Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 1 (2000), No 1, pp. 63-81 DOI: 10.18514/MMN.2000.19

Periodic boundary value problem for second
order functional differential equations

Svatoslav Stanek



Mathematical Notes, Miskolc, Vol.1., No.1., (2000), pp. 63-81

PERIODIC BOUNDARY VALUE PROBLEM FOR SECOND
ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

SVATOSLAV STANEK
Department of Mathematical Analysis, Faculty of Science, Palacky University
Tomkova 40, 779 00 Olomouc, Czech Republic

stanek@risc.upol.cz
[Received May 22, 2000]

Abstract. The periodic boundary value problem for a functional differential equation is
considered. The existence of a solution and upper and lower solutions is proved under
assumptions that there exist lower and upper functions and the right side of the functional
differential equation satisfies one-sided growth conditions. Results are proved by the Borsuk
antipodal theorem and the Leray-Schauder degree.

Mathematical Subject Classification: 34K10, 34B15

Keywords: Periodic boundary value problem, functional differential equation, upper and
lower functions, existence, upper and lower solutions, Borsuk antipodal theorem, Leray-
Schauder degree

1. Introduction

Let J =[0,7T] be a compact interval and, for any positive constant K, EK(J) ={z:
z € Li(J), |z(t)| < K for each t € J}. We write z, — z as n — oo in LX(J) if
lim, oo zn(t) = z(t) for a.e. t € J. We denote by ||z|| = max{|z(¢)| : t € J} and
x|, = f; |z(t)| dt the norms in the Banach spaces CY(J) and L;(J), respectively.
Set L£(J) = Ugso L5 ().

Consider the periodic boundary value problem (PBVP for short)

)" = F(z,2(t),2' (1)), (1.1)
2(0) = z(T), 2'(0)=2'(T). (1.2)

Here g : R — R is an increasing homomorphism with inverse g~ : R — R, g(0) =0
and F : CO(J) x R* — Li(J), (z,a,b) — F(z,a,b)(t) is the operator having the
following properties:

(i) F(z,y(t),z(t))(t) € L1(J) for z,y € CU(J) and z € L(J);
(i) for any K > 0, limy, oo (Zn, Y, 2n) = (2,5, 2) in CO(J) x CO(J) x LX(J) =

i F (2, yn(t), 20 (8))(1) = F(z,y(t), 2(8)) () in L1 (J);

n—oo



64 Svatoslav Stanek

(iii) a,b € R, 21,20 € CO(J), 21(t) < xa(t) for t € J =
F(z1,a,b)(t) > F(x2,a,b)(t) for a.e. t € J;

(iv) for any r > 0 there exists h, € Ly(J) such that (z,a,b) € C°(J) x R?, l|lz|| +
jal + o <7 =

|F(z,a,b)(t)] < h.(t) for ae. t € J.

The special cases of the operator F' having the properties (i)-(iv) are, for example,
the operators

a(t)

Fiu(z, a,b)(t) = / Fuls, €()2(5), a,b) ds + folt, a,b)

1 (t)

and
FQ(JC,(I, b)(t) = fl(ta (Sl‘)(t), a, b)7

where f1 (resp. fa2) satisfies the local Carathéodory conditions on J X R? (resp.
J x RQ) fi(t,-,a,b) is nonincreasing on R for a.e. t € J and each (a,b) € R?,
Y1, 99,6 € CO( ), 0 < @1(t) < poft) < T, &(t) > 0 for t € J and the operator
S : C%J) — C°J) is bounded continuous and z,y € CO(J), x(t) < y(t) for t € J
= (Sz)(t) < (Sy)(t) for t € J. For the operators F; and F5, equation (1) has the
form

Po (t)
(%ﬂmY=/ F1(5, €@ (s), (), ' (8)) ds + folt, 2(t), 2/ (1))

1 (1)

and
(9(2"(1)) = fu(t, (Sz)(t), 2(t), 2" (1)).

Under a solution of PBVP (1.1),(1.2) we mean a function € C'(.J) such that
g(2'(t)) is absolutely continuous on J (AC(J) for short), equality (1.1) is satisfied a.e.
on J and z satisfies the periodic boundary conditions (1.2).

The purpose of this paper is to give sufficient conditions formulated by upper
and lower functions of PBVP (1.1),(1.2) and one-sided growth restrictions on the

operator F' ensuring the existence of a solution and upper and lower solutions for
PBVP (1.1),(1.2) in a subset of C1(.J).

Let a, 5 be lower and upper functions of PBVP (1.1), (1.2) (see Section 2), a(t) <
B(t) for t € J, and set Moz = {z : = € CY(J), a(t) < z(t) < B(t) for t € J}.
The existence results for PBVP (1.1),(1.2) in the set Mg are proved by the Borsuk
antipodal theorem and the Leray-Schauder degree (see e.g. [2], [9]). Denote by
D.p the set of all solutions of PBVP (1.1),(1.2) in the set M,3. The proof of
the existence of upper and lower solutions for PBVP (1.1),(1.2) in the set Dyg is
based on the following two facts: a) for any u,v € Dyp there exist z,y € Dap
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such that z(t) < min{u(t),v(t)}, max{u(t),v(t)} < y(¢) for t € J, b) the functional
© 1 Dog — R, p(z) = fOT x(t) dt achieves its extremal values at upper and lower
solutions of PBVP (1.1), (1.2).

