

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2000.19

Periodic boundary value problem for second order functional differential equations

Svatoslav Staněk

PERIODIC BOUNDARY VALUE PROBLEM FOR SECOND ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

SVATOSLAV STANĚK

Department of Mathematical Analysis, Faculty of Science, Palacký University Tomkova 40, 779 00 Olomouc, Czech Republic

stanek@risc.upol.cz

[Received May 22, 2000]

Abstract. The periodic boundary value problem for a functional differential equation is considered. The existence of a solution and upper and lower solutions is proved under assumptions that there exist lower and upper functions and the right side of the functional differential equation satisfies one-sided growth conditions. Results are proved by the Borsuk antipodal theorem and the Leray-Schauder degree.

Mathematical Subject Classification: 34K10, 34B15

Keywords: Periodic boundary value problem, functional differential equation, upper and lower functions, existence, upper and lower solutions, Borsuk antipodal theorem, Leray-Schauder degree

1. Introduction

Let J = [0,T] be a compact interval and, for any positive constant K, $\mathcal{L}^K(J) = \{x : x \in L_1(J), |x(t)| \leq K$ for each $t \in J\}$. We write $x_n \to x$ as $n \to \infty$ in $\mathcal{L}^K(J)$ if $\lim_{n\to\infty} x_n(t) = x(t)$ for a.e. $t \in J$. We denote by $||x|| = \max\{|x(t)| : t \in J\}$ and $||x||_{L_1} = \int_a^b |x(t)| dt$ the norms in the Banach spaces $C^0(J)$ and $L_1(J)$, respectively. Set $\mathcal{L}(J) = \bigcup_{K \geq 0} \mathcal{L}^K(J)$.

Consider the periodic boundary value problem (PBVP for short)

$$(g(x'(t)))' = F(x, x(t), x'(t))(t), (1.1)$$

$$x(0) = x(T), \quad x'(0) = x'(T).$$
 (1.2)

Here $g: \mathbb{R} \to \mathbb{R}$ is an increasing homomorphism with inverse $g^{-1}: \mathbb{R} \to \mathbb{R}$, g(0) = 0 and $F: C^0(J) \times \mathbb{R}^2 \to L_1(J)$, $(x, a, b) \longmapsto F(x, a, b)(t)$ is the operator having the following properties:

(i)
$$F(x,y(t),z(t))(t) \in L_1(J)$$
 for $x,y \in C^0(J)$ and $z \in \mathcal{L}(J)$;

(ii) for any
$$K > 0$$
, $\lim_{n \to \infty} (x_n, y_n, z_n) = (x, y, z)$ in $C^0(J) \times C^0(J) \times \mathcal{L}^K(J) \Rightarrow$

$$\lim_{n \to \infty} F(x_n, y_n(t), z_n(t))(t) = F(x, y(t), z(t))(t) \text{ in } L_1(J);$$

- (iii) $a, b \in \mathbb{R}, x_1, x_2 \in C^0(J), x_1(t) \le x_2(t) \text{ for } t \in J \Rightarrow F(x_1, a, b)(t) > F(x_2, a, b)(t) \text{ for a.e. } t \in J$:
- (iv) for any r > 0 there exists $h_r \in L_1(J)$ such that $(x, a, b) \in C^0(J) \times \mathbb{R}^2$, $||x|| + |a| + |b| \le r \Rightarrow |F(x, a, b)(t)| \le h_r(t)$ for a.e. $t \in J$.

The special cases of the operator F having the properties (i)-(iv) are, for example, the operators

$$F_1(x, a, b)(t) = \int_{\varphi_1(t)}^{\varphi_2(t)} f_1(s, \xi(t)x(s), a, b) \, ds + f_2(t, a, b)$$

and

$$F_2(x, a, b)(t) = f_1(t, (Sx)(t), a, b),$$

where f_1 (resp. f_2) satisfies the local Carathéodory conditions on $J \times \mathbb{R}^3$ (resp. $J \times \mathbb{R}^2$), $f_1(t,\cdot,a,b)$ is nonincreasing on \mathbb{R} for a.e. $t \in J$ and each $(a,b) \in \mathbb{R}^2$, $\varphi_1, \varphi_2, \xi \in C^0(J)$, $0 \le \varphi_1(t) \le \varphi_2(t) \le T$, $\xi(t) \ge 0$ for $t \in J$ and the operator $S: C^0(J) \to C^0(J)$ is bounded continuous and $x, y \in C^0(J)$, $x(t) \le y(t)$ for $t \in J$ $\Rightarrow (Sx)(t) \le (Sy)(t)$ for $t \in J$. For the operators F_1 and F_2 , equation (1) has the form

$$(g(x'(t)))' = \int_{\varphi_1(t)}^{\varphi_2(t)} f_1(s, \xi(t)x(s), x(t), x'(t)) ds + f_2(t, x(t), x'(t))$$

and

$$(g(x'(t)))' = f_1(t, (Sx)(t), x(t), x'(t)).$$

Under a solution of PBVP (1.1), (1.2) we mean a function $x \in C^1(J)$ such that g(x'(t)) is absolutely continuous on J (AC(J) for short), equality (1.1) is satisfied a.e. on J and x satisfies the periodic boundary conditions (1.2).

The purpose of this paper is to give sufficient conditions formulated by upper and lower functions of PBVP (1.1), (1.2) and one-sided growth restrictions on the operator F ensuring the existence of a solution and upper and lower solutions for PBVP (1.1), (1.2) in a subset of $C^1(J)$.

Let α , β be lower and upper functions of PBVP (1.1), (1.2) (see Section 2), $\alpha(t) \leq \beta(t)$ for $t \in J$, and set $\mathcal{M}_{\alpha\beta} = \{x : x \in C^1(J), \alpha(t) \leq x(t) \leq \beta(t) \text{ for } t \in J\}$. The existence results for PBVP (1.1), (1.2) in the set $\mathcal{M}_{\alpha\beta}$ are proved by the Borsuk antipodal theorem and the Leray-Schauder degree (see e.g. [2], [9]). Denote by $\mathcal{D}_{\alpha\beta}$ the set of all solutions of PBVP (1.1), (1.2) in the set $\mathcal{M}_{\alpha\beta}$. The proof of the existence of upper and lower solutions for PBVP (1.1), (1.2) in the set $\mathcal{D}_{\alpha\beta}$ is based on the following two facts: a) for any $u, v \in \mathcal{D}_{\alpha\beta}$ there exist $x, y \in \mathcal{D}_{\alpha\beta}$

such that $x(t) \leq \min\{u(t), v(t)\}$, $\max\{u(t), v(t)\} \leq y(t)$ for $t \in J$, b) the functional $\varphi : \mathcal{D}_{\alpha\beta} \to \mathbb{R}$, $\varphi(x) = \int_0^T x(t) dt$ achieves its extremal values at upper and lower solutions of PBVP (1.1), (1.2).

We observe that there are many papers devoted to PBVP

$$x''(t) = f(t, x(t), x'(t))$$
(1.3)

with the scalar function f where the existence results have been proved by the method of upper and lower functions combined with a priori estimates for solutions (see, e.g., [1], [3-8], [10-15] and references cited therein). To obtain a priori estimates for solutions of the above PBVP authors usually assumed that the function f satisfies either the two-sided Bernstein-Nagumo growth condition ([1], [3, 4], [8], [10], [11], [13-15]) or f satisfies some sign conditions ([12]) or f satisfies one-sided growth conditions ([5-7]). Our results generalized those of [7].

2. Notation, lemmas

Let $G, Q \in C^0([0,\infty))$ be defined on $[0,\infty)$ by the formulas

$$G(u) = \max\{-g(-u), g(u)\}, \quad Q(u) = \max\{-g^{-1}(-u), g^{-1}(u)\}. \tag{2.1}$$

Then

$$|g(u)| \le G(|u|), \quad |g^{-1}(u)| \le Q(|u|), \quad u \in \mathbb{R}.$$
 (2.2)

Clearly, G(u)=g(u), $Q(u)=g^{-1}(u)$ on $[0,\infty)$ provided g is an odd function (for example $g(u)=|u|^{p-2}u$ with p>1).

