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Abstract. Efficient sufficient conditions are established for the solvability of the mixed problem

u00.t/D p.t/u.t/Cf .t;u.t//Ch.t/; u.a/D 0; u0.b/D 0;

where h;p 2 L.Œa;b�IR/ and f 2 K.Œa;b��RIR/; in the case where the homogeneous linear
problem w00.t/D p.t/w.t/; w.a/D 0; w0.b/D 0 has nontrivial solutions.
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1. INTRODUCTION

Consider on the set I D Œa;b� the second order nonlinear ordinary differential
equation

u00.t/D p.t/u.t/Cf .t;u.t//Ch.t/ for t 2 I (1.1)
with the boundary conditions

u.a/D 0; u0.b/D 0; (1.2)

where h;p 2L.I IR/ and f 2K.I �RIR/: By a solution of problem (1.1), (1.2) we
understand a function u 2 zC 0.I;R/; which satisfies equation (1.1) almost everywhere
on I and satisfies conditions (1.2).

Along with (1.1), (1.2) we consider the homogeneous problem

w00.t/D p.t/w.t/ for t 2 I; (1.3)

w.a/D 0; w0.b/D 0: (1.4)
At present, the foundations of the general theory of two-point boundary value

problems are already laid and problems of this type are studied by many authors and
investigated in detail (see, for instance, [3, 4, 10, 11, 13, 14] and references therein).
On the other hand, in all of these works, only the non-resonance case is considered.
An analysis of the available literature shows that, in contrast to the Dirichlet problem,
the case where the problem (1.3), (1.4) has nontrivial solutions is practically unstud-
ied. It should be noted that, in the majority of works on this subject, the Dirichlet
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boundary value problem for the second order ordinary differential equation with the
corresponding homogeneous problem possessing a nontrivial solution studied in the
case where the first coefficient of the homogeneous linear problem is a constant and,
more precisely, only in the simplest case where this constant is the first eigenvalue of
the homogeneous linear problem (see, for instance, [1, 2, 4–8, 10, 15] and references
therein). In [16], we developed a technique which allowed us to establish efficient
sufficient conditions (Landesman–Lazer’s type conditions) for the solvability of Di-
richlet BVP for second order ODE in the case where the first coefficient of the homo-
geneous linear equation is a Lebesgue integrable function (not necessarily constant)
and no information is assumed on the number of zeros of the solution. (In particu-
lar, if the first coefficient in homogeneous linear equation is constant, we are able to
study the cases where this constant not necessarily coincides with the first eigenvalue
of the corresponding homogeneous linear problem). The theorems proved there sig-
nificantly generalize and improve a number of previous results of other authors (see
[1, 2, 4, 6, 15]).

In the present paper we generalize the method developed in article [16] for the
Dirichlet boundary value problem, and prove Landesman–Lazer’s type efficient suf-
ficient conditions for solvability of problem (1.1), (1.2) in the case when the function
p 2 L.I IR/ is not necessarily constant, under the assumption that the homogeneous
problem (1.3), (1.4) has a nontrivial solution which may have arbitrarily many zeros
in the interval �a;b�:

The results presented here are new and generalize Fredholm’s third theorem for
nonlinear ODE in the sense that the known Fredholm theorem is obtained in the
special case where f .t;x/� 0.

Throughout the paper we use the following notations:
N is the set of all natural numbers. R is the set of all real numbers,RCD Œ0;C1Œ.
C.I IR/ is the Banach space of continuous functions u W I ! R with the norm

kukC Dmaxfju.t/j W t 2 I g:
zC 0.I IR/ is the set of functions u W I!Rwhich are absolutely continuous together

with their first derivatives.
L.I IR/ is the Banach space of the Lebesgue integrable functions p W I !R with

the norm kpkL D
R b
a jp.s/jds:

K.I �RIR/ is the set of the functions f W I �R!R satisfying the Carathéodory
conditions, i.e., f .�;x/ W I!R is a measurable function for all x 2R, f .t; �/ WR!R

is a continuous function for almost all t 2 I , and for every r > 0 there exists qr 2
L.I IRC/ such that jf .t;x/j � qr.t/ for almost all t 2 I , jxj � r .

Having w W I !R; we put:

Nw
def
D ft 2 �a;b� W w.t/D 0g;

˝Cw
def
D ft 2 I W w.t/ > 0g; ˝�w

def
D ft 2 I W w.t/ < 0g;
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and Œw.t/�C D .jw.t/jCw.t//=2; Œw.t/�� D .jw.t/j�w.t//=2 for t 2 I .