We observe that there are many papers devoted to PBVP
a”(t) = f(t,2(t), 2'(t)) (1.3)

with the scalar function f where the existence results have been proved by the method
of upper and lower functions combined with a priori estimates for solutions (see,
e.g., [1], [3-8], [10-15] and references cited therein). To obtain a priori estimates for
solutions of the above PBVP authors usually assumed that the function f satisfies
either the two-sided Bernstein-Nagumo growth condition ([1], 3, 4], [8], [10], [11], [13-
15]) or f satisfies some sign conditions ([12]) or f satisfies one-sided growth conditions
([6-7]). Our results generalized those of [7].

2. Notation, lemmas

Let G,Q € C°([0,00)) be defined on [0, 00) by the formulas
G(u) = max{—g(~u),g(u)}, Q(u)=max{—g~"(~u),g~" (u)}. (2.1)
Then
()| < G(lul), g7 (W) < Q(lul),  ueR. (2.2)

Clearly, G(u) = g(u), Q(u) = g~ '(u) on [0, 00) provided g is an odd function (for
example g(u) = |u[P~2u with p > 1).

Lemma 1 Let x € C1(J), g(z') € AC(J), = satisfy the periodic boundary conditions
( 1.2) and set

Ci={t:te J,a'(t) >0}, Co={t:teJz(t) <0}

Assume that there exist o, € {—1,1} (k = 1,2) and positive-valued functions h €
Ly(J) and w € C°(R) such that

0 dt o0 dt
| s =) wemm == 23)

or(g(@' (1)) < (h(t) + |2'(t))w(a'(t)) for a.e. t €C (k=1,2). (2.4)

Let P be a positive constant satisfying the inequality

0 g(P)
mm{/(m%, | s} > 2 2l @9)

and

Then
2| < P. (2.6)
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Proof. Let
B={t:teJ ' (t)=0}

and ||z'|| = |2/ (€)], £ € J. By (2), B # 0 and, without loss of generality, we can
assume that £ € (0,7]. For ||2’|] = 0 the inequality (2.6) is satisfied. Let ||z’| > 0.
We first assume that 2'(£) > 0. The next part of the proof is divided into two cases
according to whether oy =1 or o7 = —1.

a) Let o1 = 1. If BN[0,£) # 0 then there exists t; € BN[0,£) such that z'(t) > 0
for t € (t1,¢] and (cf. (2.4))

(g("(1))" < (h(t) + 2 (1)) w(2'(1)) (2.7)

for a.e. t € [t1,£], and consequently

g(ll=") dt B 9("(£)) dt S g @)
/0 w(g™'(t) /g(a:/(tl)) w(g™1() /tl w@®) "

(2.8)
13
S/t (h(t) +2'(t)) dt < ||hl[z, + 2|z

Let BN[0,£) = 0. Then z'(¢) > 0 on [0,¢], '(T) > 0 (by (1.2)) and there exists t5 € B
such that 2/(t)) > 0 for t € (t2,T]. Then (2.7) is satisfied for a.e. t € [0,&] U [t2,T],
and so

o) g e @ g T (g (1))
/o w(g=t(t)) /g( () w(g(E)) /t w(a(t)) i
< / ) dt < ||A]z, +2]e],
9('(€)) dt B (9(='(®))) ¢ /
/gu/(o)) w(g=1(t) /0 “w(@'(t) « </o (he) ) d < e+ 2l

Thus

/g<|x’|) t /g(x (0)) t o ©) g
+ / e
0 w(g=1(t) g0y w(g™(t)) (2.9)

<2(|[pllz, +2||w||)

b) Let 1 = —1. Assume £ < T. If BN (§,T] # 0 then there exists t3 € BN (£, 7]
such that a'(t) > 0 on [¢,t3) and (cf. (2.4))

(9@ (1)) > —(ht) + (1) w(z' (1)) (2.10)
for a.e. t € [¢,t3], which yields
g(llz’|) t3 t3
i )y y
| w@ / w(@ @) "= 5/ (e +a'B)dt oy

<|llz, + 2]l
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Let BN(&,T] = 0. Then z'(t) > 0 on [¢,T], 2'(0) = 2'(T) > 0, and there exists ¢4, € B
such that 2'(¢) > 0 on [0,¢4). Therefore (2.10) is satisfied for a.e. ¢ € [0,t4) U [£,T],

and so
O @O e
L s = o Smares ) eosdoa
< AL, + 2|,

9(2"(£)) dt B g9('(£)) dt o T (g(2' (1))
/g(z’(O)) w(g=1(t)) /g(r’(T)) w(g=1(t)) /g w(z'(t)) a