Lemma 1 Let $x \in C^1(J)$, $g(x') \in AC(J)$, x satisfy the periodic boundary conditions (1.2) and set

$$C_1 = \{t : t \in J, x'(t) > 0\}, \quad C_2 = \{t : t \in J, x'(t) < 0\}.$$

Assume that there exist $\sigma_k \in \{-1,1\}$ (k=1,2) and positive-valued functions $h \in L_1(J)$ and $w \in C^0(\mathbb{R})$ such that

$$\int_{-\infty}^{0} \frac{dt}{w(q^{-1}(t))} = \int_{0}^{\infty} \frac{dt}{w(q^{-1}(t))} = \infty$$
 (2.3)

and

$$\sigma_k(g(x'(t)))' \le (h(t) + |x'(t)|)w(x'(t))$$
 for a.e. $t \in \mathcal{C}_k$ $(k = 1, 2)$. (2.4)

Let P be a positive constant satisfying the inequality

$$\min \left\{ \int_{g(-P)}^{0} \frac{dt}{w(g^{-1}(t))}, \int_{0}^{g(P)} \frac{dt}{w(g^{-1}(t))} \right\} > 2(\|h\|_{L_{1}} + 2\|x\|). \tag{2.5}$$

Then

$$||x'|| < P. \tag{2.6}$$

Proof. Let

$$\mathcal{B} = \{t : t \in J, x'(t) = 0\}$$

and $||x'|| = |x'(\xi)|$, $\xi \in J$. By (2), $\mathcal{B} \neq \emptyset$ and, without loss of generality, we can assume that $\xi \in (0,T]$. For ||x'|| = 0 the inequality (2.6) is satisfied. Let ||x'|| > 0. We first assume that $x'(\xi) > 0$. The next part of the proof is divided into two cases according to whether $\sigma_1 = 1$ or $\sigma_1 = -1$.

a) Let $\sigma_1 = 1$. If $\mathcal{B} \cap [0, \xi) \neq \emptyset$ then there exists $t_1 \in \mathcal{B} \cap [0, \xi)$ such that x'(t) > 0 for $t \in (t_1, \xi]$ and (cf. (2.4))

$$(g(x'(t)))' \le (h(t) + x'(t))w(x'(t)) \tag{2.7}$$

for a.e. $t \in [t_1, \xi]$, and consequently

$$\int_{0}^{g(\|x'\|)} \frac{dt}{w(g^{-1}(t))} = \int_{g(x'(t_{1}))}^{g(x'(\xi))} \frac{dt}{w(g^{-1}(t))} = \int_{t_{1}}^{\xi} \frac{(g(x'(t)))'}{w(x'(t))} dt
\leq \int_{t_{1}}^{\xi} (h(t) + x'(t)) dt \leq ||h||_{L_{1}} + 2||x||.$$
(2.8)

Let $\mathcal{B} \cap [0, \xi) = \emptyset$. Then x'(t) > 0 on $[0, \xi]$, x'(T) > 0 (by (1.2)) and there exists $t_2 \in \mathcal{B}$ such that x'(t) > 0 for $t \in (t_2, T]$. Then (2.7) is satisfied for a.e. $t \in [0, \xi] \cup [t_2, T]$, and so

$$\begin{split} \int_0^{g(x'(0))} \frac{dt}{w(g^{-1}(t))} &= \int_{g(x'(t_2))}^{g(x'(T))} \frac{dt}{w(g^{-1}(t))} = \int_{t_2}^T \frac{(g(x'(t)))'}{w(x'(t))} \, dt \\ &\leq \int_{t_2}^T \left(h(t) + x'(t)\right) \, dt \leq \|h\|_{L_1} + 2\|x\|, \\ \int_{g(x'(0))}^{g(x'(\xi))} \frac{dt}{w(g^{-1}(t))} &= \int_0^\xi \frac{(g(x'(t)))'}{w(x'(t))} \, dt \leq \int_0^\xi (h(t) + x'(t)) \, dt \leq \|h\|_{L_1} + 2\|x\|. \end{split}$$

Thus

$$\int_{0}^{g(\|x'\|)} \frac{dt}{w(g^{-1}(t))} = \int_{0}^{g(x'(0))} \frac{dt}{w(g^{-1}(t))} + \int_{g(x'(0))}^{g(x'(\xi))} \frac{dt}{w(g^{-1}(t))}$$

$$\leq 2(\|h\|_{L_{1}} + 2\|x\|).$$
(2.9)

b) Let $\sigma_1 = -1$. Assume $\xi < T$. If $\mathcal{B} \cap (\xi, T] \neq \emptyset$ then there exists $t_3 \in \mathcal{B} \cap (\xi, T]$ such that x'(t) > 0 on $[\xi, t_3)$ and (cf. (2.4))

$$(g(x'(t)))' \ge -(h(t) + x'(t))w(x'(t)) \tag{2.10}$$

for a.e. $t \in [\xi, t_3]$, which yields

$$\int_{0}^{g(\|x'\|)} \frac{dt}{w(g^{-1}(t))} = -\int_{\xi}^{t_3} \frac{(g(x'(t)))'}{w(x'(t))} dt \le \int_{\xi}^{t_3} (h(t) + x'(t)) dt$$

$$\le \|h\|_{L_1} + 2\|x\|.$$
(2.11)

Let $\mathcal{B} \cap (\xi, T] = \emptyset$. Then x'(t) > 0 on $[\xi, T]$, x'(0) = x'(T) > 0, and there exists $t_4 \in \mathcal{B}$ such that x'(t) > 0 on $[0, t_4)$. Therefore (2.10) is satisfied for a.e. $t \in [0, t_4] \cup [\xi, T]$, and so

$$\int_{0}^{g(x'(0))} \frac{dt}{w(g^{-1}(t))} = -\int_{0}^{t_{4}} \frac{(g(x'(t)))'}{w(x'(t))} dt \le \int_{0}^{t_{4}} (h(t) + x'(t)) dt
\le ||h||_{L_{1}} + 2||x||,
\int_{g(x'(0))}^{g(x'(\xi))} \frac{dt}{w(g^{-1}(t))} = \int_{\xi}^{T} \frac{(g(x'(t)))'}{w(x'(t))} dt
\le \int_{\xi}^{T} (h(t) + x'(t)) dt \le ||h||_{L_{1}} + 2||x||;$$

hence

$$\int_{0}^{g(\|x'\|)} \frac{dt}{w(g^{-1}(t))} = \int_{0}^{g(x'(0))} \frac{dt}{w(g^{-1}(t))} dt + \int_{g(x'(0))}^{g(x'(\xi))} \frac{dt}{w(g^{-1}(t))} \\
\leq 2(\|h\|_{L_{1}} + 2\|x\|). \tag{2.12}$$

Assume $\xi = T$. Since x'(0) = x'(T) > 0, there exists $t_5 \in \mathcal{B}$ such that x'(t) > 0 on $[0, t_5)$ and (2.10) is satisfied for a.e. $t \in [0, t_5]$. Consequently

$$\int_{0}^{g(\|x'\|)} \frac{dt}{w(g^{-1}(t))} = -\int_{0}^{t_{5}} \frac{(g(x'(t)))'}{w(x'(t))} dt \le \int_{0}^{t_{5}} (h(t) + x'(t)) dt$$

$$\le \|h\|_{L_{1}} + 2\|x\|. \tag{2.13}$$

Summarizing, we have (cf. (2.8), (2.9) and (2.12)-(2.13))

$$\int_0^{g(\|x\|)} \frac{dt}{w(g^{-1}(t))} \le 2(\|h\|_{L_1} + 2\|x\|) \tag{2.14}$$

provided $x'(\xi) > 0$. Analogously (by (2.4) with k = 2) we can prove

$$\int_{g(-\|x\|)}^{0} \frac{dt}{w(g^{-1}(t))} \le 2(\|h\|_{L_{1}} + 2\|x\|) \tag{2.15}$$

provided $x'(\xi) < 0$. The inequality (2.6) follows immediately from (2.5), (2.14) and (2.15).

Remark 2 Lemma 1 is a generation of Lemma 2.5 in [7] which is proved for $g(u) \equiv u$.

