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Abstract. In the work [10] we obtained derivational equations of a submanifold of a space Ly
with asymmetric affine connection. Based on asymmetry of the connection we define four kinds
of covariant derivative and obtain four kinds of derivational equations.

In [20] are examined integrability conditions of derivational equations, using the 157 and the
24 Kind of derivative, and in the present work we do it on the base of the 3" d and 4'% Kind.
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1. INTRODUCTION

In 1922 Cartan was put forward a modification of General Relativity Theory
(GRT), by relaxing the assumption that the affine connection has vanishing the an-
tisymmetric part (torsion tensor), and relating the torsion to the density of intrinsic
angular momentum. Also, the torsion is implicit in the 1928 Einstein theory of grav-
itation with teleparallelism.

From 1923 to the end of his life Einstein worked on various variants of Unified
Field Theory (Non-symmetric Gravitational Theory-NGT) [3]. This theory had the
aim to unite gravitation theory and the theory of electromagnetism. Introducing dif-
ferent variants of his NGT, Einstein used a complex basic tensor, with a symmetric
real part and a skew-symmetric imaginary part. Starting from 1950, Einstein used
the real non-symmetric basic tensor g, sometimes called generalized Riemannian
metric/manifold.

Notice that in NGT the symmetric part g;; of the basic tensor g;;(gij = gij + &ij)

is related to gravitation, and the skew-symmetric one g;; to electromagnetism.
4

While on a Riemannian space the connection coefficients are expressed by vir-
tue of the metric, g;;, in Einstein’s work on NGT the connection between these
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magnitudes is determined by the so-called Einstein metricity condition, i.e. the non-
symmetric metric tensor g and the connection components Lf.cj are connected with
the equations
0gij
P, . P, _
I —L;u8pj = Lyyj8ip = 0. (1.1)
The choice of a connection in NGT is not uniquely determined. In particular, in
NGT there exist two kinds of the covariant derivative. For example, for tensor a ; :
i aai 8ai

;
+ i _qp i. — _ i _gDb i

4jim= 9xm +me J ij p Yim ax’” +me J LmJ p’
+ —_

where the lowering and the rising of indices one defines by equations
gpig” =gipg’? =6/, (1.2)
Einstein considered only one curvature tensor:
_ i i Ky i K
Ritm = Litm = Liem,y = Lt Lim + LsmLiy (1.3)
and proved Bianchi type identity for covariant curvature tensor (see [2])
Rikimin+ Rikmn|i + Riknt jm =0,
—+—+ —+++ —f—

where is Rikim = &si R’ kim-

Afterwards, several mathematicians dealt with non-symmetric affine connection,
for example, Eisenhart [4], Prvanovié [13], Minci¢ [9-12], Stankovié¢ [16, 17] etc.
Sinyukov [14] introduced the concept of almost geodesic mappings between affine
connected spaces without torsion. Mikes [1], [5-8, 13], [15], [18] gave some signi-
ficant contributions to the study of geodesic and almost geodesic mappings of affine
connected, Riemannian and Einstein spaces.

Let L be a space with asymmetric affine connection Lj. « (in local coordinates),

and torsion tensor Tj’k.
In L y one can define four kinds of covariant derivatives. For example, for a tensor
a;. we have

i i p i i i 4 i

]|m +me j ij p’ j|m_ +me J Lmj D’
2

i i _gpP i i i N )

4jim = +me J Lmj p %im= +me J L/m D
4

In [6] is proved very important theorem
Theorem 1. Let (Ly,gij = gij + &ij) be an asymmetric affine connection space
- 2

and Fjik be the Levi-Civita connection of gj;. Let L;. i be a linear connection with

torsion Tjik. Then L; « s uniquely determined by the following formula
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bl

1 1
Lijk = I jk +§<Ti.jk + Tk.ij _Tj.ki) —§<g¢|i + gkij — &ji k)v (1.4)
1

‘\..

——

where L; i = gLiLfk'
A submanifold Xps C Ly is defined by equations

X =xtt, . ouM)y=x'w®), i=T1,N.

i

Partial derivatives B(’;{ = (rank(B ) = M) define tangent vectors on Xjps.