T
/5 (h(t) + ' (1) dt < |B]z, + 2]z

IN

hence

/g(lﬂcll) dt /g(ﬂf’(o)) dt g(z'(£)) dt
_ = —_—dt -l-/ _
0 w(g=(t)) Jo w(g=1(t)) g0y w(g™(t) (2.12)

< 2([pllz, + 2=]])-

Assume £ = T. Since 2'(0) = 2'(T) > 0, there exists t; € B such that 2/(¢) > 0 on
[0,t5) and (2.10) is satisfied for a.e. ¢ € [0,¢5]. Consequently

g(ll="1D dt - B (g(2' (1)) ts y
L wetm =) ey <[, @0+ (2.13)
< IRz, + 2|l
Summarizing, we have (cf. (2.8), (2.9) and (2.12)-(2.13))
[ e <, + 20 (2.14)
0 w(g=1(t) '
provided z’(§) > 0. Analogously (by (2.4) with k = 2) we can prove
0 dt
L w20 2l (215)

provided z'(£) < 0. The inequality (2.6) follows immediately from (2.5), (2.14) and
(2.15).

O

Remark 2 Lemma 1 is a generation of Lemma 2.5 in [7] which is proved for g(u) =
u.

For any number V > 0 and any function z : J — R, we define the functions ry z
%

and z by

2) =V i zt)>V
(ryz)(t) =< 0 if [2(t)| <V (2.16)
Z(t)+V if 2(t) < =V
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and
Vooifzt) >V
\4
z(t)‘iv —{ ) if]z(0)| <V (2.17)
-V ifz(t) < =V.

Let k,1,V be positive constants, g, € L1(J) be a positive-valued function and set

@ ={(@,0,0): (w,0,6) € CY(J) x R, [la]| < V +2,

(2.18)
2’|l < K, |a| < V +2, b] < z}.
Define the operator
H:[0,1]xQ" - c'(J) x R?
by
H(\ z,a,b) = (a + /Ot {(1 - ) (b—l— /OS o, (v)(rvz)(v) du)
+Ag7 ! (b + /05 0,(v)(rvx)(v) du)] ds, (2.19)

a+z(0) —x(T), b+ 2'(0) — 2'(T)

Lemma 3 D(I — H(1,-),Q%,0) # 0, where I is the identical operator on C1(J) x R®
and “D" stands for the Leray-Schauder degree.

Proof. Since r,(—z) = —ryx for x € C1(J), we have

H(0,—x,—a,—b) = —H(0,7,a,b), (x,a,b) €Q
and so H(0,-) is an odd operator.
Let H (Mo, zo, g, bo) = (20, ag, by) for some (Ao, zo, ag, bo) € [0,1] x 9Q*. Then
t s
ro(t) = ao +/ [0 20)(bo +/ 01 () (ryz0)(v) )
0 ) 0

s (2.20)
+Xog ! (bo + /0 01(v)(ryzo)(v) dz/)} ds,

20(0) = wo(T),  ah(0) = x(T). (2.21)

Assume ||zo|| > V. Then there exists € € [0,T") (see (2.21)) such that |zo(£)| = ||zo]|-
Let zo(§) > V (the case 2(§) < —V can be treated analogously). Then xo(t) > V on
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[€,11] with a ¢1 € (&, T]. From the definition (2.16) of the function 7y u, the equalities
zp(§) = 0 and (cf. (2.20))

)= (1= 20) (bt [ 0(6)rvo)(s) )

¢ (2.22)
+Xog ! (bo —|—/0 01(8)(ryxo)(s) ds), teJ

we see that

(1) = (1) — (€) = (1~ o) /5 01() (e o) (5) ds

ofs (b0 + [ aorem)s)ds) =g~ b+ | o) ran)(s) ds)] > 0

for t € (£,¢1], and consequently z is increasing on [¢,#1], a contradiction. Hence
llzo]] <V and then (cf. (2.22))

.%'6(25) =(1—Xg)bo + )\og_l(bo).
Since x¢(0) = zo(T) implies a4(7) = 0 for a 7 € (0,T'), we infer
(1= 2X0)bo + Aog ™ (bo) = 0,

which is satisfied if and only if by = 0. So z¢(t) = ag. We have proved: ||zq|] <V,
lz6ll = 0, Jag| <V and by = 0, a contradiction. Thus

H(\ z,a,b) # (x,a,b) for (A\,z,a,b) € [0,1] x OQ*.

