered
similar generalization for classical (elliptic) Kähler manifolds. They assumed that
the affinor F is covariantly constant with respect to both of connections 1r and 2r.
We use weaker condition, by assuming that the affinor F is covariantly constant with
respect to the symmetric part of non-symmetric linear connection 1r.

Definition 3. A generalized Riemannian manifold M with a metric g is called a
generalized parabolic Kähler manifold if there exists a .1;1/ tensor field F on M
such that

F 2 D 0; rF D 0; g.X;Y /D !g.X;F Y /; ! D˙1; for all X;Y 2 Tp.M/;

where r denotes the Levi-Civita connection corresponding to the symmetric part g
of metric g.

In what follows we consider only generalized parabolic Kähler manifolds for
which ! D 1 in Definition 3. Let M and M be two generalized parabolic Kähler
manifolds of dimension n > 2, with the metrics g and g, respectively and the affinor
structure F . As in the case of usual parabolic Kähler manifolds, the conditions

F 2 D 0 and Tr.F /D F pp D 0

are satisfied.
The non-symmetric linear connection 1r, defined by (2.1), can be represented as

follows
1
rXY DrXY C

1

2
1T .X;Y /; (3.1)

where r denotes the symmetric part of non-symmetric connection 1r and 1T is the
torsion tensor field of connection 1r.

For an anti-symmetric tensor field K given by

K.X;Y /D
1

2

�
1T .X;Y /� 1T .X;Y /

�
; (3.2)



CANONICAL ALMOST GEODESIC MAPPINGS OF TYPE �
�
2.0;F /, � 2 f1;2g 477

according to (3.1) we have

1
rYFXCK.Y;FX/DrYFXC

1

2
1T .Y;FX/C

1

2
1T .Y;FX/�

1

2
1T .Y;FX/

DrYFXC
1

2
1T .Y;FX/:

Analogously, we can prove the relation

2
rYFX �K.Y;FX/DrYFXC

1

2
2T .Y;FX/:

Therefore the basic equations (2.2) and (2.3) in the case of canonical almost geodesic
mappings of type �

�
2.0;F /, � 2 f1;2g (with a priori defined affinor F ) between gen-

eralized parabolic Kähler manifolds have the following form

�P.X;Y /D
X

CS.X;Y /

'.X/FY C .�1/.��1/K.X;Y /;

1

2

X
CS.X;Y /

�T .Y;FX/D
X

CS.X;Y /

�
�.X/FY ��.FX/Y

�
;

where X;Y 2X.M/, ' is a 1-form and K is the anti-symmetric tensor field of type
.1;2/ given by (3.2).

It is well known that the affinor structure F is locally integrable if and only if on
a manifold exists a symmetric linear connection r such that rF D 0. Therefore, the
affinor structure F of a generalized parabolic Kähler manifold is locally integrable.

This fact enables us to consider another affinor structure
�

F such that [5]

F h˛
�

F ˛i C
�

F h˛F
˛
i D ı

h
i (3.3)

holds on each local chart U of a generalized parabolic Kähler manifold.
In [5] it was proved that the geometric object

� hij �
1

nC1
F h.i�

˛
j /ˇ

�

F ˇ˛ (3.4)

is invariant with respect to the canonical almost geodesic mapping of type �2.e D 0/
between parabolic Kähler manifolds. In what follows we give some generalizations
of the geometric object given by (3.4), to the case of a canonical almost geodesic
mapping of type �

�
2.0;F /, � 2 f1;2g between generalized parabolic Kähler mani-

folds.

Theorem 1. Let f WM !M be a canonical almost geodesic mapping of type
�
�
2.0;F /, � 2 f1;2g between generalized parabolic Kähler manifolds M and M .
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Then the geometric objects C
�

h
ij , � D 1; : : : ;4, given by

C
1

h
ij D �

h
ij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F ˛p j

1

ˇ

�

F ˇ˛ C
1

2
K˛
ˇ

�

F ˇ˛F


p �

1

2
K



pˇ
F ˛

�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F hj

�
.ij /

C
1

2
Khij ;

(3.5)

C
2

h
ij D �

h
ij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F ˛p j

2

ˇ

�

F ˇ˛ C
1

2
K˛ˇ


�

F ˇ˛F


p �

1

2
K



ˇp
F ˛

�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F hj

�
.ij /

C
1

2
Khij ;

(3.6)

C
3

h
ij D �

h
ij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F ˛p j

3

ˇ

�

F ˇ˛ C
1

2
K˛
ˇ

�

F ˇ˛F


p �

1

2
K



ˇp
F ˛

�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F hj

�
.ij /

C
1

2
Khij ;

(3.7)

C
4

h
ij D �

h
ij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F ˛p j

4

ˇ

�

F ˇ˛ C
1

2
K˛ˇ


�

F ˇ˛F


p �

1

2
K



pˇ
F ˛

�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F hj

�
.ij /

C
1

2
Khij ;

(3.8)
are invariant with respect to the mapping f .