For any number $V \ge 0$ and any function $z: J \to \mathbb{R}$, we define the functions $r_{\rm v} z$ and $z\Big|_{-V}^V$ by

and

$$z(t)\Big|_{-V}^{V} = \begin{cases} V & \text{if } z(t) > V \\ z(t) & \text{if } |z(t)| \le V \\ -V & \text{if } z(t) < -V. \end{cases}$$
 (2.17)

Let k, l, V be positive constants, $\varrho_1 \in L_1(J)$ be a positive-valued function and set

$$\Omega^* = \left\{ (x, a, b) : (x, a, b) \in C^1(J) \times \mathbb{R}^2, ||x|| < V + 2, ||x'|| < k, |a| < V + 2, |b| < l \right\}.$$
(2.18)

Define the operator

$$H:[0,1]\times\overline{\Omega}^*\to C^1(J)\times {\mathbin{\mathbb R}}^2$$

by

$$H(\lambda, x, a, b) = \left(a + \int_0^t \left[(1 - \lambda) \left(b + \int_0^s \varrho_1(\nu) (r_{\nu} x)(\nu) d\nu \right) + \lambda g^{-1} \left(b + \int_0^s \varrho_1(\nu) (r_{\nu} x)(\nu) d\nu \right) \right] ds,$$

$$a + x(0) - x(T), b + x'(0) - x'(T)$$
(2.19)

Lemma 3 $D(I - H(1, \cdot), \Omega^*, 0) \neq 0$, where I is the identical operator on $C^1(J) \times \mathbb{R}^2$ and "D" stands for the Leray-Schauder degree.

Proof. Since $r_v(-x) = -r_v x$ for $x \in C^1(J)$, we have

$$H(0, -x, -a, -b) = -H(0, x, a, b), \quad (x, a, b) \in \overline{\Omega}^*$$

and so $H(0,\cdot)$ is an odd operator.

Let $H(\lambda_0, x_0, a_0, b_0) = (x_0, a_0, b_0)$ for some $(\lambda_0, x_0, a_0, b_0) \in [0, 1] \times \partial \Omega^*$. Then

$$x_0(t) = a_0 + \int_0^t \left[(1 - \lambda_0) \left(b_0 + \int_0^s \varrho_1(\nu) (r_{\nu} x_0)(\nu) d\nu \right) + \lambda_0 g^{-1} \left(b_0 + \int_0^s \varrho_1(\nu) (r_{\nu} x_0)(\nu) d\nu \right) \right] ds,$$
(2.20)

$$x_0(0) = x_0(T), \quad x_0'(0) = x_0'(T).$$
 (2.21)

Assume $||x_0|| > V$. Then there exists $\xi \in [0, T)$ (see (2.21)) such that $|x_0(\xi)| = ||x_0||$. Let $x_0(\xi) > V$ (the case $x_0(\xi) < -V$ can be treated analogously). Then $x_0(t) > V$ on $[\xi, t_1]$ with a $t_1 \in (\xi, T]$. From the definition (2.16) of the function $r_v u$, the equalities $x'_0(\xi) = 0$ and (cf. (2.20))

$$x_0'(t) = (1 - \lambda_0) \left(b_0 + \int_0^t \varrho_1(s) (r_{\mathbf{v}} x_0)(s) \, ds \right)$$

$$+ \lambda_0 g^{-1} \left(b_0 + \int_0^t \varrho_1(s) (r_{\mathbf{v}} x_0)(s) \, ds \right), \quad t \in J$$
(2.22)

we see that

$$x'_0(t) = x'_0(t) - x'_0(\xi) = (1 - \lambda_0) \int_{\xi}^{t} \varrho_1(s)(r_{\mathbf{v}}x_0)(s) \, ds$$
$$+\lambda_0 \left[g^{-1} \left(b_0 + \int_{0}^{t} \varrho_1(s)(r_{\mathbf{v}}x_0)(s) \, ds \right) - g^{-1} \left(b_0 + \int_{0}^{\xi} \varrho_1(s)(r_{\mathbf{v}}x_0)(s) \, ds \right) \right] > 0$$

for $t \in (\xi, t_1]$, and consequently x_0 is increasing on $[\xi, t_1]$, a contradiction. Hence $||x_0|| \le V$ and then (cf. (2.22))

$$x_0'(t) = (1 - \lambda_0)b_0 + \lambda_0 g^{-1}(b_0).$$

Since $x_0(0) = x_0(T)$ implies $x_0'(\tau) = 0$ for a $\tau \in (0,T)$, we infer

$$(1 - \lambda_0)b_0 + \lambda_0 g^{-1}(b_0) = 0,$$

which is satisfied if and only if $b_0 = 0$. So $x_0(t) = a_0$. We have proved: $||x_0|| \le V$, $||x_0'|| = 0$, $|a_0| \le V$ and $b_0 = 0$, a contradiction. Thus

$$H(\lambda, x, a, b) \neq (x, a, b)$$
 for $(\lambda, x, a, b) \in [0, 1] \times \partial \Omega^*$.

Let $(\lambda_n, x_n, a_n, b_n) \to (\lambda, x, a, b)$ as $n \to \infty$ in $[0, 1] \times C^1(J) \times \mathbb{R}^2$. Then $\lim_{n \to \infty} r_{\mathbf{v}} x_n = r_{\mathbf{v}} x$ in $C^0(J)$ and we see that

$$\lim_{n \to \infty} H(\lambda_n, x_n, a_n, b_n) = H(\lambda, x, a, b).$$

Hence H is a continuous operator. Let $\{(\lambda_n, x_n, a_n, b_n)\} \subset [0, 1] \times \overline{\Omega}^*$ and set $(u_n, A_n, B_n) = H(\lambda_n, x_n, a_n, b_n)$. Then

$$u_n(t) = a_n + \int_0^t \left[(1 - \lambda_n) \left(b_n + \int_0^s \varrho_1(\nu) (r_{\nu} x_n)(\nu) d\nu \right) + \lambda_n g^{-1} \left(b_n + \int_0^s \varrho_1(\nu) (r_{\nu} x_n)(\nu) d\nu \right) \right] ds,$$

$$A_n = a_n + x_n(0) - x_n(T), \quad B_n = b_n + x'_n(0) - x'_n(T)$$

for $t \in J$ and $n \in \mathbb{N}$. It is easily seen that (cf. (2.1), (2.2) and (2.16))

$$|u_n(t)| \le V + 2 + T(l+2\|\varrho_1\|_{L_1}) + TQ(l+2\|\varrho_1\|_{L_1}),$$

$$|u'_n(t)| \le l+2\|\varrho_1\|_{L_1} + Q(l+2\|\varrho_1\|_{L_1}),$$

$$A_n \le 3(V+2), \quad |B_n| \le 2k+l$$

for $t \in J$ and $n \in \mathbb{N}$.

Fix $\varepsilon > 0$. Then there exists δ_1 , $0 < \delta_1 < \varepsilon$, such that $|g^{-1}(v_1) - g^{-1}(v_2)| < \varepsilon$ for $v_1, v_2 \in [-l - 2\|\varrho\|_{L_1}, l + 2\|\varrho\|_{L_1}]$, $|v_1 - v_2| < \delta_1$. Let $\delta_2 > 0$ be a number such that $\left| \int_{t_1}^{t_2} \varrho_1(s) \, ds \right| < \frac{\delta_1}{2}$ for $t_1, t_2 \in J$, $|t_1 - t_2| < \delta_2$. Then (for $t_1, t_2 \in J$, $|t_1 - t_2| < \delta_2$)

$$\left| \int_0^{t_1} \varrho_1(s)(r_{\mathsf{v}} x_n)(s) \, ds - \int_0^{t_2} \varrho_1(s)(r_{\mathsf{v}} x_n)(s) \, ds \right| \leq 2 \left| \int_{t_1}^{t_2} \varrho_1(s) \, ds \right| < \delta_1,$$

and so

$$|u'_n(t_1) - u'_n(t_2)| \le \left| \int_{t_1}^{t_2} \varrho_1(s)(r_{\mathbf{v}}x_n)(s) \, ds \right|$$

$$+ \left| g^{-1} \left(b_n + \int_0^{t_1} \varrho_1(s)(r_{\mathbf{v}}x_n)(s) \, ds \right) - g^{-1} \left(b_n + \int_0^{t_2} \varrho_1(s)(r_{\mathbf{v}}x_n)(s) \, ds \right) \right|$$

$$< \delta_1 + \varepsilon < 2\varepsilon,$$

which implies that $\{u_n'(t)\}$ is equicontinuous on J. Now, by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, there exists a subsequence of $\{(u_n, A_n, B_n)\}$ converging in $C^1(J) \times \mathbb{R}^2$. Hence H is a compact operator. By the Borsuk theorem and the homotopy, $D(I - H(0, \cdot), \Omega^*, 0) \neq 0$ and $D(I - H(1, \cdot), \Omega^*, 0) = D(I - H(0, \cdot), \Omega^*, 0)$. The proof is complete.