Let (An, Tn, @n, by) — (N, 2,a,b) asn — oo in [0, 1]><C1(J)><R2. Then lim,, o0 v Tr, =
ryx in CY(J) and we see that

lim H(M, Tn, an,by) = H(A\, x,a,b).

n—oo

Hence H is a continuous operator. Let {(An,Zn,an,bn)} C [0,1] x @ and set
(Un, An, By) = H(Ap, Tn, an, by,). Then

un(t) = an + /Ot [(1 — )\n)(bn + /05 01(V)(ryxy,)(v) dy>

+Ang (bn + /0 0, (V)(rvan)(v) du)} ds,

Ap = a4+ 2,(0) — 2, (T), Bp =bn+2,(0) —2,(T)
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for t € J and n € N. It is easily seen that (cf. (2.1), (2.2) and (2.16))

lun()] <V +2+ T+ 2]e1llL,) + TQU A2l 1 ,),
[un (O] < T+ 2]l0y |z, + QU+ 2lley Ly ),
A, <3(V+2), |Bn <2k+1

fort € J and n € N,

Fix € > 0. Then there exists d1, 0 < d; < &, such that [g7!(v1) — g7 (v2)| < € for
v1,v2 € [—l = 2||lo||lL,, ! + 2||lol|lz,], |v1 — v2| < d1. Let d2 > 0 be a number such that

to 6
‘/ 01(9) ds‘ < ?1 for t1,ty € J, |t1 — ta] < d2. Then (for t1,ty € J, |t1 — ta]| < 02)
t1

to
/ 01(9) ds‘ < 01,

t1

[ a@maeds - [ aemaea] <2
and so
et <| [ a1
+‘ g ! (bn + /0 ! 01(8)(ry ) (5) ds) -g ! (bn + /O ; o1(s)(rvan)(s) dS)\

<01+ < 2,

which implies that {u/,(¢)} is equicontinuous on J. Now, by the Arzela-Ascoli theorem
and the Bolzano-Weierstrass theorem, there exists a subsequence of {(un, An, Bpn)}
converging in C'(J) x R®. Hence H is a compact operator. By the Borsuk theo-
rem and the homotopy, D(I — H(0,-),Q*,0) # 0 and D(I — H(1,-),Q*,0) = D(I —
H(0,-),Q2*,0). The proof is complete. O

Let 7,0 € AC(J) and ~(t) < 6(t) for t € J. For each u € AC(J), define the
truncation function A su : J — R, the penalty function p,su : J — [—1,1] and the
sets A1(7,0), A2(7,6), A(v,6) by

>
(Aysu)(t) = u(t) if y(t) <u(t) <o(t) (2.23)

1 if u(t) > o(t) + 1
u(t) — () if0(t) <wu(t) <(t)+1
(pysu)(t) = { 0 if () < u(t) < 5(t) (2.24)
u(t) =) i (1) =1 <u(t) <)
-1 if u(t) <~(t) -1,
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A1(7,0) = { (@.5.:b) : (2,9,8) € CO(J) x CO(J) x R, 7(t) < w(t) < 6(0),
Y(t) < y(t) < 8(t) for t € J, b > o},

As(7,8) = {(@.3,b) : (@,9,b) € C°() x C°(J) x R, 7(t) < a(t) < 8(0), .

A(t) < y(t) < 3(t) for t € J, b <0}, '

AW, 8) = {(2.3,0)  (2,,0) € C°(T) x COT) x R, (1) < a(t) < 8(2),
A1) < y(t) < 8(t) fort € J, b e R}.

It is easy to check that (A,su)(t) = max{y(t), min{d(t),u(t)}} for t € J. Since
min{a,b} = $(a+b—|a—b|), max{a,b} = 3(a+b+|a—b|) for a,b € R, we see that
Ays : AC(J) — AC(J) and

§'(t) if u(t) > 4(t)
(Aggu)' () = /(1) if () < u(t) < 5(t) (2.26)
Y (t) ifu(t) <~(1).

1%
From (A,su)’ € Ly(J) it may be concluded that (A su) , € L:1(J) for any
u€ AC(J) and V > 0.

A function o € C1(J) is called a lower function of PBVP (1.1),(1.2) if g(o/) is
absolutely continuous on J,

(g(c/ (1)) > F(a,a(t),d (t))(t) forae. teJ
and
a(0) =a(T), (0) > (T).
An upper function of PBVP (1.1), (1.2) is defined by reversing the above inequalities.

The following assumption will be needed throughout the paper.

(H;1) There exist lower and upper functions « and 8 of PBVP (1.1), (1.2), respectively,
and

a(t) < B(t) forte J;

(H3) There exist o, € {—1,1} (k = 1,2) and positive-valued functions h € L1(J),
w € C°(R) such that (2.3) is satisfied, w(u) and w(—u) are nondecreasing on
[0,00) and

orF(2,y(t),0)(t) < (h(t) + [b)w(b) (2.27)
for a.e. t € J and each (z,y,b) € Ax(a, 8) (k =1,2).
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Set
V = max{|«, ||8]/} (2.28)

and let P > V be a positive number such that

. 0 dt g(P) dt
mm{/g(_P) w(g (1)’ /0 m} > 2(||Allz, +2V). (2.29)

By the property (iv) of F', there exists a positive-valued function ¢ € Lq(J) such that

P

[P (Bas, (Aase) (1), (Basa) )] ) (O] < ot (2:30)

for a.e. t € J and each x € C1(J).

