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Abstract. In the work [10] we obtained derivational equations of a submanifold of a space LN
with asymmetric affine connection. Based on asymmetry of the connection we define four kinds
of covariant derivative and obtain four kinds of derivational equations.

In [20] are examined integrability conditions of derivational equations, using the 1st and the
2nd kind of derivative, and in the present work we do it on the base of the 3rd and 4th kind.

2010 Mathematics Subject Classification: 53C25; 53A45; 53B05.

Keywords: derivation equations, submanifold, asymmetric connection, induced connection, in-
tegrability conditions

1. INTRODUCTION

In 1922 Cartan was put forward a modification of General Relativity Theory
(GRT), by relaxing the assumption that the affine connection has vanishing the an-
tisymmetric part (torsion tensor), and relating the torsion to the density of intrinsic
angular momentum. Also, the torsion is implicit in the 1928 Einstein theory of grav-
itation with teleparallelism.

From 1923 to the end of his life Einstein worked on various variants of Unified
Field Theory (Non-symmetric Gravitational Theory-NGT) [3]. This theory had the
aim to unite gravitation theory and the theory of electromagnetism. Introducing dif-
ferent variants of his NGT, Einstein used a complex basic tensor, with a symmetric
real part and a skew-symmetric imaginary part. Starting from 1950, Einstein used
the real non-symmetric basic tensor g, sometimes called generalized Riemannian
metric/manifold.

Notice that in NGT the symmetric part gij of the basic tensor gij .gij D gij Cgij
_

/

is related to gravitation, and the skew-symmetric one gij
_

to electromagnetism.

While on a Riemannian space the connection coefficients are expressed by vir-
tue of the metric, gij , in Einstein’s work on NGT the connection between these
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magnitudes is determined by the so-called Einstein metricity condition, i.e. the non-
symmetric metric tensor g and the connection components Lkij are connected with
the equations

@gij

@xm
�L

p
imgpj �L

p
mjgip D 0: (1.1)

The choice of a connection in NGT is not uniquely determined. In particular, in
NGT there exist two kinds of the covariant derivative. For example, for tensor aij W
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where the lowering and the rising of indices one defines by equations

gpig
pj
D gipg

jp
D ı

j
i ; (1.2)

Einstein considered only one curvature tensor:

Riklm D L
i
kl;m�L

i
km;l �L

i
slL

s
kmCL

i
smL

s
kl (1.3)

and proved Bianchi type identity for covariant curvature tensor (see [2])

R iklm
�C�C

jnCR ikmn
�CCC

jlCR iknl
�C��

jm D 0;

where is Riklm D gsiRsklm:
Afterwards, several mathematicians dealt with non-symmetric affine connection,

for example, Eisenhart [4], Prvanović [13], Minčić [9–12], Stanković [16, 17] etc.
Sinyukov [14] introduced the concept of almost geodesic mappings between affine
connected spaces without torsion. Mikeš [1], [5–8, 13], [15], [18] gave some signi-
ficant contributions to the study of geodesic and almost geodesic mappings of affine
connected, Riemannian and Einstein spaces.

Let LN be a space with asymmetric affine connection Li
jk

(in local coordinates),
and torsion tensor T i

jk
.

InLN one can define four kinds of covariant derivatives. For example, for a tensor
aij we have
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In [6] is proved very important theorem

Theorem 1. Let .LN ;gij D gij Cgij
_

/ be an asymmetric affine connection space

and � i
jk

be the Levi-Civita connection of gij . Let Li
jk

be a linear connection with
torsion T i

jk
. Then Li

jk
is uniquely determined by the following formula
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Li:jk D �i:jk C
1

2

�
Ti:jk C Tk:ij � Tj:ki

�
�
1

2

�
gjk j

1

i C gki j
1

j � gj i j
1

k

�
; (1.4)

where Li:jk D gpiL
p

jk
.

A submanifold XM � LN is defined by equations

xi D xi .u1; : : : ;uM /D xi .u˛/; i D 1;N :

Partial derivatives B i˛ D
@xi

@u˛
(rank.B i˛/DM ) define tangent vectors on XM .