Consider N — M contravarlant vectors le (A,B,C,....,e{M +1,...,N}) defined
on X and linearly independent, and let the matrix ( c. A) be inverse for the matrix

(Bé, C fil) provided that the following conditions are satisfied [19,20]:

a) BLBf =8B, b)BiCA=0; ¢)BFCi=0;
d) CicP =88 ¢ BLBY+CiCA =5l

The magnitudes Bé, BY are projection factors (tangent vectors), and the mag-

nitudes C jl, Cl.A are affine pseudonormals [10,20].
The induced connection on X7 is [10,19,20]:

— Ro J pk
ﬂy B(Bﬁy—i-L B, By),

where B'g = 8B’ Jou? = 9%x'/9uP du? . Because L is asymmetric by virtue of

j.k, Lis asymmetrlc in B,y too. The submanifold X,s endowed with L becomes
Lpr and we write Lyps C Ly .

The set of pseudonormals of the submanifold Xy C Ly makes a pseudonormal
bundle of X3/, and we note it X JZVV_ - We have defined in [10] induced connections
of pseudonormal bundle with coefficients

T4 A ] k T4 A ] ]  pk

Ly, =C(Cp, + L%, CBE), L, =C/(Cp, +Ly;CyBy).
As the coefficients L, L, L are generally asymmetric, we can define four kinds of
covariant derivative for a tensor, defined in the points of Xjs. For example:

lO{A icA i (poaA _ zaA lﬂA T zaA lOlP laA
s = st Lomtigs —Lintofs + Lautifs = Lhutias + Loutigs — Lhutise:

zotA icA i paA lOtA lTL’A Tr locA lOtP taA
JﬂBW =ligg,u T met/ﬂB Lmj ppB T Lun 88 ~ Luplizp + LPM JBB Lﬂu JBP

iaA _ LicA i paA )4 lotA lﬂA T lozA laP laA
5 \n = tipbn T Lomigs — LnjTpps + Louti7s —Logtins + Loutiss — Lh,tgs

icAd __ ,iaA i ,pad laA znA laA laP lOlA
i \n = igBnt Lmplips ~ LYo + Lot 155 — LR, 00 + L3065 — LE 57
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In this manner four connections Z on Xps C Ly are defined. We shall note the

obtained structures (Xps C Ly, Z,G e{l,...,4}).

2. NEW INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS FOR
TANGENTS

2.0. We have obtained in [20] integrability conditions of derivational equations and
corresponding Gauss-Codazzi equations in the structure (Xps C Ly, g, 0 €{1,2}).

In the present work we are solving this problem for 6 € {3,4}. Based on the Theorem
2.2. in [10], the following derivational equations for tangents are in force

B;m—:z” b, 0e{3,4) 2.1
O P
?l“ = : %MCi , 0e{3,4}, (2.2)
and, (see [20]), for pseudonormals
CA|;L —07,By. 034} 2.3)
c4 .QA BT, 0e{3,4). (2.4)

i |M
In this manner, one obtalns

. . .
eluv ™ Boaviu = @5y Qar = 25,90 B + (2, )Clh,

an|v ™ Fav
6 o o 0

0,w € {3,4}. (2.5)

and analogously

P P
B?EMJ)V_B?Q\)%M:(% Pv ‘Q )Bﬂ+(‘QPu|v (;’V(LM)CI’ >
9e{3,4}.
where [10]
QP = cP (B! L, BEB
w i( a,u+ )_ oew
) (2.6)
Qb =cPoBl,+L,,BEBT) =2 W,
2%, =Cp(BY + Ly ByBI) =Q%,. 2%, = Cp(BY, + L], ByBI) =23,

From the Theorem 2.2. in [10] the induced connection T in the structure Xy C
Ly, Z, 0 € {3,4}) is symmetric, i.e.

o
Tﬂy =0, 2.7)
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and based on the Theorem 3.2. in this case is

L=L=1L, (2.8)
1 2

that is there exists an unique connection in the pseudonormal bundle.
2.1. Using the Ricci-type identities (12,13) in [9], by virtue of (2.7), we obtain