Let $\gamma, \delta \in AC(J)$ and $\gamma(t) \leq \delta(t)$ for $t \in J$. For each $u \in AC(J)$, define the truncation function $\Delta_{\gamma\delta}u: J \to \mathbb{R}$, the penalty function $p_{\gamma\delta}u: J \to [-1,1]$ and the sets $\mathcal{A}_1(\gamma,\delta)$, $\mathcal{A}_2(\gamma,\delta)$, $\mathcal{A}(\gamma,\delta)$ by

$$(\Delta_{\gamma\delta}u)(t) = \begin{cases} \delta(t) & \text{if } u(t) > \delta(t) \\ u(t) & \text{if } \gamma(t) \le u(t) \le \delta(t) \\ \gamma(t) & \text{if } u(t) < \gamma(t), \end{cases}$$
 (2.23)

$$(p_{\gamma\delta}u)(t) = \begin{cases} 1 & \text{if } u(t) > \delta(t) + 1\\ u(t) - \delta(t) & \text{if } \delta(t) < u(t) \le \delta(t) + 1\\ 0 & \text{if } \gamma(t) \le u(t) \le \delta(t)\\ u(t) - \gamma(t) & \text{if } \gamma(t) - 1 \le u(t) < \gamma(t)\\ -1 & \text{if } u(t) < \gamma(t) - 1, \end{cases}$$
(2.24)

$$\mathcal{A}_{1}(\gamma,\delta) = \left\{ (x,y,b) : (x,y,b) \in C^{0}(J) \times C^{0}(J) \times \mathbb{R}, \, \gamma(t) \leq x(t) \leq \delta(t), \right.$$

$$\gamma(t) \leq y(t) \leq \delta(t) \text{ for } t \in J, \, b > 0 \right\},$$

$$\mathcal{A}_{2}(\gamma,\delta) = \left\{ (x,y,b) : (x,y,b) \in C^{0}(J) \times C^{0}(J) \times \mathbb{R}, \, \gamma(t) \leq x(t) \leq \delta(t), \right.$$

$$\gamma(t) \leq y(t) \leq \delta(t) \text{ for } t \in J, \, b < 0 \right\},$$

$$\mathcal{A}(\gamma,\delta) = \left\{ (x,y,b) : (x,y,b) \in C^{0}(J) \times C^{0}(J) \times \mathbb{R}, \, \gamma(t) \leq x(t) \leq \delta(t), \right.$$

$$\gamma(t) \leq y(t) \leq \delta(t) \text{ for } t \in J, \, b \in \mathbb{R} \right\}.$$

$$(2.25)$$

It is easy to check that $(\Delta_{\gamma\delta}u)(t) = \max\{\gamma(t), \min\{\delta(t), u(t)\}\}$ for $t \in J$. Since $\min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$, $\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$ for $a,b \in \mathbb{R}$, we see that $\Delta_{\gamma\delta} : AC(J) \to AC(J)$ and

$$(\Delta_{\gamma\delta}u)'(t) = \begin{cases} \delta'(t) & \text{if } u(t) > \delta(t) \\ u'(t) & \text{if } \gamma(t) \le u(t) \le \delta(t) \\ \gamma'(t) & \text{if } u(t) < \gamma(t). \end{cases}$$
 (2.26)

From $(\Delta_{\gamma\delta}u)' \in L_1(J)$ it may be concluded that $(\Delta_{\gamma\delta}u)'\Big|_{-V}^{V} \in L_1(J)$ for any $u \in AC(J)$ and $V \geq 0$.

A function $\alpha \in C^1(J)$ is called a lower function of PBVP (1.1), (1.2) if $g(\alpha')$ is absolutely continuous on J,

$$(g(\alpha'(t)))' \geq F(\alpha, \alpha(t), \alpha'(t))(t)$$
 for a.e. $t \in J$

and

$$\alpha(0) = \alpha(T), \quad \alpha'(0) \ge \alpha'(T).$$

An upper function of PBVP (1.1), (1.2) is defined by reversing the above inequalities. The following assumption will be needed throughout the paper.

(H_1) There exist lower and upper functions α and β of PBVP (1.1), (1.2), respectively,

$$\alpha(t) \le \beta(t) \quad \text{for } t \in J;$$

(H_2) There exist $\sigma_k \in \{-1,1\}$ (k=1,2) and positive-valued functions $h \in L_1(J)$, $w \in C^0(\mathbb{R})$ such that (2.3) is satisfied, w(u) and w(-u) are nondecreasing on $[0,\infty)$ and

$$\sigma_k F(x, y(t), b)(t) \le (h(t) + |b|)w(b)$$
 (2.27)

for a.e. $t \in J$ and each $(x, y, b) \in \mathcal{A}_k(\alpha, \beta)$ (k = 1, 2).

Set

$$V = \max\{\|\alpha\|, \|\beta\|\}$$
 (2.28)

and let $P \geq V$ be a positive number such that

$$\min\left\{\int_{g(-P)}^{0} \frac{dt}{w(g^{-1}(t))}, \int_{0}^{g(P)} \frac{dt}{w(g^{-1}(t))}\right\} > 2(\|h\|_{L_{1}} + 2V). \tag{2.29}$$

By the property (iv) of F, there exists a positive-valued function $\varrho \in L_1(J)$ such that

$$\left| F\left(\Delta_{\alpha\beta} x, (\Delta_{\alpha\beta} x)(t), (\Delta_{\alpha\beta} x)'(t) \right|_{-P}^{P} \right) (t) \right| \le \varrho(t)$$
 (2.30)

for a.e. $t \in J$ and each $x \in C^1(J)$.

Consider the one-parameter family of the functional differential equations

$$(g(x'(t)))' = \lambda F\left(\Delta_{\alpha\beta}x, (\Delta_{\alpha\beta}x)(t), (\Delta_{\alpha\beta}x)'(t)\Big|_{-P}^{P}\right)(t) + \lambda(p_{\alpha\beta}x)(t) + \varrho(t)(r_{V}x)(t)$$
(2.31)

depending on the parameter $\lambda \in [0, 1]$.

Lemma 4 Let assumptions (H_1) and (H_2) be satisfied. If u(t) is a solution of PBVP $(2.31)_{\lambda}$, (1.2) for some $\lambda \in [0,1]$ then

$$||u|| \le V + 1, \quad ||u'|| \le Q(2||\varrho||_{L_1} + T).$$
 (2.32)

Proof. Assume $||u|| = u(\xi) > V + 1$, $\xi \in J$. From (2) we conclude that $u'(\xi) = 0$ and we can assume $\xi \in [0, T)$. Then there is a $t_0 > \xi$ such that u(t) > V + 1 for $t \in [\xi, t_0]$, and so (cf. (2.16), (2.24), (2.28) and (2.30))

$$(g(u'(t)))' \ge \lambda(1 - \varrho(t)) + \varrho(t)(u(t) - V) > \lambda(1 - \varrho(t)) + \varrho(t) > 0$$

for a.e. $t \in [\xi, t_0]$. Hence g(u'(t)) is increasing on $[\xi, t_0]$ and since $g(u'(\xi)) = 0$ we have u'(t) > 0 for $[\xi, t_0]$, a contradiction.