Definition 1. Let A be a finite (eventually empty) subset of I . We say that
f 2 E.A/, if f 2 K.I �RIR/ and, for any measurable set G � I and an arbitrary
constant r > 0, we can choose " > 0 such that ifZ

G

jf .s;x/jds 6D 0 for x � r .x � �r/

then Z
GnU"

jf .s;x/jds�

Z
U"

jf .s;x/jds � 0 for x � r .x � �r/;

where U" D I \
�
[n
kD1

�tk � "=2n; tkC "=2nŒ
�

if AD ft1; t2; : : : ; tng; and U" D¿ if
AD¿:

Remark 1. If f 2K.I �RIR/ then f 2E.¿/:

Remark 2. It is clear that if f .t;x/
def
� f0.t/g0.x/; where f0 2 L.I IR/ and g0 2

C.I IR/; then f 2E.A/ for every finite set A� I:

The example below shows that there exists a function f 2K.I �RIR/ such that
f 62E.ft1; : : : ; tkg/ for some points t1; : : : ; tk 2 I:

Example 1. Let f .t;x/Djt j�1=2g.t;x/ for t 2 Œ�1;0Œ[�0;1�; x 2R, and f .0; :/�
0, where g.�t;x/D g.t;x/ for t 2��1;1�; x 2R; and

g.t;x/D

(
x for x � 1=t; t > 0

1=t for x > 1=t; t > 0
:

Then f 2K.Œ0;1��RIR/ and it is clear that f 62E.f0g/ because, for every " > 0, if
x � 1=" then

R 1
" f .s;x/ds�

R "
0 f .s;x/ds D 4."

�1=2�x1=2/�2 < 0:

2. MAIN RESULTS

Theorem 1. Let i 2 f0;1g, w be a nonzero solution of the problem (1.3), (1.4),
f 2 E.Nw/; there exists a constant r > 0 such that the function .�1/if is non-
decreasing in the second argument for jxj � r;

.�1/if .t;x/sgnx � 0 for t 2 I; jxj � r; (2.1)Z
˝
C
w

jf .s;r/jdsC

Z
˝�w

jf .s;�r/jds 6D 0; (2.2)

and

lim
jxj!C1

1

jxj

Z b

a

jf .s;x/jds D 0: (2.3)
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Then there exists ı > 0 such that the problem (1.1), (1.2) has at least one solution for
every h satisfying the condition

ˇ̌̌ bZ
a

h.s/w.s/ds
ˇ̌̌
< ıjjwjjC : (2.4)

Corollary 1. Let the assumptions of Theorem1 be satisfied andZ b

a

h.s/w.s/ds D 0: (2.5)

Then the problem (1.1), (1.2) has at least one solution.

Example 2. From Theorem 1 it follows that the problem

u00.t/D��2u.t/C� ju.t/j˛ sgnu.t/Ch.t/ for 0� t � �=2 (2.6)

u.0/D 0; u0.�=2/D 0; (2.7)

with � D 2k � 1.k 2 N/; � 2 f�1;1g, and ˛ 2 �0;1Œ has at least one solution if
h 2 L.Œ0;�=2�;R/ is such that

R �=2
0 h.s/sin�sds D 0:

Theorem 2. Let i 2 f0;1g, w be a nonzero solution of the problem (1.3), (1.4),

f .t;x/
def
� f0.t/g0.x/ with f0 2 L.I IRC/; g0 2 C.RIR/, there exists a constant

r > 0 such that .�1/ig0 is non-decreasing for jxj � r and

.�1/ig0.x/sgnx � 0 for jxj � r: (2.8)

Let, moreover,

jg0.r/j

Z
˝
C
w

f0.s/dsCjg0.�r/j

Z
˝�w

f0.s/ds 6D 0 (2.9)

and

lim
jxj!C1

jg0.x/j D C1; lim
jxj!C1

g0.x/

x
D 0: (2.10)

Then, for every h 2 L.I IR/, the problem (1.1), (1.2) has at least one solution.

Example 3. From Theorem 2 it follows that the equation

u00.t/D p0.t/u.t/Cp1.t/ju.t/j
˛ sgnu.t/Ch.t/ for t 2 I; (2.11)

with the conditions (1.2) has at least one solution for arbitrary ˛ 2 �0;1Œ p0;h 2
L.I IR/, and such p1 2L.I IR/ that the condition �p1.t/ > 0 for t 2 I holds, where
� 2 f�1;1g.
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Theorem 3. Let i 2 f0;1g and w be a nonzero solution of the problem (1.3),
(1.4). Let, moreover, there exist constants r > 0; " > 0, and functions ˛;f C;f � 2
L.I IRC/ such that the conditions

.�1/if .t;x/� �f �.t/ for x � �r;

f C.t/� .�1/if .t;x/ for x � r;
(2:12i )

supfjf .t;x/j W x 2Rg � ˛.t/ (2.13)

hold on I , and let

�

Z b

a

.f C.s/Œw.s/��Cf
�.s/Œw.s/�C/dsC "jj˛jjL

� .�1/iC1
Z b

a

h.s/w.s/ds (2.14)

�

Z b

a

.f �.s/Œw.s/��Cf
C.s/Œw.s/�C/ds� "jj˛jjL:

Then the problem (1.1), (1.2) has at least one solution.