Consider the one-parameter family of the functional differential equations

FA(papx)(t) + o(t)(rvx)(t) (2.31)

P
(G ©)) = AP(Bas, (Aaso)(®), (Bas2) @) ) (1)

depending on the parameter A € [0, 1].

Lemma 4 Let assumptions (Hy) and (Hz) be satisfied. If u(t) is a solution of PBVP
(2.81)x, (1.2) for some X\ € [0,1] then

lull <V +1, o'l < QClallz, +T). (2.32)

Proof. Assume |jul| =u(§) >V +1, £ € J. From (2) we conclude that v/(§) =0
and we can assume £ € [0,T). Then there is a o > & such that u(t) > V + 1 for
t € [¢,to], and so (cf. (2.16), (2.24), (2.28) and (2.30))

(g(u'(1))" = A(L = o(t)) + o(t)(u(t) = V) > M1 = o(t)) + o(t) > 0

for a.e. t € [€,t0]. Hence g(u/(t)) is increasing on [€, %] and since g(v'(§)) = 0 we
have u'(t) > 0 for [, o], a contradiction.

Analogously for ||u|| = —u(e) >V +1, e € J. Thus ||u|| <V + 1. Then

[(g(u'(1)))'| < A1+ (1) + o(t) < 20(t) +1

for a.e. t € J. From the equality u(0) = u(T) it follows that v/(v) =0 forav € (0,7,
and consequently

lg(w' ()] = lg(u/' (1)) — g(/' (v))] < / (20(s) + D) ds| <2|ellr, + T

for ¢ € J. Hence (cf. (2.2)) ||/|| < Q(2|l¢llz, + T). O
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3. Existence results

Theorem 5 Let assumptions (Hy) and (Hz) be satisfied. Then PBVP (1.1),(1.2)
has a solution u(t) satisfying the inequalities

a(t) <u(t) < B(t) forted. (3.1)

Proof. Let V be given by (2.28) and let the constant P > V satisfy inequality
(2.29). Set

0= {(Jc,a, b): (z,a,0) € CL(J) x R?, |z < V +2,
2]l < Q2llellr, +T)+1, [a] <V +2,
ol < GIQElellz, +T) +1]}

and K : [0,1] x © — C1(J) x R?,
K(\z,0,b) = (a+/0tgl(b+/os PF(Bapz, (Bapz)(v), (Bas2) )| )W)

FA(Pap) () + 0(v) (@) (V)| dv) ds, a+2(0) = 2(T), b+a/(0) - x’(T))

where g € L1(J) is a positive-valued function satisfying (2.30) and the functions G, Q
are defined by (2.1).

We now prove that
D(I — K(1,-),9Q,0) # 0. (3.2)

Since (cf. (2.19) with o = ¢;) K(0,-) = H(1,-), Lemma 2 (with k = Q(2|¢||r, +T)+1
and I = G[Q(2|ollz, + T) + 1] in Q* defined by (2.18)) implies

D(I — K(0,-),9,0) % 0. (3.3)
Hence to prove (3.2) it is sufficient to verify that

(j) K is a compact operator, and

(Gi) K\ z,a,b) # (z,a,b) for (A, z,a,b) € [0,1] x IQ.

Let lim,, o0 (An, T, @n, bn) = (A, 2, a,b) in the Banach space [0, 1] x C1(J) x R®.
P
Then lim,, oo Aap®y = Anpz in CO(JT), {(Aupzs)’ Jc L),

P P
lim (Aalgﬁcn)/(t) = (Aaﬁx)l(t)‘

n—00 -pP -P

a.e. on J
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P P
(:> (Aapzy) T — (Aqpzx) " in ﬁP(J) as n — oo), limy, — o0 PapTn = Papr and

lim,, oo 7y, = ryx in C°(J), and consequently (see property (ii) of F)
limn— oo K (Ans Zns ans bn) = K(\, 2, a,b)inC(J) x R?
which shows that K is a continuous operator.

Let {(An, Zn, G, bp)} € [0,1] x Q and set
(Uny An, Bp) = K(Any Tny an,by), n €N
Then

wn(t) = an+ [ (bt / [P (Bestn, (Basz) ), Basr) )] ) )

FAn(Pagtn) (V) + o(V)(ry ) (v)] dv) ds,

A, =ap +x,(0) —2,(T), By, =b,+x,(0)—z,(T),
and consequently
[un(®)] <V +2+TQ(GIQelL, +T) +1] + 3llells, +1),

[, (0] < Q(G(@lelz, +T) + 1) +3llellz, +1),

ta
/ o(s) ds‘ + [t1 — ta]

t1

l9(up (1)) — g(u, (£2))] < 3

for t,t1,to € J and n € N. Then {u,} is bounded in C*(J), {u,(¢)} is equicontinuous
on J since g is continuous and increasing on R and {4, }, {B,} are bounded (in R),
and so there exists a subsequence {(ug, , Ay, , Bk, )} converging in C1(.J) x R®. Thus

K is a compact operator.

n? n?