Analogously for $||u|| = -u(\varepsilon) > V + 1$, $\varepsilon \in J$. Thus $||u|| \le V + 1$. Then

$$|(g(u'(t)))'| \le \lambda(1 + \varrho(t)) + \varrho(t) \le 2\varrho(t) + 1$$

for a.e. $t \in J$. From the equality u(0) = u(T) it follows that $u'(\nu) = 0$ for a $\nu \in (0, T)$, and consequently

$$|g(u'(t))| = |g(u'(t)) - g(u'(\nu))| \le \left| \int_{\nu}^{t} (2\varrho(s) + 1) \, ds \right| \le 2||\varrho||_{L_1} + T$$

for $t \in J$. Hence (cf. (2.2)) $||u'|| \le Q(2||\varrho||_{L_1} + T)$.

3. Existence results

Theorem 5 Let assumptions (H_1) and (H_2) be satisfied. Then PBVP (1.1), (1.2) has a solution u(t) satisfying the inequalities

$$\alpha(t) \le u(t) \le \beta(t) \quad \text{for } t \in J.$$
 (3.1)

Proof. Let V be given by (2.28) and let the constant $P \geq V$ satisfy inequality (2.29). Set

$$\Omega = \left\{ (x, a, b) : (x, a, b) \in C^{1}(J) \times \mathbb{R}^{2}, ||x|| < V + 2, \\ ||x'|| < Q(2||\varrho||_{L_{1}} + T) + 1, |a| < V + 2, \\ |b| < G[Q(2||\varrho||_{L_{1}} + T) + 1] \right\}$$

and $K: [0,1] \times \overline{\Omega} \to C^1(J) \times \mathbb{R}^2$

$$K(\lambda, x, a, b) = \left(a + \int_0^t g^{-1} \left(b + \int_0^s \left[\lambda F\left(\Delta_{\alpha\beta} x, (\Delta_{\alpha\beta} x)(\nu), (\Delta_{\alpha\beta} x)'(\nu)\right)\right]_{-P}^P\right)(\nu) + \lambda(p_{\alpha\beta} x)(\nu) + \varrho(\nu)(r_{\nu} x)(\nu)\right] d\nu ds, \ a + x(0) - x(T), \ b + x'(0) - x'(T)$$

where $\varrho \in L_1(J)$ is a positive-valued function satisfying (2.30) and the functions G, Q are defined by (2.1).

We now prove that

$$D(I - K(1, \cdot), \Omega, 0) \neq 0.$$
 (3.2)

Since (cf. (2.19) with $\varrho = \varrho_1$) $K(0, \cdot) = H(1, \cdot)$, Lemma 2 (with $k = Q(2||\varrho||_{L_1} + T) + 1$ and $l = G[Q(2||\varrho||_{L_1} + T) + 1]$ in Ω^* defined by (2.18)) implies

$$D(I - K(0, \cdot), \Omega, 0) \neq 0.$$
 (3.3)

Hence to prove (3.2) it is sufficient to verify that

- (j) K is a compact operator, and
- (jj) $K(\lambda, x, a, b) \neq (x, a, b)$ for $(\lambda, x, a, b) \in [0, 1] \times \partial \Omega$.

Let $\lim_{n\to\infty} (\lambda_n, x_n, a_n, b_n) = (\lambda, x, a, b)$ in the Banach space $[0,1] \times C^1(J) \times \mathbb{R}^2$. Then $\lim_{n\to\infty} \Delta_{\alpha\beta} x_n = \Delta_{\alpha\beta} x$ in $C^0(J)$, $\{(\Delta_{\alpha\beta} x_n)'\Big|_{-P}^P\} \subset \mathcal{L}^P(J)$,

$$\lim_{n\to\infty} (\Delta_{\alpha\beta} x_n)'(t) \Big|_{-P}^P = (\Delta_{\alpha\beta} x)'(t) \Big|_{-P}^P \quad \text{a.e. on } J$$

$$\left(\Rightarrow (\Delta_{\alpha\beta}x_n)'\Big|_{-P}^P \to (\Delta_{\alpha\beta}x)'\Big|_{-P}^P \text{ in } \mathcal{L}^P(J) \text{ as } n\to\infty\right), \lim_{n\to\infty} p_{\alpha\beta}x_n = p_{\alpha\beta}x \text{ and } \lim_{n\to\infty} r_{\mathbf{v}}x_n = r_{\mathbf{v}}x \text{ in } C^0(J), \text{ and consequently (see property (ii) of } F) \lim_{n\to\infty} K(\lambda_n, x_n, a_n, b_n) = K(\lambda, x, a, b)inC^1(J) \times \mathbb{R}^2$$

which shows that K is a continuous operator.

Let
$$\{(\lambda_n, x_n, a_n, b_n)\} \subset [0, 1] \times \overline{\Omega}$$
 and set

$$(u_n, A_n, B_n) = K(\lambda_n, x_n, a_n, b_n), \quad n \in \mathbb{N}.$$

Then

$$u_n(t) = a_n + \int_0^t g^{-1} \Big(b_n + \int_0^s \Big[\lambda_n F \Big(\Delta_{\alpha\beta} x_n, (\Delta_{\alpha\beta} x_n)(\nu), (\Delta_{\alpha\beta} x_n)'(\nu) \Big|_{-P}^P \Big) (\nu)$$
$$+ \lambda_n (p_{\alpha\beta} x_n)(\nu) + \varrho(\nu) (r_{\nu} x_n)(\nu) \Big] d\nu \Big) ds,$$

$$A_n = a_n + x_n(0) - x_n(T), \quad B_n = b_n + x'_n(0) - x'_n(T),$$

and consequently

$$\begin{aligned} |u_n(t)| &\leq V + 2 + TQ\Big(G[Q(2\|\varrho\|_{L_1} + T) + 1] + 3\|\varrho\|_{L_1} + 1\Big), \\ |u_n'(t)| &\leq Q\Big(G(Q(2\|\varrho\|_{L_1} + T) + 1) + 3\|\varrho\|_{L_1} + 1\Big), \\ |g(u_n'(t_1)) - g(u_n'(t_2))| &\leq 3\Big|\int_{t_1}^{t_2} \varrho(s) \, ds\Big| + |t_1 - t_2| \end{aligned}$$

for $t, t_1, t_2 \in J$ and $n \in \mathbb{N}$. Then $\{u_n\}$ is bounded in $C^1(J)$, $\{u'_n(t)\}$ is equicontinuous on J since g is continuous and increasing on \mathbb{R} and $\{A_n\}$, $\{B_n\}$ are bounded (in \mathbb{R}), and so there exists a subsequence $\{(u_{k_n}, A_{k_n}, B_{k_n})\}$ converging in $C^1(J) \times \mathbb{R}^2$. Thus K is a compact operator.

Assume $K(\lambda_0, x_0, a_0, b_0) = (x_0, a_0, b_0)$ for some $(\lambda_0, x_0, a_0, b_0) \in [0, 1] \times \partial \Omega$. Then $x_0(t)$ is a solution of PBVP $(2.31)_{\lambda_0}$, (1.2) and $a_0 = x_0(0)$, $b_0 = g(x_0'(0))$. By Lemma 3, $||x_0|| \leq V + 1$, $||x_0'|| \leq Q(2||\varrho||_{L_1} + T)$, and so

$$|a_0| \le V + 1$$
, $|b_0| \le G[Q(2\|\varrho\|_{L_1} + T)]$

which contradicts $(x_0, a_0, b_0) \in \partial\Omega$. We have proved that K satisfies (j) and (jj); hence (3.2) holds. Then there exists a solution u(t) of PBVP (2.31)₁, (1.2), that is

$$(g(u'(t)))' = F\left(\Delta_{\alpha\beta}u, (\Delta_{\alpha\beta}u)(t), (\Delta_{\alpha\beta}u)'(t)\Big|_{-P}^{P}\right)(t) + (p_{\alpha\beta}u)(t) + \varrho(t)(r_{\nu}u)(t)$$
(3.4)

for a.e. $t \in J$ and

$$u(0) = u(T), \quad u'(0) = u'(T).$$
 (3.5)

Set $w(t) = u(t) - \beta(t)$ for $t \in J$. Then

$$w(0) = w(T), \quad w'(0) \ge w'(T).$$
 (3.6)