Remark 3. If f 6� 0 then the condition (2:12i ) .i D 1;2/ of Theorem 3 can be
replaced by

�

Z b

a

.f C.s/Œw.s/��Cf
�.s/Œw.s/�C/ds

< .�1/iC1
Z b

a

h.s/w.s/ds (2.15)

<

Z b

a

.f �.s/Œw.s/��Cf
C.s/Œw.s/�C/ds:

because from (2.15) there follows the existence of a constant " > 0 such that the
condition (2:12i ) is satisfied.

Remark 4. If zf .t/Dminff C.t/;f �.t/g then the condition (2.14) of Theorem 3
can be replaced byˇ̌̌̌Z b

a

h.s/w.s/ds

ˇ̌̌̌
�

Z b

a

zf .s/jw.s/jds� "jj˛jjL:

Example 4. From Theorem 3 it follows that the equation

u00.t/D��2u.t/C
ju.t/j˛

1Cju.t/j˛
sgnu.t/Ch.t/ for 0� t � �=2; (2.16)

where � D 2k� 1.k 2 N/ and ˛ 2 �0;C1Œ , with the conditions (2.7) has at least
one solution if h 2 L.Œ0;�=2�;R/ is such that jh.t/j< 1 for 0� t � �=2:
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3. AUXILIARY PROPOSITIONS

Let un 2 zC 0.I IR/, kunkC ¤ 0 .n 2N/, w be an arbitrary solution of the problem
(1.3), (1.4), and r > 0. Then, for every n 2N , we define:

An;1
def
D ft 2 I W jun.t/j � rg; An;2

def
D ft 2 I W jun.t/j> rg;

Bn;i
def
D ft 2 An;2 W sgnun.t/D .�1/i�1 sgnw.t/g .i D 1;2/;

Cn;1
def
D ft 2 An;2 W jw.t/j � 1=ng; Cn;2

def
D ft 2 An;2 W jw.t/j< 1=ng;

Dn
def
D ft 2 I W jw.t/j> r jjunjj

�1
C C1=2ng;

A˙n;2
def
D ft 2 An;2 W ˙un.t/ > rg; B˙n;i

def
D A˙n;2\Bn;i ;

C˙n;i
def
D A˙n;2\Cn;i .i D 1;2/; D

˙
n

def
D ft 2 I W ˙w.t/ > r jjunjj

�1
C C1=2ng;

From these definitions it is clear that, for any n 2N , we have

An;1\An;2 D¿;ACn;2\A
�
n;2 D¿; Bn;1\Bn;2 D¿; Cn;1\Cn;2 D¿;

DCn \D
�
n D¿; BCn;2\B

�
n;2 D¿; CCn;i \C

�
n;i D¿ .i D 1;2/; (3.1)

and
An;1[An;2 D I; A

C
n;2[A

�
n;2 D An;2; Bn;1[Bn;2 D An;2 nNw ;

Cn;1[Cn;2 D An;2; B
C
n;2[B

�
n;2 D Bn;2; C

˙
n;1[C

˙
n;2 D A

˙
n;2;

CCn;i [C
�
n;i D Cn;i .i D 1;2/; D

C
n [D

�
n DDn:

(3.2)

The proofs of the following two lemmas are given in [16].

Lemma 1. Let un 2 zC 0.I IR/ .n 2N/; r > 0; w be an arbitrary nonzero solution
of the problem (1.3), (1.4), and

jjunjjC � 2rn for n 2N; (3.3)

jjvn�wjjC � 1=2n for n 2N; (3.4)
where vn.t/D un.t/jjunjj�1C : Then there exists n0 2N such that

DCn0 � A
C
n;2; D�n0 � A

�
n;2 for n� n0; (3.5)

CCn0;1 �D
C
n C�n0;1 �D

�
n for n� n0: (3.6)

Moreover
lim

n!C1
mesAn;1 D 0; lim

n!C1
mesAn;2 DmesI; (3.7)

Cn;1 � Bn;1; Bn;2 � Cn;2; (3.8)

BCn;2 � C
C
n;2; B�n;2 � C

�
n;2; (3.9)

CCn;1 � B
C
n;1; C�n;1 � B

�
n;1; (3.10)
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lim
n!C1

mesCn;1 D lim
n!C1

mesBn;1 DmesI;

lim
n!C1

mesCn;2 D lim
n!C1

mesBn;2 D 0;
(3.11)

r < jun.t/j � jjunjjC =2n for t 2 Bn;2; (3.12)

jun.t/j � jjunjjC =2n > r for t 2 Cn;1; (3.13)

C˙n;2 D ft 2 An;2 W 0�˙w.t/ < 1=ng; (3.14)

C˙n;1 �˝
˙
w ; lim

n!C1
mesC˙n;1 Dmes˝˙w : (3.15)

Lemma 2. Let i 2 f1;2g, r > 0, k 2 N , w0 be a nonzero solution of the problem
(1.3), (1.4), Nw0 D ft1; : : : ; tkg, the function f1 2 E.Nw0/ be non-decreasing in the
second argument for jxj � r , and

f1.t;x/sgnx � 0 for t 2 I; jxj � r: (3.16)

Then:

(a) If G � I and Z
G

jf1.s; .�1/
ir/w0.s/jds 6D 0; (3.17)

then there exist ı0 > 0 and "1 > 0 such that

I.G;U";x/
def
�

Z
GnU"

jf1.s;x/w0.s/jds�

Z
U"

jf1.s;x/w0.s/jds � ı0 (3.18)

for .�1/ix � r and 0< "� "1; whereU"D I \
�
[kjD1Œtj �"=2k; tjC"=2k�

�
.