07
B:xlulv fo\v|,u,_ RlpmntBZan RZ//,VBZ +( 1) Tﬂ Bzy|7-[’ 96{3’4}-
4
2.9)
where
j _ p P
a)li?ljm L;mn L;nm+LJlepn_L]nLlpm’ 1o
. (2.10)
b) R = Liin—Lhjm+ Lo Lyp—L5 Ly,

are curvature tensors of the 157 respectively the 2¢ kind of the L y and ﬁ%uv is,

with respect of (2.8), curvature tensor of L9, C Ly, where L{, is a subspace with
symmetric affine connection. .
Further, we examine integrability conditions for derivational equations of B}, and

o i a
BY,ie. forBam M,9€{3,4}.

6
Substituting 9 = w € {3,4} into (2.5) and comparing with (2.9), taking into con-
sideration (2.7), we get the 1°7 and the 2"4 kind integrability condition of deriv-
ational equation (2.1) in the structure (X3s C Ly, V, 0 € {3,4}):
R ’pmntB;’}B" R B _(m .(2” .(2” .QP ) BL +(:2 )Ch,

oy aulv avlu

0 e {3,4).
@.11)

Multiplying this equation equation with B? and taking into consideration (1.2),
we obtain

61_?’ B} BLBY BY— WV—Q fgfu—fg Q({ZM’ 0 €{3,4}. 2.12)

i.e the Gauss equation of the 1°’ and the 274 Kkind in the structure (Xpm C Ly, g,
0 €{3,4}).
If one multiplies (2.11) with C -L, it follows that

L L
R \omnCl BEB]! B = Dan]v = G 0 (3,4} (2.13)

which are the 15* Codazzi equation of the 1°* and the 2”¢ kind for the cited struc-
ture.
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2.1’ Further, if we use the Ricci type identities ([9], equation (12))

o p apmphn | po T
ilulv llvm RzmanBuB + R By
a3 ’ B RP BO!BmBn Ra BT[ (214)
il — Pivip = imnPpPu + auvPio
4 4 4 4
and (2.3) for 0 = w € {3,4}, we have
RfmntBmBn_'_R?r/w (‘Qnu‘Q%v—‘(g:’}t)v‘Q%u)Bﬂ (‘QPulv Pvm)C
RzpmntBZjBn'i_R?ruv 7=(£2nu4an_'g2P )B”+(‘QPulv Pvm)CiP
4
(2.15)

which are the 157 and the 2"¢ kind integrability conditions of derivational equa-
tion (2.2) in the structure (Xps C Ly, Z, 0 € {3,4}).

a’) By multiplying the previous equation with B’ , one obtains

p
Auv RzmntBleBn ‘QAM ‘ka:,)P;u 216
(2.16)
p
Mu) RzmntBleBn ‘Q)L;L“_ ‘Q)Lv P//J

which is another form of (2.12).
If we exchange at (2.12) i <> p, o <> A, for 6 = 3 from that equation one gets

R? BYB™B"

_Ou P
1imn=pT Auv ‘QPM‘Q 3Pv‘g2Ay,'

3

Summing this equation with 157 case in (2.16), one concludes:

(llmn lmn)B“B’ BmB”_O 2.17)
Putting § = 4 at (2.12), we get the 157 case from (2.16), and together with 2"d case
it follows. '
If we multiply (2.15) with C? , it follows that
—R? BECi BBl =0

oo
5 imn p Lulv Lvlu’
3

(2.18)
—RP “CLBMBI =0

oo
imn p L;/,Iv Lv|u,’
4

and this is another form fo the 15 Codazzi equation of the 1°* and the 2"*¢ kind
in the cited structure.
2.2. Further we use the Ricci-type identity (equation (46) from [9])

=R B — R™ B, (2.19)

i i
alplv alvip T 4 ppy auy
3 4 4 3
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where
{fljuv = (Lj'm,n - L;'n,m + le"mLilp - Lilz)jL;)m)BZ?Bﬁ + T;'m(BZl,v - LZ,VB:T’I)’
(2.20)
is the 4 kind curvature tensor of Ly with respect to Xpr C L. On the other
hand, putting into (2.5) @ = 3,w = 4 and comparing with (2.19), we get the 37¢
kind integrability condition of derivational equation (2.1) in the structure (X7 C
LN,Z,Q € {3,4}):