ConsiderN �M contravariant vectorsC iA .A;B;C; : : : ;2 fMC1; : : : ;N g/ defined

on XM and linearly independent, and let the matrix
�B˛

i

CA
i

�
be inverse for the matrix

.B i˛;C
i
A/ provided that the following conditions are satisfied [19, 20]:
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ˇ
i D ı
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˛ I b/ B i˛C
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d/ C iAC
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˛
j CC
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i
j I

The magnitudes B i˛;B
˛
i are projection factors (tangent vectors), and the mag-

nitudes C iA;C
A
i are affine pseudonormals [10, 20].

The induced connection on XM is [10, 19, 20]:eL˛ˇ
 D B˛i .B iˇ;
 CLijkBjˇBk
 /;
where B i

ˇ;

D @B i

ˇ
=@u
 D @2xi=@uˇ@u
 : Because L is asymmetric by virtue of

j;k, eL is asymmetric in ˇ;
 too. The submanifold XM endowed with eL becomes
LM and we write LM � LN .

The set of pseudonormals of the submanifold XM � LN makes a pseudonormal
bundle ofXM , and we note itXNN�M . We have defined in [10] induced connections
of pseudonormal bundle with coefficients
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As the coefficients L;eL;L are generally asymmetric, we can define four kinds of
covariant derivative for a tensor, defined in the points of XM . For example:
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In this manner four connections r
�

on XM � LN are defined. We shall note the

obtained structures .XM � LN , r
�
;� 2 f1; : : : ;4g).

2. NEW INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS FOR
TANGENTS

2.0. We have obtained in [20] integrability conditions of derivational equations and
corresponding Gauss-Codazzi equations in the structure .XM � LN ;r

�
;� 2 f1;2g/:

In the present work we are solving this problem for � 2 f3;4g. Based on the Theorem
2.2. in [10], the following derivational equations for tangents are in force
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and, (see [20]), for pseudonormals
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where [10]
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From the Theorem 2.2. in [10] the induced connection eL in the structure .XM �
LN ;r

�
;� 2 f3;4g/ is symmetric, i.e.

eT ˛ˇ
 D 0; (2.7)
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and based on the Theorem 3.2. in this case is

L
1
D L

2
D L; (2.8)

that is there exists an unique connection in the pseudonormal bundle.
2.1. Using the Ricci-type identities (12,13) in [9], by virtue of (2.7), we obtain
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are curvature tensors of the 1st respectively the 2nd kind of the LN and eR˛
ˇ��

is,

with respect of (2.8), curvature tensor of LoM � LN ; where LoM is a subspace with
symmetric affine connection.

Further, we examine integrability conditions for derivational equations of B i˛ and
B˛i , i.e. for B i

˛ j
�

�
, B˛

i j
�

�
, � 2 f3;4g.

Substituting � D ! 2 f3;4g into (2.5) and comparing with (2.9), taking into con-
sideration (2.7), we get the 1st and the 2nd kind integrability condition of deriv-
ational equation (2.1) in the structure .XM � LN ;r

�
;� 2 f3;4g/:
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(2.11)

Multiplying this equation equation with B�i and taking into consideration (1.2),
we obtain

R
��2

i
pmnB

�
i B

p
˛B

m
�B

n
��
eR�˛�� D b̋

�

�
P�˝

�

P
˛��

b̋
�

�
P�˝

�

P
˛�; � 2 f3;4g: (2.12)

i.e the Gauss equation of the 1st and the 2nd kind in the structure .XM � LN ;r
�

,

� 2 f3;4g/.
If one multiplies (2.11) with CLi , it follows that
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which are the 1st Codazzi equation of the 1st and the 2nd kind for the cited struc-
ture.
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2:10 Further, if we use the Ricci type identities ([9], equation (12))
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which are the 1st and the 2nd kind integrability conditions of derivational equa-
tion (2.2) in the structure .XM � LN ;r

�
;� 2 f3;4g/.

a0/ By multiplying the previous equation with B i
�

, one obtains
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which is another form of (2.12).
If we exchange at (2.12) i $ p, ˛$ �, for � D 3 from that equation one gets
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Summing this equation with 1st case in (2.16), one concludes:

.R
1

p
imn�R2

p
imn/B

˛
pB

i
�B

m
�B

n
� D 0: (2.17)

Putting � D 4 at (2.12), we get the 1st case from (2.16), and together with 2nd case
it follows.