(b) If un 2 zC 0.I IR/ .n 2 N/; r > 0; w is an arbitrary nonzero solution of the
problem (1.3), (1.4), and the condition (3.3) holds, then there exist "2 2�0;"1�
and n0 2N such that

I.DCn ;U
C
" ;x/� �

ı0

2
for x � r; (3:191)

I.D�n ;U
�
" ;x/� �

ı0

2
for x � �r (3:192)

for n� n0 and 0 < "� "2, where U˙" D ft 2 U" W ˙w.t/� 0g:

Lemma 3. Let all the conditions of Lemma 1 be fulfilled and there exist r > 0 such
that the condition (3.16) holds, where f1 2K.I �RIR/: Then

lim
n!C1

inf
Z t

s

f1.�;un.�//sgnun.�/d� � 0 for a � s < t � b: (3.20)
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Proof. Let


�r .t/
def
D supfjf1.t;x/j W jxj � rg for t 2 I: (3.21)

Then, according to (3.1), (3.2), and (3.16), we obtain the estimateZ t

s

f1.�;un.�//sgnun.�/d�

� �

Z
Œs;t�\An;1


�r .�/d�C

Z
Œs;t�\An;2

jf1.�;un.�//jd�

for a � s < t � b, n 2N . This estimate and (3.7) imply (3.20). �

Lemma 4. Let w0 be a nonzero solution of the problem (1.3), (1.4), r > 0, the
function f1 2E.Nw0/ be non-decreasing in the second argument for jxj � r , condi-
tion (3.16) hold, andZ

˝
C
w0

jf1.s; r/jdsC

Z
˝�w0

jf1.s;�r/jds 6D 0: (3.22)

Then there exist ı > 0 and n1 2N such that ifˇ̌̌ bZ
a

h1.s/w0.s/ds
ˇ̌̌
< ıjjw0jjC (3.23)

then, for every nonzero solution w of the problem (1.3), (1.4), and functions un 2
zC 0.I IR/ .n 2N/ such that the conditions (3.3),

jv.i/n .t/�w
.i/.t/j � 1=2n for t 2 I; n 2N; .i D 0;1/ (3.24)

where vn.t/D un.t/jjunjj�1C for t 2 I and

un.a/D 0; u
0
n.b/D 0 (3.25)

are fulfilled, there exists n1 2N such that

Mn.w/
def
�

Z b

a

.h1.s/Cf1.s;un.s///w.s/ds � 0 for n� n1: (3.26)

Proof. Without loss of generality we can assume that jjw0jjC D 1: Also it is not
difficult to verify that all the assumption of Lemma 1 are satisfied. Then, by the
definition of the sets Bn;1; Bn;2; the conditions (3.1), (3.2), and (3.16), we obtain the
estimate Z b

a

f1.s;un.s//w.s/ds � �

Z
An;1


�r .s/jw.s/jdsC
yMn.w/; (3.27)

where

yMn.w/
def
� �

Z
Bn;2

jf1.s;un.s//w.s/jdsC

Z
Bn;1

jf1.s;un.s//w.s/jds:
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On the other hand, from the unique solvability of the Cauchy problem for the equation
(1.3) it is clear that

w0.a/ 6D 0; w0.b/ 6D 0; w0.ti / 6D 0 for i D 1; : : : ;k (3.28)

ifNw0 D ft1; : : : ; tkg:Now note that, for any nonzero solutionw of the problem (1.3),
(1.4), there exists ˇ 6D 0 such that w.t/D ˇw0.t/: Consequently

˝˙w D˝
˙
w0

if ˇ > 0 and ˝�w D˝
˙
w0

if ˇ < 0: (3.29)

Then in view of (3.15) and (3.22), there exists n2 � n0 such thatZ
C
C

n2;1

jf1.s; r/w0.s/jds 6D 0 and/or
Z
C�n2;1

jf1.s;�r/w0.s/jds 6D 0: (3.30)

From (3.30), in view of (3.6), it follows thatZ
D
C
n

jf1.s; r/w0.s/jds 6D 0 for n� n2 (3:311)

and/or Z
D�n

jf1.s;�r/w0.s/jds 6D 0 for n� n2: (3:312)

Consequently, all the assumptions of Lemma 3.2 are satisfied with G DDCn and/or
G DD�n . Therefore, there exist "0 2�0;"2Œ; n3 � n2, and ı0 > 0 such that