] 53 j O P Fo) P j P P j
§lpuv35 _Rg,uvB;r = (ggu‘?av _‘?}T’v‘gau)B; + ([32““4'1” _?aviu)clP'

(2.21)
a) If one multiplies this equation with Bl’.l, we have
j A_pA O P O P
{flpungBi _Rap,v :‘gzgu‘?av_ﬂzylgu‘?au (2.22)

and this is Gauss equation of the 3" kind in the cited structure.
b) Multiplying (2.21) with CE, we get

ctpr=0f _QF (2.23)

Ri
4 Py 3 aulv 4 avéu,’

i.e. the 157 Codazzi equation of the 37 kind in the same structure.
2.2'. Based on equation (46) in [9], we have

_ pP -
B;'XI;LIv - ?IUI,U, - §in33 + R?T/LVB;T’
3 4 4 3
where
Rl = Wi = Lij &+ Loy Ly = L7, L) By By + 11, (B~ L5, BT,
(2.24)

is the 379 kind curvature tensor of Ly with respectto Xpr C Ly.

Simultaneously, putting into (2) 6 = 3,® = 4, and comparing with (2), we ob-
tain the 3”¢ integrability condition of derivational equation (2.2) in the structure
(Xm C LN,Z,G € {3,4}):

p o _ P 5 P A 3 = P
§iv,u,Bz+R?ruva - (gnug%v_ﬂznv?%u)B?+(g20}éulv_i2%viu)ci .
. (2.25)
a’) From here, multiplying with B*
plymng 2
] 5 P A P A
éefqugBlA +R?‘r/w = ‘{32:1“ 4(11311 _‘{421111 5 %M’ (2.26)

which is another form of the 3’¢ kind Gauss equation in the cited structure.
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b’) Similarly as the equation (2.23), we get

P P
PVMC Bp _‘Qaulv ‘?avg,u’ (2.27)

and that is another form of (2.23).
Now, we can state the following theorems

Theorem 2. The 1°* and 2"¢ kind integrability conditions derivational equations
(2.1) and (2.1') for submanifold Xy C Ly with the structure (Xpr C Ly, g, 0 e

{3,4}), for the connections g are given in (2.11) and (2.15) respectively. The 3"¢
kind of these conditions are given in (2.21).

Theorem 3. Gauss equations of the 15¢ and the 2% kind are given in (2.12), and
of the 3™ one in (2.22). The 15! Codazzi equations of the 15t and the 2% kind are

givenin (2.18), and of the 374 kind in (2.23). The equations (2.16),(2.18),(2.26),(2.27)
are another forms of previous equations.

3. INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS FOR
PSEUDONORMALS

3.0. Further, we use the similar procedure on derivational equation of pseudonor-
mals.
Using (2.3),(2.1), we get

zi‘léui)v_czi‘ll)vgu:_(‘?ZMJ)V_%Z\)M)BI (QA[L ‘QAv EM)CQD (3.1
and from (2.4),(2.2):
Cllulv CiAc\ovéu (‘Qnu,lv nv|M)Bﬂ ([92 qu QA Qn )CP
0,w € {3,4}.
We need also the Ricci type identities ([1 1], Equation (2.19))
C;WW—C;MM— pmnC”BmB” RY,,Ch. 0e{3.4), (3.2)
6 6 6 60

and in the same way

P V4
szw Cz|vm R, Cl = RE,,CoBIBY.
3.3)
_BA P _pP A
Cllulv Cllvm RP/wC lenCpBﬁB”,

4

where IIQ, 15 are given at (2.10) and Rat[l1]

SA —A —A —P —A —P —A
RB,uv - LBu,v_LBv,u+LB;LLPV_LB\)LP,u,- (3-4)
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It follows that

4 Pmn A;w i‘” (3.5)

Chtuly = Chpon = RomnC4—
3 4 4 3
and analogously

P
Cllpclv Czlvm lmnCA+RPv,uCi ’