Assume K (Ao, 2o, ag, bo) = (20, ag, by) for some (Ag, g, ag, by) € [0,1] x 9Q. Then
zo(t) is a solution of PBVP (2.31)x,,(1.2) and ap = z0(0), by = g(z((0)). By
Lemma 3, ||zo]| <V 4+ 1, ||z(]] < Q(2]lo|ln, + T), and so

laol <V +1,  |bo| < G[Q2llellz, +T)]

which contradicts (zo,ag,bg) € 9Q. We have proved that K satisfies (j) and (jj);
hence (3.2) holds. Then there exists a solution u(t) of PBVP (2.31)4, (1.2), that is

(6 @)Y = F (Bg, B 1), B 0] ) )

+(Papu)(t) + o(t)(rvu)(t)

(3.4)

for a.e. t € J and
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Set w(t) = u(t) — B(t) for t € J. Then
w(0) =w(T), w'(0)>w'(T). (3.6)

Let max{w(t) : t € J} = w(§) > 0 for some & € J. Then (cf. (3.6)) w'(¢) = 0 and
without loss of generality we can assume £ € [0,T). Since on any interval of the type
[€,t1] C J where w(t) > 0 we have (see property (iii) of F)

(G0 (1)) ~ (@B (1))' 2 F(Bapu, (Basu) (1), (B (0)] ) (1)
+(papu)(t) + o) (re u) (t) = F(8, 5(2), 8 (1)) (¢)
> F(8, A1), B'())(1) + minfw(t), 1} = F(8, 5(2), 8 (1)) (t) > 0,

t
and so from the equality g(u'(t)) — g(B'(t)) = / (g(u'(5)) — g(B'(s))) ds we deduce
3
w'(t) > 0 on a right neighbourhood of ¢ = &, a contradiction. Hence w(t) < 0 on J
and u(t) < g(t) for t € J.
Set z(t) = u(t) — a(t), t € J. Then

2(0) = 2(T), 2'(0) <2Z/(T). (3.7)

Let min{z(¢t) : t € J} = 2(v) < O withav € J. Then (cf. (3.7)) 2/(v) = 0 and without
loss of generality we can assume that v € [0,T). Hence there exists ¢; € (v,T] such
that z(¢t) < 0 on [v,¢1]. Then

(9(u (1)) = (9(e'(1)))" < F(a, a(t), &/ (1))(t) + (papu)(t) + o(t)(rvu)(t)
—F(a,at),d (1) (t) < (papu)(t) = max{z(t),—1} <0

for t € [v,t1], and consequently g(u/(t)) — g(c/(t)) < 0 on (v,t1] since g(u'(v)) —
g(a/(v)) = 0. Then 2'(¢t) = v/ (t) — &/(¢t) < 0 for ¢t € (v,#1], a contradiction. Hence
z(t) > 0on J.

From (3.1) now it follows
P
(g(u' (1)) = F(u,u(t),u'(t)’ P) (t) forae. teJ.

Then (cf. (Hz))

P P
or(g(w' @) < () + @) Ju(w' @] ) < () + W @)hw )
for a.e. t € C, (k = 1,2), where Cy, is defined in Lemma 1 (with 2 = ). Applying
Lemma 1 and using (2.29) and |lu|| < V, we see that ||v'|] < P. Thus (g(u'(t))) =
F(u,u(t),u(t))(t) and u is a solution of PBVP (1.1), (1.2) satisfying the inequalities
(3.1). O
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If assumptions (H;) and (Hjy) are satisfied then there exists a solution wu(t) of
PBVP (1.1),(1.2) in the set

Dop = {z : x is a solution of PBVP (1), (2) and a(t) < z(t) < B(¢t) for ¢t € J},

by Theorem 1.

We say that solutions wu,(t) and u*(t) are respectively lower and upper solutions
of PBVP (1.1),(1.2) in the set Dyp if us, u* € Dy and

u(t) Su(t) <u'(t), teJ

for any u € Dyg.

Theorem 6 Let assumptions (Hy) and (Hz) be satisfied. Then there exist lower and
upper solutions of PBVP (1), (2) in the set Dyg.

Proof. By Theorem 1, D,s # (). Let V be given by (2.28) and P > V satisfies
(2.29). From the assumption (H3) and applying Lemma 1 we conclude (see the proof
of Theorem 1) that ||u/|| < P for every u € Dog. Let u1,us € Dog and set

w_(t) = min{u (£),u2(t)}, wy(t) = max{ui(t),us(t}, te.J.