Proof. Contracting the basic equation (2.5) with
�

F
j

h
we obtain

.�
p
iq ��

p
iq/
�

F qp D 'iF
p
q

�

F qpC'q
�

F qpF
p
i CK

p
iq

�

F qp

D n'i C'q.
�

F qpF
p
i CF

q
p

�

F
p
i �F

q
p

�

F
p
i /CK

p
iq

�

F qp

(3.3)
D n'i C'qı

q
i �'qF

q
p

�

F
p
i CK

p
iq

�

F qp:

Therefore,

.nC1/'i D .�
p
iq ��

p
iq/
�

F qpC'qF
q
p

�

F
p
i �K

p
iq

�

F qp

(3.3)
D .�

p
iq ��

p
iq/
�

F qpC
1

n

h
.F ˛pjj

1

ˇ �F
˛
p j
1

ˇ /
�

F ˇ˛ �K
˛

ˇ

�

F ˇ˛F


p

CK



pˇ
F ˛

�

F ˇ˛

i �
F
p
i �K

p
iq

�

F qp:

(3.9)
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Now, after changing (3.9) into the basic equation (2.5), we get

� hij D �
h
ij C

1

nC1

��
.�

p
iq ��

p
iq/
�

F qpC
1

n

�
.F ˛pjj

1

ˇ �F
˛
p j
1

ˇ /
�

F ˇ˛ �K
˛

ˇ

�

F ˇ˛F


p

CK



pˇ
F ˛

�

F ˇ˛
� �
F
p
i �K

p
iq

�

F qp

�
F hj

�
.ij /

CKhij :

From the previous equation, by using (2.10)–(2.13), we obtain the following relation

� hij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F
˛

pjj
1

ˇ

�

F ˇ˛ C
1

2
K˛
ˇ

�

F ˇ˛F



p �
1

2
K



pˇ
F
˛




�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F
h

j

�
.ij /

C
1

2
Khij

D � hij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n

�
F ˛p j

1

ˇ

�

F ˇ˛ C
1

2
K˛
ˇ

�

F ˇ˛F


p �

1

2
K



pˇ
F ˛

�

F ˇ˛
� �
F
p
i

C
1

2
K
p
iq

�

F qp

�
F hj

�
.ij /

C
1

2
Khij ;

which proves that the geometric object C
1

h
ij defined by (3.5) is invariant with respect

to the mapping f .
In a similar manner one can conclude that the geometric objects C

�

h
ij , � D 2;3;4,

determined by (3.6)–(3.8) are invariant with respect to the mapping f . �

When we consider a mapping between two affine connected manifolds with tor-
sion, we can consider the so called equitorsion mapping, it is a mapping which pre-
serves the torsion tensor.

Definition 4 ([16, 22]). An almost geodesic mapping f WM !M of affine con-
nected manifolds M and M with the torsion tensors T hij and T

h

ij , respectively, is an
equitorsion almost geodesic mapping if the following condition holds

T hij D T
h

ij :

Equation (3.2) in local coordinates reads Khij D
1
2
.T
h

ij �T
h
ij /. Therefore the geo-

metric objects C
�

h
ij , � D 1; : : : ;4, given by (3.5)–(3.8), with respect to an equitorsion

canonical almost geodesic mapping of type �
�
2.0;F /, � 2 f1;2g between generalized

parabolic Kähler manifolds take the following forms

C
�

h
ij D �

h
ij �

�
1

nC1

�
�
p
iq

�

F qpC
1

n
F ˛p j

�

ˇ

�

F ˇ˛
�

F
p
i

��
.ij /

; � D 1; : : : ;4: (3.10)
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Note that the geometric objects given by (3.5)–(3.8) and (3.10) are not tensors, since
the generalized Christoffel symbols � hij are not tensors (see [14], p. 10).

The geometric object

C hij D �
h
ij �

1

nC1
F h.i�

˛
j /ˇ

�

F ˇ˛ ; (3.11)

where � hij is the symmetric part of � hij , is evidently invariant with respect to the
canonical almost geodesic mapping of type �

�
2.0;F /, � 2 f1;2g between generalized

parabolic Kähler manifolds. This geometric object is a tensor as well as the geometric
object given by (3.4).

Remark 1. The geometric objects, given by (3.5)–(3.8), (3.10) and (3.11) are gen-
eralizations of the tensor, given by (3.4).

4. CONCLUSION

Invariant geometric objects of canonical almost geodesic mappings of type
�
�
2.0;F /, � 2 f1;2g are examined. Since the available literature does not contain

any results about invariants of almost geodesic mappings of type �
�
2.e/, � 2 f1;2g

for eD 0, this paper somewise fills the gap in the theory of almost geodesic mappings
of manifolds with non-symmetric affine connection.

A generalized parabolic Kähler manifold is introduced and some results concern-
ing invariant geometric objects of canonical almost geodesic mappings of type �2.eD
0/, between parabolic Kähler manifolds are extended. This fact opens up possibilities
for further extension of results from usual parabolic Kähler manifolds to generalized
parabolic Kähler manifolds.
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