I.DCn ;U
C
"0
;x/� ı0 for x � r; n� n3;

I.D�n ;U
�
"0
;x/� �ı0=2 for x � �r; n� n3

(3.32)

if (3:311) holds, and

I.D�n ;U
�
"0
;x/� ı0 for x � �r; n� n3;

I.DCn ;U
C
"0
;x/� �ı0=2 for x � r; n� n3

(3.33)

if (3:312) holds.
On the other hand, the definition of the set U" and (3.14), imply that there exists

n4 > n3, such that

CCn;2 � U
C
"0
; C�n;2 � U

�
"0

for n� n4: (3.34)

By these inclusions, (3.2), and (3.5) we obtain

CCn;1 D A
C
n;2 nC

C
n;2 �D

C
n0
nUC"0 ; C

�
n;1 D A

�
n;2 nC

�
n;2 �D

�
n0
nUC"0 (3.35)

for n� n4: First suppose that Nw0 6D¿ and there exists n� n4 such that

Bn;2 6D¿: (3.36)
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Then, by taking into account that f1 is non-decreasing in the second argument for
jxj � r; (3.3), (3.12), (3.16) and the definitions of the sets BCn;2;B

�
n;2; we get

jf1.t;un.t//j D f1.t;un.t//

� f1

�
t;
jjunjjC

2n

�
D

ˇ̌̌
f1

�
t;
jjunjjC

2n

�ˇ̌̌
for t 2 BCn;2;

jf1.t;un.t//j D �f1.t;�un.t//

� �f1

�
t;�
jjunjjC

2n

�
D

ˇ̌̌
f1

�
t;�
jjunjjC

2n

�ˇ̌̌
for t 2 B�n;2:

(3.37)

Analogously, from (3.3), (3.13), (3.16), and the definitions of the sets CCn;1;C
�
n;1; we

obtain the estimates

jf1.t;un.t//j �
ˇ̌̌
f1

�
t;
jjunjjC

2n

�ˇ̌̌
for t 2 CCn;1;

jf1.t;un.t//j �
ˇ̌̌
f1

�
t;�
jjunjjC

2n

�ˇ̌̌
for t 2 C�n;1:

(3.38)

Then from (3.1), (3.2), (3.9), (3.37) and respectively from (3.1), (3.2), (3.8), and
(3.38) we haveZ

Bn;2

jf1.s;un.s//w.s/jds

�

Z
B
C

n;2

jf1.s;
jjunjjC

2n
/w.s/jdsC

Z
B�n;2

jf1.s;�
jjunjjC

2n
/w.s/jds (3.39)

�

Z
C
C

n;2

jf1.s;
jjunjjC

2n
/w.s/jdsC

Z
C�n;2

jf1.s;�
jjunjjC

2n
/w.s/jds

and respectivelyZ
Bn;1

jf1.s;un.s//w.s/jds �

Z
Cn;1

jf1.s;un.s//w.s/jds

�

Z
C
C

n;1

jf1.s;
jjunjjC

2n
/w.s/jdsC

Z
C�n;1

jf1.s;�
jjunjjC

2n
/w.s/jds:

(3.40)

If the condition (3.36) holds, from (3.39) and (3.40) we obtain

yMn.w/

jˇj
�

 Z
C
C

n;1

ˇ̌̌
f1

�
s;
jjunjjC

2n

�
w0.s/

ˇ̌̌
ds�

Z
C
C

n;2

ˇ̌̌
f1

�
s;
jjunjjC

2n

�
w0.s/

ˇ̌̌
ds

!

C

 Z
C�n;1

ˇ̌̌
f1

�
s;�
jjunjjC

2n

�
w0.s/

ˇ̌̌
ds�

Z
C�n;2

ˇ̌̌
f1

�
s;�
jjunjjC

2n

�
w0.s/

ˇ̌̌
ds

!
;
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whence, by (3.34) and (3.35) we get

yMn.w/

jˇj
� I

�
DCn ;U

C
"0
;
jjunjjC

2n

�
CI

�
D�n ;U

�
"0
;�
jjunjjC

2n

�
(3.41)

for n� n4: From (3.41) by (3.32) and (3.33) we obtain

yMn.w/�
ı0jˇj

2
for n� n4: (3.42)

On the other hand, in view of (3.10), (3.16), the definition of the sets An;2;Bn;1; and
the fact that f1 is non-decreasing in the second argument, we obtain the estimateZ

Bn;1

jf1.s;un.s//w.s/jds �

Z
B
C

n;1

jf1.s; r/w.s/jdsC

Z
B�n;1

jf1.s;�r/w.s/jds

�

Z
C
C

n;1

jf1.s; r/w.s/jdsC

Z
C�n;1

jf1.s;�r/w.s/jds:

(3.43)

Now suppose that there exists n� n4 such that

Bn;2 D¿: (3.44)