If we multiply (2.15) with C iL, it follows that
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and this is another form fo the 1st Codazzi equation of the 1st and the 2nd kind
in the cited structure.
2.2. Further we use the Ricci-type identity (equation (46) from [9])

B i˛ j
3

� j
4

� �B
i
˛ j
4

� j
3

� DR4
i
p��B

p
˛ �

eR�˛��B i� ; (2.19)



NEW INTEGRABILITY CONDITIONS 531

where

R
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is the 4th kind curvature tensor of LN with respect to XM � LN : On the other
hand, putting into (2.5) � D 3;! D 4 and comparing with (2.19), we get the 3rd
kind integrability condition of derivational equation (2.1) in the structure .XM �
LN ;r

�
;� 2 f3;4g/:
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and this is Gauss equation of the 3rd kind in the cited structure.
b/ Multiplying (2.21) with CLi , we get
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i.e. the 1st Codazzi equation of the 3rd kind in the same structure.
2:20: Based on equation (46) in [9], we have
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is the 3rd kind curvature tensor of LN with respect to XM � LN :
Simultaneously, putting into (2) � D 3;! D 4, and comparing with (2), we ob-

tain the 3rd integrability condition of derivational equation (2.2) in the structure
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which is another form of the 3rd kind Gauss equation in the cited structure.
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b0/ Similarly as the equation (2.23), we get
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and that is another form of (2.23).
Now, we can state the following theorems

Theorem 2. The 1st and 2nd kind integrability conditions derivational equations
(2.1) and .2:10/ for submanifold XM � LN with the structure .XM � LN ;r

�
;� 2

f3;4g/; for the connections r
�

are given in (2.11) and (2.15) respectively. The 3rd

kind of these conditions are given in (2.21).

Theorem 3. Gauss equations of the 1st and the 2nd kind are given in (2.12), and
of the 3rd one in (2.22). The 1st Codazzi equations of the 1st and the 2nd kind are
given in (2.18), and of the 3rd kind in (2.23). The equations (2.16),(2.18),(2.26),(2.27)
are another forms of previous equations.

3. INTEGRABILITY CONDITIONS OF DERIVATIONAL EQUATIONS FOR
PSEUDONORMALS

3.0. Further, we use the similar procedure on derivational equation of pseudonor-
mals.

Using (2.3),(2.1), we get
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We need also the Ricci type identities ([11], Equation (2.19))

C iA j
�

� j
�

� �C
i
A j
�

� j
�

� D R
��2

i
pmnC

p
AB

m
�B

n
� �R

P
A��C

i
P ; � 2 f3;4g; (3.2)

and in the same way

CAi j
3

� j
3

� �C
A
i j
3

� j
3

� DR
A
P��C

P
i �R

1

p
imnC

A
pB

m
�B

n
� ;

CAi j
4

� j
4

� �C
A
i j
4

� j
4

� DR
A
P��C

P
i �R

2

p
imnC

A
pB

m
�B

n
� ;

(3.3)

where R
1
;R
2

are given at (2.10) and R at [11]

eRAB�� D LAB�;� �LAB�;�CLPB�LAP� �LPB�LAP�: (3.4)
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It follows that
C iA j

3

� j
4

� �C
i
A j
4

� j
3

� DR4
i
pmnC

p
A �R

P
A��C

i
P ; (3.5)

and analogously

CAi j
3

� j
4

� �C
A
i j
4

� j
3

� DR3

p
imnC

p
ACR

A
P��C

P
i ;

The magnitudeRAB�� is curvature tensor ofLN with respect to the pseudonormal

submanifold XNN�M in the structure .XM � LN ;r
�
;� 2 f3;4g/.

3.1. Taking � D ! 2 f3;4g in (3.1) and comparing with (3.2), we obtain the 1st and
the 2nd kind integrability condition of derivational equation (2.3) (for pseudonor-
mals) in the structure .XM � LN ;r

�
;� 2 f3;4g/:

R
��2

i
pmnC

p
AB

m
�B

n
� �R

P
A��C

i
P

D�.b̋
�

�
A� j

�

�C
b̋
�

�
A� j

�

�/B
i
� � .

b̋
�

�
A�˝

�

P
��C

b̋
�

�
A�˝

�

P
��/C

i
P ; � 2 f3;4g;

(3.6)

a/ Multiplying (3.6) with B�i , one gets:

R
��2

i
pmnB

�
i C

p
AB

m
�B

n
� D�

b̋
�

�
A� j

�

�C
b̋
�

�
A� j

�

�; � 2 f3;4g: (3.7)

which is one more form of the 1st Codazzi equation (2.13).