Let $\max\{w(t): t \in J\} = w(\xi) > 0$ for some $\xi \in J$. Then (cf. (3.6)) $w'(\xi) = 0$ and without loss of generality we can assume $\xi \in [0, T)$. Since on any interval of the type $[\xi, t_1] \subset J$ where w(t) > 0 we have (see property (iii) of F)

$$(g(u'(t)))' - (g(\beta'(t)))' \ge F\left(\Delta_{\alpha\beta}u, (\Delta_{\alpha\beta}u)(t), (\Delta_{\alpha\beta}u)'(t)\Big|_{-P}^{P}\right)(t)$$

$$+ (p_{\alpha\beta}u)(t) + \varrho(t)(r_{V}u)(t) - F(\beta, \beta(t), \beta'(t))(t)$$

$$\ge F(\beta, \beta(t), \beta'(t))(t) + \min\{w(t), 1\} - F(\beta, \beta(t), \beta'(t))(t) > 0,$$

and so from the equality $g(u'(t)) - g(\beta'(t)) = \int_{\xi}^{t} (g(u'(s)) - g(\beta'(s)))' ds$ we deduce w'(t) > 0 on a right neighbourhood of $t = \xi$, a contradiction. Hence $w(t) \leq 0$ on J and $u(t) \leq \beta(t)$ for $t \in J$.

Set
$$z(t) = u(t) - \alpha(t), t \in J$$
. Then

$$z(0) = z(T), \quad z'(0) \le z'(T).$$
 (3.7)

Let $\min\{z(t): t \in J\} = z(\nu) < 0$ with a $\nu \in J$. Then (cf. (3.7)) $z'(\nu) = 0$ and without loss of generality we can assume that $\nu \in [0,T)$. Hence there exists $t_1 \in (\nu,T]$ such that z(t) < 0 on $[\nu,t_1]$. Then

$$(g(u'(t)))' - (g(\alpha'(t)))' \le F(\alpha, \alpha(t), \alpha'(t))(t) + (p_{\alpha\beta}u)(t) + \varrho(t)(r_{v}u)(t)$$
$$-F(\alpha, \alpha(t), \alpha'(t))(t) \le (p_{\alpha\beta}u)(t) = \max\{z(t), -1\} < 0$$

for $t \in [\nu, t_1]$, and consequently $g(u'(t)) - g(\alpha'(t)) < 0$ on $(\nu, t_1]$ since $g(u'(\nu)) - g(\alpha'(\nu)) = 0$. Then $z'(t) = u'(t) - \alpha'(t) < 0$ for $t \in (\nu, t_1]$, a contradiction. Hence $z(t) \geq 0$ on J.

From (3.1) now it follows

$$(g(u'(t)))' = F\left(u, u(t), u'(t)\Big|_{P}^{P}\right)(t)$$
 for a.e. $t \in J$.

Then (cf. (H_2))

$$\sigma_k(g(u'(t)))' \le \left(h(t) + |u'(t)|\Big|_0^P\right) w\left(u'(t)\Big|_{P}\right) \le (h(t) + |u'(t)|) w(u'(t))$$

for a.e. $t \in \mathcal{C}_k$ (k = 1, 2), where \mathcal{C}_k is defined in Lemma 1 (with x = u). Applying Lemma 1 and using (2.29) and $||u|| \leq V$, we see that $||u'|| \leq P$. Thus (g(u'(t)))' = F(u, u(t), u'(t))(t) and u is a solution of PBVP (1.1), (1.2) satisfying the inequalities (3.1).

If assumptions (H_1) and (H_2) are satisfied then there exists a solution u(t) of PBVP (1.1), (1.2) in the set

$$\mathcal{D}_{\alpha\beta} = \{x : x \text{ is a solution of PBVP } (1), (2) \text{ and } \alpha(t) \leq x(t) \leq \beta(t) \text{ for } t \in J\},$$

by Theorem 1.

We say that solutions $u_*(t)$ and $u^*(t)$ are respectively lower and upper solutions of PBVP (1.1), (1.2) in the set $\mathcal{D}_{\alpha\beta}$ if $u_*, u^* \in \mathcal{D}_{\alpha\beta}$ and

$$u_*(t) \le u(t) \le u^*(t), \quad t \in J$$

for any $u \in \mathcal{D}_{\alpha\beta}$.

Theorem 6 Let assumptions (H_1) and (H_2) be satisfied. Then there exist lower and upper solutions of PBVP (1), (2) in the set $\mathcal{D}_{\alpha\beta}$.

Proof. By Theorem 1, $\mathcal{D}_{\alpha\beta} \neq \emptyset$. Let V be given by (2.28) and $P \geq V$ satisfies (2.29). From the assumption (H_2) and applying Lemma 1 we conclude (see the proof of Theorem 1) that $||u'|| \leq P$ for every $u \in \mathcal{D}_{\alpha\beta}$. Let $u_1, u_2 \in \mathcal{D}_{\alpha\beta}$ and set

$$w_{-}(t) = \min\{u_1(t), u_2(t)\}, \quad w_{+}(t) = \max\{u_1(t), u_2(t)\}, \quad t \in J.$$

Then $\alpha(t) \leq w_{-}(t) \leq w_{+}(t) \leq \beta(t)$ on $J, w_{-}, w_{+} \in AC(J)$ and $||u'_{1}|| \leq P, ||u'_{2}|| \leq P$. We now show that there exist $u, v \in \mathcal{D}_{\alpha\beta}$ satisfying the inequalities

$$u(t) \le w_{-}(t), \quad w_{+}(t) \le v(t), \quad t \in J.$$
 (3.8)

Consider the one-parameter family of the functional differential equations

$$(g(x'(t)))' = \lambda(S_{+}x)(t) + \lambda(p_{w_{+}\beta}x)(t) + 5\varrho(t)(r_{v}x)(t), \quad \lambda \in [0, 1],$$
(3.9)

where

$$S_{+}: C^{1}(J) \to L_{1}(J),$$

$$(S_{+}x)(t) = F\left(\Delta_{w_{+}\beta}x, (\Delta_{w_{+}\beta}x)(t), (\Delta_{w_{+}\beta}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$- \left|F\left(\Delta_{w_{+}\beta}x, (\Delta_{w_{+}\beta}x)(t), (\Delta_{w_{+}\beta}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$- F\left(\Delta_{w_{+}\beta}x, (\Delta_{u_{2}\beta}x)(t), (\Delta_{u_{2}\beta}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$- \left|F\left(\Delta_{w_{+}\beta}x, (\Delta_{w_{+}\beta}x)(t), (\Delta_{w_{+}\beta}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$- F\left(\Delta_{w_{+}\beta}x, (\Delta_{u_{1}\beta}x)(t), (\Delta_{u_{1}\beta}x)'(t)\Big|_{-P}^{P}\right)(t)$$

and $\varrho \in L_1(J)$ is a positive-valued function satisfying (2.30) for a.e. $t \in J$ and each $x \in C^1(J)$.