4

The magnitude R4 is curvature tensor of L y with respect to the pseudonormal

By
submanifold X]{}'_M in the structure (Xps C Ly, Z, 0 €{3,4}).
3.1. Taking § = w € {3,4} in (3.1) and comparing with (3.2), we obtain the 157 and

the 2" kind integrability condition of derivational equation (2.3) (for pseudonor-
mals) in the structure (Xps C LN,V,G €{3,4}):

pmnCmeB” RY,,Ch
= (@) + Q001 B~ (0,90 + 93, 22,0Cp. 63,4}
(3.6)
a) Multiplying (3.6) with B?, one gets:
eﬁzl}mnB?CﬁB'/fBﬁ = ‘Qj}l,u,h) +9Au|u,» 0 €{3.4}. (3.7)

which is one more form of the 15’ Codazzi equation (2.13).
b) If we multiply (3.6) with C .L, one obtains

mnCFCEBTBL—RY | = .QAMSZL +S0?AUS2§M, 0e{3.4. (3.8)
and that is the 2"¢ Codazzi equation of the 15’ and the 2"¢ kind in the cited
structure.

3.1. If one takes § = w € {3,4} in (3) and compare with (3.3) we obtain the 15" and

the 2”¢ kind integrability condition of derivational equation (2.4) in the structure
(Xm C LN,Z,G €{3.4}):

DA A D A P
Rfmncp B:Lan RP;w (‘Qnu,lv nv\u)Bn (‘Qﬂu‘ng ‘Q ‘QP;,L)C
,mnCp BB} —R%,,C (va ,,W)B”Jr(sz sz;v .QA Q”M)Cf.

3.9)

which is the 157 and the 2"“ kind integrability conditions (6 = 1,2) of deriva-
tional equation (2.4).
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a’) By multiplying of the previous equation with Bi we get

ApA A A
lmnCPB BmBn ‘Q/X,ulu ‘Q)tvlu
(3.10)
ApA A A
lmnCPB BmBn ‘Q/l,ulu ‘Q)tvlu
that is one more form of the 1%’ Codazzi equation (2.18).
b") Multiplying (3.9) with C’ , we get
A DA A A
R{’mncpcl BBy —R7,, = ngzu ogt qu
CACi Bm"B"-R%,, = .QA Q7 .QA .(2” G-AD
lmn p Luv — Lv

and this is another form of the 2"¢ Codazzi equation of the 1°? and the 2"¢ kind.
3.2. If one takes 6 = 3,w = 4 in (3.1) and compares obtained equation with (3.5), we

obtain 3" integrability condition of derivational equation (2.3) in the structure
(Xm C LN,V,Q €1{3,4}):

I’MVCA A;wClP = _(S:,?X;,Lh) _‘?va)Bl (‘QA,U, ‘QAv )Cl
4 3
(3.12)
a) Multiplying (3.12) with B, we get
] A oA
{SIP,U«VBI' Cﬁ— QA/,L|V+QAV|/L’ (3.13)
which is one more form of (2.17).
b) Multiplying (3.12) with CE, we have
L
WC Lck - RAW—SZ w2y~ .QAM (3.14)

which is the 2"¢ Codazzi equation of the 3¢ kind.

3.2'. Endly, we put 8 = 3,w = 4 into (3) and compare obtained equation with (3.4’).
In that manner, one obtains the 3"¢ kind integrability condition of derivational
equation (2.4) in the structure(Xps C Ly, V, 0 €{3,4}):

RY CA+RE,,CF= (:2

A P
3ivup )Bﬂ (‘(32 ‘QPv ‘Q ]IE‘,u)Ci‘

Jmlv nvm

a’) If one multiplies (3) with B, it follows that

+ 04 (3.15)

A pi A
C B)L_ Q 4]_[‘):'3/‘/,

3zvu p JT,(le

and this is another form of (2.27) or (3.13).
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b’) Multiplying (3) with C' , we have

i __pA Fo) A O A
I;f,uvcjclL_RLuv =~?Zuﬂzm— 4Zv‘g27ru' (3.16)

which is another form of the 24 Codazzi equation of the 3" 4 kind i.e. of (3.14).
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