Then from (3.30) and (3.43), (3.44) there follows the existence of ı� > 0 such that
yMn.w/ � jˇjı

�: From this inequality and (3.42) it follows that, in both cases when
(3.36) or (3.44) are fulfilled, the inequality

yMn.w/� jˇjı for n� n4 (3.45)

holds with ı D minfı0=2;ı�g: From (3.27) by (3.7) and (3.45), we see that for any
" 2�0;ıŒ there exists n1 > n4 such thatZ b

a

f1.s;un.s//w.s/ds � jˇj.ı� "/ for n� n1;

and thus
Mn.w/

jˇj
� ı� "�

ˇ̌̌̌
ˇ
Z b

a

h1.s/w0.s/ds

ˇ̌̌̌
ˇ for n� n1: (3.46)

If Nw0 D ¿ then jw.t/j > 0 for a < t < b and in view of (3.3), (3.24), (3.25) and
(3.28), the condition (3.44) holds, i.e., the inequality (3.46) also holds.

Consequently since " > 0 is arbitrary, the inequality (3.26) from (3.46) and (3.23)
follows. �

Lemma 5. Let w0 be a nonzero solution of the problem (1.3), (1.4), r > 0; and

the conditions (3.16), (3.23) hold with f1.t;x/
def
� f0.t/g1.x/; where f0 2 L.I IRC/

and a non-decreasing function g1 2 C.RIR/ be such that

lim
jxj!C1

jg1.x/j D C1: (3.47)
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Then, for every nonzero solution w of the problem (1.3), (1.4) and functions un 2
zC 0.I IR/ .n 2 N/ fulfilling the conditions (3.3), (3.24), (3.25), the inequality (3.26)
holds.

Proof. From the assumptions of our lemma it is clear that the relations (3.27)–
(3.35), (3.37)-(3.40) and (3.43) with f1.t;x/D f0.t/g1.x/ and w.t/D ˇw0.t/ .ˇ 6D
0/ are fulfilled.

Assuming
R
C
C

n2;1

jf1.s; r/w0.s/jds 6D 0; the condition (3:311) is satisfied i.e., (3.32)

holds.
Now notice that from (3.15) and the equality CCn;1 D˝

C
w n .˝

C
w nC

C
n;1/ it follows

that there exist " > 0 and n0 2N such thatZ
C
C

n;1

jf0.s/w0.s/jds �

Z
˝
C
w

jf0.s/w0.s/jds� " > 0 (3.48)

for n� n0:
First consider the case when there exists n � n4 such that the condition (3.44)

holds. Without loss of generality we can assume that n4 >n0: Then by (3.29), (3.43),
(3.44) and (3.48), we obtain

yMn.w/� jˇjjg1.r/j

 Z
�ˇ

jf0.s/w0.s/jds� "

!
> 0; (3.49)

where �ˇ D˝Cw0 if ˇ > 0 and �ˇ D˝�w0 if ˇ < 0:
Consider now the case when there exists n � n4 such that (3.36) holds. From

(3.3) and the definition of the set DCn it follows that DCn � D
C
nC1; and since g1 is

non-decreasing, from (3.32) we obtain

I.DCn ;U
C
"0
;x/D jg1.x/j

�Z
D
C
n nU

C
"0

jf0.t/w0.s/jds�

Z
U
C
"0

jf0.t/w0.s/jds

�
� jg1.r/j�D I.DCn4 ;U

C
"0
; r/� ı0

for x � r; with �D
R
D
C
n4
nU
C
"0

jf0.s/w0.s/jds�
R
U
C
"0

jf0.s/w0.s/jds > 0: By the last
inequality, (3.3), (3.32), and (3.41) we get

yMn.w/� jˇj.jg1.r/j�� ı0=2/: (3.50)

Applying (3.49), (3.50) in (3.27) and taking (3.7) into account, we conclude that
there exist "1 > 0 and n1 � n4 such that

jˇj

�
jg1.r/j�1�

ı0

2
� "1

�
�

Z b

a

f1.s;un.s//w.s/ds for n� n1
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with �1 D min.�;
R
˝
C
w0

jf0.s/w0.s/jds � "/. From (3.47) and the last inequality

it is clear that, for any function h1; we can choose r > 0 such that the inequal-
ity (3.26) will be true. In a similar manner one can prove (3.26) in the case whenR
C�n2;1

jf1.s; r/w0.s/jds 6D 0:

�

Lemma 6. Let r > 0; there exist functions ˛;f �;f C 2 L.I;RC/ such that the
conditions

f1.t;x/� �f
�.t/ for x � �r;

f C.t/� f1.t;x/ for x � r
(3.51)

are satisfied,
supfjf1.t;x/j W x 2Rg D ˛.t/ for t 2 I; (3.52)

and there exist a nonzero solution w0 of the problem (1.3), (1.4) and " > 0 such that

�

Z b

a

.f C.s/Œw0.s/��Cf
�.s/Œw0.s/�C/dsC "jj˛jjL

� �

Z b

a

h1.s/w0.s/ds (3.53)

�

Z b

a

.f �.s/Œw0.s/��Cf
C.s/Œw0.s/�C/ds� "jj˛jjL:

Then, for every nonzero solution w of the problem (1.3), (1.4) and functions un 2
zC 0.I IR/ .n 2 N/ fulfilling the conditions (3.3), (3.24), and (3.25), there exists n1 2
N such that the inequality (3.26) holds.