Let

$$\Omega = \left\{ (x, a, b) : (x, a, b) \in C^{1}(J) \times \mathbb{R}^{2}, ||x|| < V + 2, \\ ||x'|| < Q(10||\varrho||_{L_{1}} + T) + 1, |a| < V + 2, \\ |b| < G[Q(10||\varrho||_{L_{1}} + T) + 1] \right\},$$

and $L_+: [0,1] \times \overline{\Omega} \to C^1(J) \times \mathbb{R}^2$ be defined by the formula

$$L_{+}(\lambda, x, a, b) =$$

$$= \left(a + \int_{0}^{t} g^{-1} \left(b + \int_{0}^{s} \left[\lambda(S_{+}x)(\nu) + \lambda(p_{w+\beta}x)(\nu) + 5\varrho(\nu)(r_{v}x)(\nu)\right] d\nu\right) ds,$$

$$a + x(0) - x(T), b + x'(0) - x'(T)\right).$$

Here the function Q and G are defined by (2.1). We see that (cf. (2.19)) $L_{+}(0,\cdot) = H(1,\cdot)$ (with $\varrho_1 = 5\varrho$ in (2.19) and $k = Q(10\|\varrho\|_{L_1} + T) + 1$, $l = G[Q(10\|\varrho\|_{L_1} + T) + 1]$ in Ω^* given by (2.18)), and so

$$D(I - L_{+}(0, \cdot), \Omega, 0) \neq 0$$

by Lemma 2. Let $L_+(\lambda_0, x_0, a_0, b_0) = (x_0, a_0, b_0)$ for some $(\lambda_0, x_0, a_0, b_0) \in [0, 1] \times \partial \Omega$. Then $a_0 = x_0(0)$, $b_0 = g(x_0'(0))$ and $x_0(t)$ is a solution of PBVP $(3.9)_{\lambda_0}$, (1.2). Since (cf. (2.30)) $|(S_+x)(t)| \leq 5\varrho(t)$ for a.e. $t \in J$ and each $x \in C^1(J)$, we can proceed analogously to the proof of Lemma 3 to verify that

$$||x_0|| \le V + 1$$
, $||x_0'|| \le Q(10||\varrho||_{L_1} + T)$,

and so $|a_0| \leq V + 1$, $|b_0| \leq G(Q(10\|\varrho\|_{L_1} + T))$. Hence $(x_0, a_0, b_0) \notin \partial\Omega$, which is impossible.

Analysis similar to that of the proof of Theorem 1 shows that L_+ is a compact operator. Thus

$$D(I - L_{+}(1, \cdot), \Omega, 0) = D(I - L_{+}(0, \cdot), \Omega, 0) \neq 0$$

and then, of course, there exists a fixed point (v, a, b) of the operator $L_+(1, \cdot)$. Clearly, v(t) is a solution of PBVP $(3.9)_1$, (1.2). Assume $\max\{v(t) - \beta(t) : t \in J\} = v(\xi) - \beta(\xi) > 0$ for some $\xi \in J$. Then $v'(\xi) = \beta'(\xi)$ and we can assume $\xi \in [0, T)$. Let

 $t_1 \in (\xi, T]$ be a point such that $v(t) - \beta(t) > 0$ for $t \in [\xi, t_1]$. Then (for a.e. $t \in [\xi, t_1]$)

$$(g(v'(t)))' - (g(\beta'(t)))' \ge$$

$$\ge (S_{+}v)(t) + (p_{w_{+}\beta}v)(t) + 5\varrho(t)(r_{v}v)(t) - F(\beta,\beta(t),\beta'(t))(t)$$

$$= F\left(\Delta_{w_{+}\beta}v, (\Delta_{w_{+}\beta}v)(t), (\Delta_{w_{+}\beta}v)'(t)\Big|_{-P}^{P}\right)(t) + (p_{w_{+}\beta}v)(t)$$

$$+5\varrho(t)(r_{v}v)(t) - F(\beta,\beta(t),\beta'(t))(t)$$

$$> F(\Delta_{w_{+}\beta}v,\beta(t),\beta'(t))(t) - F(\beta,\beta(t),\beta'(t))(t) \ge 0$$
(3.10)

since $F(\Delta_{w+\beta}v, \beta(t), \beta'(t))(t) \ge F(\beta, \beta(t), \beta'(t))(t)$ for a.e. $t \in J$ by property (iii) of F. From (3.10) and the equality $v'(\xi) = \beta'(\xi)$ we deduce $v'(t) > \beta'(t)$ for $t \in (\xi, t_1]$, a contradiction. Hence

$$v(t) \le \beta(t), \quad t \in J.$$

Assume $\min\{v(t) - u_k(t) : t \in J\} < 0$ for some $k \in \{1, 2\}$. Then there exist $\tau_k \in [0, T)$ and $t_k \in (\tau_k, T]$ such that $v(\tau_k) - u_k(\tau_k) = \min\{v(t) - u_k(t) : t \in J\}$, $v'(\tau_k) = u'_k(\tau_k)$ and $v(t) < u_k(t)$ for $t \in (\tau_k, t_k]$. Then (for a.e. $t \in [\tau_k, t_k]$)

$$\begin{split} (g(v'(t)))' - (g(u_k'(t)))' &= \\ &= (S_+v)(t) + (p_{w_+\beta}v)(t) + 5\varrho(t)(r_{\mathbf{v}}v)(t) - F(u_k, u_k(t), u_k'(t))(t) \\ &< F(\Delta_{w_+\beta}v, w_+(t), w_+'(t))(t) - F(u_k, u_k(t), u_k'(t))(t) \\ &- \Big| F(\Delta_{w_+\beta}v, w_+(t), w_+'(t))(t) - F(\Delta_{w_+\beta}v, u_k(t), u_k'(t))(t) \Big| \\ &\leq F(\Delta_{w_+\beta}v, w_+(t), w_+'(t))(t) - F(\Delta_{w_+\beta}v, u_k(t), u_k'(t))(t) \\ &- \Big| F(\Delta_{w_+\beta}v, w_+(t), w_+'(t))(t) - F(\Delta_{w_+\beta}v, u_k(t), u_k'(t))(t) \Big| \leq 0, \end{split}$$

and consequently $v'(t) < u'_k(t)$ on $(\tau_k, t_k]$, a contradiction. Hence

$$v(t) \ge u_k(t), \quad t \in J \ (k = 1, 2).$$

We have verified that $w_+(t) \le v(t) \le \beta(t)$ for $t \in J$. Then $||v|| \le V$ and

$$(g(v'(t)))' = (S_{+}v)(t) + (p_{w+\beta}v)(t) + 5\varrho(t)(r_{v}v)(t) = F(v,v(t),v'(t))\Big|_{P}^{P}(t)$$

for a.e. $t \in J$. As in the proof of Theorem 1 we can show that $||v'|| \leq P$. Hence v is a solution of PBVP (1), (2).

To prove the existence of a solution u(t) of PBVP (1), (2) satisfying the inequalities $\alpha(t) \leq u(t) \leq w_{-}(t), t \in J$, we consider the operator $L_{-}: [0,1] \times \overline{\Omega} \to C^{1}(J) \times \mathbb{R}^{2}$ given by the formula

$$L_{-}(\lambda, x, a, b) =$$

$$= \left(a + \int_{0}^{t} g^{-1}(b + \int_{0}^{s} \left[\lambda(S_{-}x)(\nu) + \lambda(p_{\alpha w_{-}}x)(\nu) + 5\varrho(\nu)(r_{v}x)(\nu)\right] d\nu\right) ds,$$

$$a + x(0) - x(T), b + x'(0) - x'(T)\right).$$

where $S_-: C^1(J) \to L_1(J)$,

$$(S_{-}x)(t) = F\left(\Delta_{\alpha w_{-}}x, (\Delta_{\alpha w_{-}}x)(t), (\Delta_{\alpha w_{-}}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$+ \left|F\left(\Delta_{\alpha w_{-}}x, (\Delta_{\alpha w_{-}}x)(t), (\Delta_{\alpha w_{-}}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$-F\left(\Delta_{\alpha w_{-}}x, (\Delta_{\alpha u_{2}}x)(t), (\Delta_{\alpha u_{2}}x)'(t)\Big|_{-P}^{P}\right)(t)\Big|$$

$$+ \left|F\left(\Delta_{\alpha w_{-}}x, (\Delta_{\alpha w_{-}}x)(t), (\Delta_{\alpha w_{-}}x)'(t)\Big|_{-P}^{P}\right)(t)$$

$$-F\left(\Delta_{\alpha w_{-}}x, (\Delta_{\alpha u_{1}}x)(t), (\Delta_{\alpha u_{1}}x)'(t)\Big|_{-P}^{P}\right)(t)\Big|.$$

The proof is similar to that of the first part of this theorem and therefore it is omitted.