b/ If we multiply (3.6) with CLi , one obtains

R
��2

i
pmnC

L
i C

p
AB

m
�B

n
� �R

L
A�� D�

b̋
�

�
A�˝

�

L
��C

b̋
�

�
A�˝

�

L
��; � 2 f3;4g: (3.8)

and that is the 2nd Codazzi equation of the 1st and the 2nd kind in the cited
structure.
3:10: If one takes � D ! 2 f3;4g in (3) and compare with (3.3) we obtain the 1st and
the 2nd kind integrability condition of derivational equation (2.4) in the structure
.XM � LN ;r

�
;� 2 f3;4g/ W

R
2

p
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A
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m
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P
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A
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3
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�
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3

A
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3

�
P�/C

P
i

R
1

p
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A
pB

m
�B

n
� �R

A
P��C

P
i D .˝

4

A
�� j

4

� �˝
4

A
�� j
4

�/B
�
i C .˝

4

A
��
b̋
4

�
P� �˝

4

A
��
b̋
4

�
P�/C

P
i :

(3.9)

which is the 1st and the 2nd kind integrability conditions .� D 1;2/ of deriva-
tional equation (2.4).
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a0/ By multiplying of the previous equation with B i
�

we get

R
2

p
imnC

A
pB

�
i B

m
�B

n
� D˝

3

A
�� j

3

� �˝3
A
�� j
3

�

R
1

p
imnC

A
pB

�
i B

m
�B

n
� D˝

4

A
�� j

4

� �˝4
A
�� j
4

�:
(3.10)

that is one more form of the 1st Codazzi equation (2.18).

b0/ Multiplying (3.9) with C iL, we get

R
2

p
imnC

A
pC

i
LB

m
�B

n
� �R

A
L�� D˝

3

A
��
b̋
3

�
L� �˝

3

A
��
b̋
3

�
L�

R
1

p
imnC

A
pC

i
LB

m
�B

n
� �R

A
L�� D˝

4

A
��
b̋
4

�
L� �˝

4

A
��
b̋
4

�
L�

(3.11)

and this is another form of the 2nd Codazzi equation of the 1st and the 2nd kind.
3.2. If one takes � D 3;! D 4 in (3.1) and compares obtained equation with (3.5), we
obtain 3rd integrability condition of derivational equation (2.3) in the structure
.XM � LN ;r

�
;� 2 f3;4g/:

R
4

i
p��C

p
A �R

P
A��C

i
P D�.

b̋
3

�
A� j

4

� �
b̋
4

�
A� j

3

�/B
i
� � .

b̋
3

�
A�˝

4

P
�� �

b̋
4

�
A�˝

3

P
��/C

i
P :

(3.12)
a/ Multiplying (3.12) with B�i , we get

R
4

i
p��B

�
i C

p
A D�

b̋
3

�
A� j

4

�C
b̋
4

�
A� j

4

�; (3.13)

which is one more form of .2:17/.
b/ Multiplying (3.12) with CLi , we have

R
4

i
p��C

L
i C

p
A �R

L
A�� D˝

3

L
��˝

4

�
A� �˝

4

L
��˝

3

�
A�: (3.14)

which is the 2nd Codazzi equation of the 3rd kind.
3:20: Endly, we put � D 3;! D 4 into (3) and compare obtained equation with .3:40/.
In that manner, one obtains the 3rd kind integrability condition of derivational
equation (2.4) in the structure.XM � LN ;r

�
;� 2 f3;4g/ W

R
3

p
i��C

A
p CR

A
P��C

P
i D�.˝

3

A
�� j

4

� �˝4
A
�� j
3

�/B
�
i � .˝

3

A
��
b̋
4

�
P� �˝

4

A
��
b̋
3

�
P�/C

P
i :

a0/ If one multiplies (3) with B i
�

, it follows that

R
3

p
i��C

A
pB

i
� D�˝3

A
�� j

4

�C˝4
A
�� j
3

�; (3.15)

and this is another form of (2.27) or (3.13).



NEW INTEGRABILITY CONDITIONS 535

b0/ Multiplying (3) with C iL, we have

R
3

p
i��C

p
AC

i
L�R

A
L�� D

b̋
3

�
L�˝

4

A
�� �

b̋
4

�
L�˝

3

A
��: (3.16)

which is another form of the 2nd Codazzi equation of the 3rd kind i.e. of (3.14).
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