Proof. First note that, for any nonzero solution w of the problem (1.3), (1.4), there
exists ˇ 6D 0 such that w.t/D ˇw0.t/: Moreover, it is not difficult to verify that all
the assumptions of Lemma1 are satisfied for the functionw.t/D ˇw0.t/: From (3.1),
(3.2), and (3.52) we get

Mn.w/� �

Z
An;1[Bn;2

˛.s/jw.s/jdsC

Z
Bn;1

f1.s;un/w.s/ds

C

Z b

a

h1.s/w.s/ds: (3.54)

On the other hand, by the definition of the set Bn;1 we have

sgnun.t/D sgnw.t/ for t 2 BCn;1[B
�
n;1: (3.55)

Hence, by (3.1), (3.2), (3.10), (3.51), and (3.55), from (3.54) we obtain the estimate

Mn.w/�

Z b

a

h1.s/w.s/ds
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� �

Z
An;1[Bn;2

˛.s/jw.s/jdsCC

Z
B
C

n;1

f C.s/jw.s/jdsC

Z
B�n;1

f �.s/jw.s/jds

(3.56)

� �

Z
An;1[Bn;2

˛.s/jw.s/jdsC

Z
C
C

n;1

f C.s/jw.s/jdsC

Z
C�n;1

f �.s/jw.s/jds:

Now, note that f � � 0 and f C � 0 if f1.t;x/ � 0: Therefore by (3.7), (3.11),
(3.15), and the inclusions CCn;1 �˝

C
w ; C

�
n;1 �˝

�
w ; we see that there exist " > 0 and

n1 2N such that
1

3
"jj˛jjL �

Z
An;1[Bn;2

˛.s/jw0.s/jdsZ
˝˙w

f ˙.s/jw0.s/jds�
1

3
"jj˛jjL �

Z
C˙n;1

f ˙.s/jw0.s/jds

(3.57)

for n� n1. By virtue of (3.56) and (3.57), we obtain

Mn.w/

jˇj
� �"jj˛jjLC

Z
˝
C
w

f C.s/jw0.s/jds

C

Z
˝�w

f �.s/jw0.s/jdsC�

Z b

a

h1.s/w0.s/ds

for n� n1; where � D sgnˇ: Now, by taking into account thatZ
˝˙w

l.s/jw0.s/jds D

Z
˝˙w0

l.s/jw0.s/jds D

Z b

a

l.s/Œw0.s/�˙ds

if ˇ > 0 andZ
˝˙w

l.s/jw0.s/jds D

Z
˝
�
w0

l.s/jw0.s/jds D

Z b

a

l.s/Œw0.s/��ds

if ˇ < 0 for an arbitrary l 2 L.I;R/; from the last inequalities we get

Mn.w/

jˇj
� �"jj˛jjLC

Z b

a

.f C.s/Œw0.s/�CCf
�.s/Œw0.s/��/ds

C

Z b

a

h1.s/w0.s/ds for n� n1

if � D 1; and

Mn.w/

jˇj
� �"jj˛jjLC

Z b

a

.f C.s/Œw0.s/��Cf
�.s/Œw0.s/�C/ds

�

Z b

a

h1.s/w0.s/ds for n� n1
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if � D�1: From the last inequalities and (3.53) we immediately obtain (3.26). �

Lemma 7. Let problem (1.3), (1.4) has the nontrivial solution. Than there exists
" > 0 suth that the equation

w00.t/D �p.t/w for t 2 I; (3.58)

under boundari conditions (1.4) has only the trivial solution if � 2 �1;1C "�:

Proof. Let G be the Green’s function of the boundary value problem u00.t/ D

0; u.a/ D 0; u0.b/ D 0; then problem (3.58), (1.4) is equivalent to the equation
w.t/ D �� .w/.t/; where the operator � W C.I IR/! C.I IR/ is defined by the
equality � .x/.t/ D

R b
a G.t;s/p.s/x.s/ds. As it is well-known � W C.I IR/ !