It is easy to check that $\mathcal{D}_{\alpha\beta}$ is a closed set in $C^1(J)$. Since for each $x \in \mathcal{D}_{\alpha\beta}$ and $t_1, t_2 \in J$ we have

$$||x|| \le V$$
, $||x'|| \le P$, $|g(x'(t_1)) - g(x'(t_2))| \le \Big| \int_{t_1}^{t_2} \varrho(s) \, ds \Big|$,

 $\mathcal{D}_{\alpha\beta}$ is a compact set in $C^1(J)$. We shall prove only the existence of the maximal solution u^* of PBVP (1.1), (1.2) in the set $\mathcal{D}_{\alpha\beta}$ since the case of the minimal solution u_* of PBVP (1.1), (1.2) in $\mathcal{D}_{\alpha\beta}$ is very similar. By the compactness of $\mathcal{D}_{\alpha\beta}$, there exists $u^* \in \mathcal{D}_{\alpha\beta}$ such that

$$\int_0^T u^*(t) dt \ge \int_0^T x(t) dt \quad \text{for } x \in \mathcal{D}_{\alpha\beta}. \tag{3.11}$$

Suppose that there exist $x_0 \in \mathcal{D}_{\alpha\beta}$ and $t_0 \in (0,T)$ such that $x_0(t_0) > u^*(t_0)$. By the first part of the proof of our theorem, there exists $x_1 \in \mathcal{D}_{\alpha\beta}$ such that

$$\max\{u^*(t), x_0(t)\} \le x_1(t) \le \beta(t), \quad t \in J.$$

Then

$$\int_0^T x_1(t) \, dt > \int_0^T u^*(t) \, dt,$$

contrary to (3.11). Hence u^* is the maximal solution of PBVP (1.1), (1.2) in the set $\mathcal{D}_{\alpha\beta}$.

Corollary 7 Let assumption (H_1) be satisfied and let there exist positive-valued functions $h \in L_1(J)$ and $w \in C^0(J)$ such that (5) is satisfied and w(u), w(-u) are non-decreasing on $[0, \infty)$. If at least one of the following inequalities

$$F(x, y(t), b)(t) \le (h(t) + |b|)w(b),$$
 (3.12)

$$F(x, y(t), b)(t) \ge -(h(t) + |b|)w(b),$$
 (3.13)

$$F(x, y(t), b)(t)\operatorname{sign} b \leq (h(t) + |b|)w(b) \tag{3.14}$$

and

$$F(x, y(t), b)(t) \operatorname{sign} b \ge -(h(t) + |b|)w(b)$$
 (3.15)

is satisfied for a.e. $t \in J$ and each $(x, y, b) \in \mathcal{A}(\alpha, \beta)$, then PBVP (1.1), (1.2) is solvable and there exist lower and upper solutions in the set $\mathcal{D}_{\alpha\beta}$.

Proof. Corollary 1 follows at once from Theorems 1 and 2 assuming that (H_2) $\sigma_1 = \sigma_2 = 1$ for (3.12), $\sigma_1 = \sigma_2 = -1$ for (3.13), $\sigma_1 = -\sigma_2 = 1$ for (3.14) and $\sigma_1 = -\sigma_2 = -1$ for (3.15).

Example 8 Consider the functional differential equation

$$(|x'(t)|^{p-2}x'(t))' = \int_{\frac{t}{2}}^{t} f_1(s, x(T-s), x(t), x'(t)) ds + f_2(t, x(t), x'(t))(x(t))^{2m-1} + \sigma f_3(t, x(t), x'(t))(x'(t))^n$$
(3.16)

where p > 1, f_1 (resp. f_2 , f_3) satisfies the local Carathéodory conditions on $J \times \mathbb{R}^3$ (resp. $J \times \mathbb{R}^2$), $f_1(t, \cdot, a, b)$ is nonincreasing on \mathbb{R} for a.e. $t \in J$ and each $a, b \in \mathbb{R}$, $m, n \in \mathbb{N}$ and $\sigma \in \{-1, 1\}$. In addition, there exist positive constants ε and l such that the inequalities

$$|f_1(t, u, x, y)| \le \frac{2l}{T}(1 + |y|^p), \quad \varepsilon \le f_2(t, x, y) \le l(1 + |y|^p), \quad f_3(t, x, y) \ge 0$$

are satisfied for a.e. $t \in J$ and each $u, x \in \left[-\frac{2m-1}{\sqrt{\frac{l}{\varepsilon}}}, \frac{2m-1}{\sqrt{\frac{l}{\varepsilon}}}\right], y \in \mathbb{R}$. Set

$$\alpha = -\sqrt[2m-1]{rac{l}{arepsilon}} \quad and \quad \beta = \sqrt[2m-1]{rac{l}{arepsilon}}.$$

Then $\alpha(t) \equiv \alpha$ and $\beta(t) \equiv \beta$ are lower and upper functions of PBVP (3.16), (1.2) and

$$F(x, y(t), z(t))(t) = \int_{\frac{t}{2}}^{t} f_1(s, x(T-s), y(t), z(t)) ds$$
$$+ f_2(t, y(t), z(t))(y(t))^{2m-1} + \sigma f_3(t, y(t), z(t))(z(t))^n$$

satisfies assumption (H_2) with h(t) = 1, $\omega(y) = l(1 + \frac{l}{\varepsilon})(1 + |y|^{1-p})$, $g(u) = |u|^{p-2}u$ and

$$\sigma_k = \begin{cases} -\sigma & \text{if } n \text{ is even} \\ (-1)^k \sigma & \text{if } n \text{ is odd.} \end{cases}$$

Theorems 1 and 2 show that PBVP (3.16), (1.2) is solvable and has upper and lower solutions in the set $\mathcal{M}_{\alpha\beta} = \{x: x \in C^1(J), \alpha \leq x(t) \leq \beta \text{ for } t \in J\}.$

Acknowledgement: This work was supported by grant No. 201/98/0318 of the Grant Agency of the Czech Republic and by the Council of Czech Government J14/98:153100011

REFERENCES

- [1] BERNFELD, S. R. and LAKSHMIKANTHAM, V.: An Introduction to Nonlinear Boundary Value Problems. Academic Press, New York, 1974.
- [2] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin-Heidelberg, 1985.
- [3] GRANAS, A., GUENTHER, R. B. and LEE J. W.: Nonlinear boundary value problems for some classes of ordinary differential equations. Rocky Mountain J. Math. 10, (1980), 35–58.
- [4] Granas, A., Guenther, R. B. and Lee, J. W.: Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Mathematicae 244, Warszawa, 1985.
- [5] KIGURADZE, I. T.: Some Singular Boundary Value Problems for Ordinary Differential Equations, Tbilisi State University Press, Tbilisi, 1975. (in Russian)
- [6] KIGURADZE, I. T.: Boundary Value Problems for Systems of Ordinary Differential Equations. In "Current Problems in Mathematics: Newest Results", Vol. 30, pp. 3–103, Moscow, 1987 (in Russian); English translation: J. Soviet Math. 43, (1988), 2259–2339.
- [7] KIGURADZE, I. T. and Staněk S., On periodic boundary value problems for the equation u'' = f(t, u, u') with one-sided growth restrictions on f. Nonlin. Anal. (to appear).
- [8] LEPIN, A. YA. and LEPIN L. A.: Boundary Value Problems for Second Order Ordinary Differential Equations, Zinatne, Riga, 1988. (in Russian)
- [9] MAWHIN, J.: Topological Degree Method in Nonlinear Boundary Value Problems, CBMS, vol. 40, Providence, RI, 1979.
- [10] PETRYSHYN, W. V.: Solvability of various boundary value problems for the equation x'' = f(t, x, x', x'') y. Pacific J. Math., **122**, (1986), 169–195.
- [11] RACHUNKOVÁ, I.: The first kind periodic solutions of differential equations of the second order. Math. Slovaca 39, (1989), 407–415.
- [12] Rachunková, I. and Staněk S.: Topological degree theory in functional boundary value problems at resonance, Nonlin. Anal. 27, (1996), 271–285.
- [13] ŠEDA V.: On some non-linear boundary value problems for ordinary differential equations, Arch. Math. (Brno), 25, (1989), 207–222.
- [14] THOMPSON H. B.: Second order ordinary differential equations with fully nonlinear two point boundary conditions, Pacific J. Math., 172, (1996), 255–277.
- [15] VASILEV, N. I., and Klokov Yu. A.: Principles of the Theory of Boundary Value Problems of Ordinary Differential Equations. Zinatne, Riga, 1978. (in Russian).