Then a(t) < w_(t) <wy(t) <B{E) on J, w_,wy € AC(J) and |[u]|| < P, [Juy]| < P.
We now show that there exist u,v € Dyg satisfying the inequalities

u(t) <w_(t), wy(t) <wo(t), te. (3.8)

Consider the one-parameter family of the functional differential equations

(9(2' ()" = MS4+2)(t) + Mpuw. p2)(t) + 5o(t) (rez)(t), A €[0,1], (3.9)
where

S, :CHJ) — Li(J),

(Se)(t) = F(Au, sz, (Bu,52)(0), (Dup2) (0] _)(0)
— [P (B, (B s2) 0, (B ) ()

~F (B, (Buys2)(0), (Auysa) (1)

— [P (A, (B 52) (0, (A, ) (1)

—F (B 5, (D) (8), (Do) ()



Periodic BVP for second order functional differential equations 7

and ¢ € Li(J) is a positive-valued function satisfying (2.30) for a.e. ¢ € J and each
x € CL(J).

Let

Q={(ab): (v.ab)cC () xR |z <V +2,
[l < Q(10llellz, +T) + 1, [a| <V +2,
ol < GIR0ollz, +T) + 1]},

and L : 0,1] x 0 — C(J) x R? be defined by the formula

Li(\z,a,b) =
= (a + /Ot g ! (b + /OS [)\(S+x)(y) + AMpuw, ) (V) + 5g(u)(r\fx)(1/)] dy> ds,

a+z(0) —x(T), b+ 2'(0) — m’(T)).

Here the function @ and G are defined by (2.1). We see that (cf. (2.19)) L4(0,-) =
H(1,-) (with o; = 50in (2.19) and k = Q(10||¢||z, +T)+1, ! = G[Q(10||¢||r, +T)+1]
in Q* given by (2.18)), and so

D(I - L+(07 )7970) 74‘ 0

by Lemma 2. Let L (o, Zo, ag,bo) = (20, ag, by) for some (A, zg, ag, bo) € [0, 1] x IN.
Then ag = x¢(0), by = g(x(0)) and xo(t) is a solution of PBVP (3.9),,, (1.2). Since
(cf. (2.30)) |(S+z)(t)| < 5o(t) for a.e. t € J and each z € C*(J), we can proceed
analogously to the proof of Lemma 3 to verify that

lzoll <V 41, ol < Q(10[lellz, + T),

and so |ag] <V +1, |bo| < G(Q(10||o|l, + T)). Hence (zo,ap,bo) ¢ 99, which is
impossible.

Analysis similar to that of the proof of Theorem 1 shows that Ly is a compact
operator. Thus

D(I — L.(1,-),9,0) =D — L4+(0,-),9,0) #0
and then, of course, there exists a fixed point (v, a,b) of the operator L, (1,-). Clearly,

v(t) is a solution of PBVP (3.9)1, (1.2). Assume max{v(t) — B(¢) : t € J} = v(§) —
B(£) > 0 for some £ € J. Then v'(£) = B'(£) and we can assume £ € [0,T). Let
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t1 € (§,T] be a point such that v(t) — 5(t) > 0 for t € [£,t1]. Then (for a.e. t € [£,11])
(9(v' (1)) — (9(B'(1))) =
> (S10)(t) + (puw, pv) () + 5o(t) (rvv)(t) — F (B, B(¢), B'(1))(t)

= F (A, 50, (B, 50) (1), <Aw+ﬂv>'<t>[1)) (8) + (Puy 50)(2) (3.10)
+50(t)(ry ) (1) = F(B, B(1), B'(£))(1)
> F(Au, v, B(2), B'(1)(t) = F(8,8(t), 8 (1)(t) > 0

) -
since F(Aw, v, B(), 8'(6))(1) = F(8, 5(t), 5'(£))(1) for a.e. t € J by property (iii) of
F. From (3.10) and the equality v'(£) = 8'(£) we deduce v/(t) > B'(t) for t € (£,t4],

a contradiction. Hence
o(t) < B(t), ted

Assume min{v(t) —ug(t) : t € J} < 0 for some k € {1,2}. Then there exist 74 € [0,T)
and ty € (7, T] such that v(7) —ug(7x) = min{v(t) —ux(t) : t € J}, v'(15) = u},(T)
and v(t) < ug(t) for ¢ € (7g,tx]. Then (for a.e. ¢t € [Tk, tx])

(90" (1)) = (g(u, (1)) =
= (540)(t) + (Puw, s0)(t) + 50(8) (rv 0) () — F (g, un(t), up,(£)) (2)
< F(Aw, pv, wy (), wly (0))(8) = F(wn, un(t), u (1)) (2)
—‘F wy 50, W (1), W ())(8) — F(Aw, gv, ur(t), ug (£))(1)
< F(Aw, g, w (), w) (1))(8) = F(Aw, v, ur(t), ug (£))(1)
[P (A, 0,101 (0, 0, (0)(E) = (A, o, u(0), u () (1) < 0
and consequently v'(t) < u).(t) on (7, tx], a contradiction. Hence
v(t) >uk(t), tedJ(k=1,2).
We have verified that w () <wv(t) < A(t) for t € J. Then |jv]| <V and

P
(9(0'(1)' = (S40)() + (Pur, 50)(8) + 5e(B)(r ) (8) = F(v,0(0),0'(0)] )0
for a.e. t € J. As in the proof of Theorem 1 we can show that ||v'|| < P. Hence v is
a solution of PBVP (1), (2).