C.I IR/ is a compact operator, and then for every r > 0 the disc j�j � r; contains
at most finite number of characteristic values [see [9], Capitol XIII, �3; Theorem 1].
From this fact the existence of " > 0 such that the set �1;1C "� does not contain the
characteristic values of the equation w.t/D �� .w/.t/; it follows. Consequently this
equation, i.e., problem (3.58), (1.4) has only the trivial solution if � 2 �1;1C "�: �

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Let pn.t/D .1C .�1/i=n/p.t/ and for any n 2N; consider
the problems

u00n.t/D pn.t/un.t/Cf .t;un.t//Ch.t/ for t 2 I; (4.1)

un.a/D 0; u0n.b/D 0: (4.2)
and (3.58). In view of the condition (2.3) and the fact that .�1/if .t;x/ is non-
decreasing in the second argument for jxj � r , we obtain

lim
n!C1

1

jj´njjC

Z b

a

jf .s;´n.s//jds D 0 (4.3)

for an arbitrary sequence ´n 2 C.I IR/ with limn!C1 jj´njjC DC1. Moreover, in
view of Lemma 7, the problem (3.58) has only the zero solution for every n � n0.
Therefore, as it is well-known (see [12], Corollary 2.1, p. 2271), from the inequality
(4.3) it follows that the problems (4.1), (4.2) has at least one solution, suppose un.

Assume that
limn!C1jjunjjC DC1 (4.4)

and vn.t/D un.t/jjunjj�1C ; then the conditions

vn.a/D 0 v0n.b/D 0; (4.5)

jjvnjjC D 1 (4.6)
are fulfilled, and

v00n.t/D pn.t/vn.t/C
1

jjunjjC
.f .t;un.t///Ch.t//: (4.7)
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Hence, by the conditions (4.3) and (4.6), from (4.7) we get the existence of r0 > 0
such that jjv0njjC � r0. Consequently, in view of (4.6) by the Arzela-Ascoli lemma,
without loss of generality we can assume that there exists a function w 2 zC 0.I;R/
such that limn!C1 v

.i/
n .t/Dw

.i/.t/ .i D 0;1/ uniformly on I . From the last equal-
ity and (4.4) there follows the existence of an increasing sequence f˛kg

C1

kD1
of a

natural numbers, such that jju˛k jjC � 2rk and jjv.i/˛k �w
.i/jjC � 1=2k for k 2 N .

Without loss of generality we can suppose that un � u˛n and vn � v˛n . In this case
we see that un and vn are the solutions of the problems (4.1), (4.2) and (4.7), (4.5)
respectively, and the inequalities

jjunjjC � 2rn; jjv
.i/
n �w

.i/
jjC � 1=2n for n 2N (4.8)

are fulfilled.
From (4.7), by virtue of (4.5), (4.8) and (2.3), we obtain that w is a solution of the

problem (1.3), (1.4). Multiplying the equations (4.1) and (1.3) respectively by w and
�un, and therefore integrating their sum from a to b, in view of conditions (4.2) and
(1.4), we obtain

.�1/iC1
jjunjjC

˛n

Z b

a

p.s/w.s/vn.s/ds D

Z b

a

.h.s/Cf .s;un.s///w.s/ds (4.9)

for n� n0; where in view of conditions (4.8) the equality

lim
n!C1

Z b

a

p.s/w.s/vn.s/ds D

Z b

a

p.s/w2.s/ds

holds. On the other hand multiplying equation (1.3) by w, and therefore integrating
from a to b, in view of condition (1.4), we obtainZ b

a

p.s/w2.s/ds D

Z b

a

w00.s/w.s/ds D�

Z b

a

w02.s/ds < 0;

and from (4.9) by the last two relations we get

.�1/i
Z b

a

.h.s/Cf .s;un.s///w.s/ds > 0: (4.10)

for n 2 N � n0: Now note that, in view the conditions (2.1), (2.2), (2.4), (4.2),
and (4.8), all the assumptions of Lemma 4 with f1.t;x/ D .�1/if .t;x/; h1.t/ D
.�1/ih.t/ are satisfied. Therefore, the inequality (3.26) is true, which contradicts
(4.10). This contradiction proves that (4.4) does not hold and thus there exists r1 > 0
such that jjunjjC � r1 for n 2 N . Consequently, from (4.1) and (4.2) it is clear that
there exists r 01 > 0 such that jju0njjC � r

0
1 and ju00n.t/j � �.t/ for t 2 I; n 2N;

where �.t/D 2jp.t/jr1Cjh.t/jC 
r1.t/: Hence, by Arzela-Ascoli lemma, without
loss of generality we can assume that there exists a function u0 2 zC 0.I IR/ such that
limn!C1u

.i/
n .t/D u

.i/
0 .t/ .i D 0;1/ uniformly on I: Therefore, it follows from (4.1)

and (4.2) that u0 is a solution of the problem (1.1), (1.2). �



MIXED BVP FOR SECOND ORDER EQUATION AT RESONANCE 991

Proof of Theorem 2. The proof is the same as the proof of Theorem 1. The only
difference is that we use Lemma 5 instead of Lemma 4. �

Proof of Theorem 3. From (2.13) it is clear that, for an arbitrary sequence ´n 2
C.I IR/ such that limn!C1 jj´njjC DC1, the equality (4.3) holds. From (4.3) and
Lemma 6, analogously as in the proof of Theorem 1, we show that the problem (1.1),
(1.2) has at least one solution. �
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