To prove the existence of a solution u(t) of PBVP (1), (2) satisfying the inequalities
a(t) < u(t) < w_(t), t € J, we consider the operator L_ : [0,1] x & — C(J) x R?
given by the formula

L_(\z,a,b) =
= (a + /0 g b+ / A(S—2)(V) + A(Paw_x) (V) + 5o(v)(ryx)(v)] dv) ds,

0
a+ z(0) — z(T), b+ 2'(0) — x’(T)).
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where S_ : CY(J) — L1(J),

P
(S-2)(t) = F(Daw 2, (Baw_)(0). (Aew2) )] ) (O

2
+ P (Do, (Baw2)(0), (Bauw_ 2V ®)] )@

F(Baw B ?) (1), Bau)®)] )0
+ P (Do (Baw2)(B), (Bau_ 2V )] )@

~F (B, (B2 (0), (Baw2) ()] ) ()]

The proof is similar to that of the first part of this theorem and therefore it is omitted.

It is easy to check that D,g is a closed set in C'(.J). Since for each z € D, and
t1,to € J we have

loll < Ve < P Lot () = o't < | [ el

D,p is a compact set in C'(J). We shall prove only the existence of the maximal
solution u* of PBVP (1.1), (1.2) in the set D, since the case of the minimal solution
u, of PBVP (1.1),(1.2) in Dyp is very similar. By the compactness of Dyg, there
exists u* € Dyg such that

T T
/ u*(t)dtz/ 2(t)dt for z € Dug. (3.11)
0 0

Suppose that there exist g € Dog and ¢y € (0,T) such that zo(tg) > u*(¢y). By the
first part of the proof of our theorem, there exists 1 € D,p such that

max{u*(t), zo(t)} < z1(t) < B(t), te

/OTxl(t)dt>/0Tu*(t)dt,

contrary to (3.11). Hence u* is the maximal solution of PBVP (1.1),(1.2) in the set
Das. 0

Then

Corollary 7 Let assumption (Hy) be satisfied and let there exist positive-valued func-
tions h € L1(J) and w € CO(J) such that (5) is satisfied and w(u), w(—u) are non-
decreasing on [0,00). If at least one of the following inequalities

Fz,y(@),0)(t) < (h(t) + [b)w(b), (3.12)
Fa,y(),0)t) = —(h(t) + [b))w(d), (3.13)
F(z,y(t),b)(t)signb < (h(t) + |b]))w(b) (3.14)
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and
F(z,y(t),b)(t) signb > —(h(t) + |b))w(b) (3.15)

is satisfied for a.e. t € J and each (z,y,b) € A(a, ), then PBVP (1.1),(1.2) is
solvable and there exist lower and upper solutions in the set Dyg.

Proof. Corollary 1 follows at once from Theorems 1 and 2 assuming that (Hs)
o1 = o9 = 1 for (3.12), 01 = 02 = —1 for (3.13), 01 = —0o2 = 1 for (3.14) and
01 = —092 = —1 for (315) O

Example 8 Consider the functional differential equation

(" OF ') = | fuls,a(T = 5),2(t), ' (1)) ds

. (3.16)
+fa(t, x(t), 2’ () (@(t) > + o fs(t, 2(t), 2/ (1)) (= (t))"

where p > 1, f1 (resp. fa, f3) satisfies the local Carathéodory conditions on J X R?

(resp. J X RQ), fi(t,-,a,b) is nonincreasing on R for a.e. t € J and each a, b € R,
m,n € N and o € {—1,1}. In addition, there exist positive constants ¢ and | such
that the inequalities

21
|f1(tvu7$7y)lgf(1+|y|p)7 6§f2(t,$7y)§l(l+|y|p), f3(t7x7y)20

are satisfied for a.e. t € J and each u,x € [f Qm_i/g, 2”‘%}, y € R. Set

o=— 2’”§/Z and [ = zmi/z.
€ €

Then a(t) = a and B(t) = B are lower and upper functions of PBVP (8.16), (1.2)
and

t

F(a,y(t),z()(t) = [ fi(s,a(T — s),y(t), 2(t)) ds

i
2

+ha(ty(t), 2(0)) ()1 + o fa(t y(t), 2(4) (=(¢))"
satisfies assumption (Hz) with h(t) =1, w(y) =11+ £)(1+[y[*~P), g(u) = |[ulP~2u
and
o —0 if n is even
£ (—1)ko if n is odd.

Theorems 1 and 2 show that PBVP (3.16), (1.2) is solvable and has upper and lower
solutions in the set Myg={x: 2 € C1(J), a <z(t) < B forte J}.
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