

Miskolc Mathematical Notes Vol. 9 (2008), No 2, pp. 91-98

Approximation of solutions of boundary value problems for differential equations with delayed arguments

A. Dyki

Miskolc Mathematical Notes Vol. 9 (2008), No. 2, pp. 91–98

APPROXIMATION OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS WITH DELAYED ARGUMENTS

A. DYKI

Received 8 May, 2008

Abstract. We discuss boundary value problems for first-order functional differential equations and investigate the approximation of extremal solutions of such problems. We use a monotone iterative method.

2000 Mathematics Subject Classification: 34A45, 34B15

Keywords: functional differential equations, lower and upper solutions, monotone iterative method

1. INTRODUCTION

Let us consider the problem

$$\begin{cases} x'(t) = f(t, x(t), x(\alpha(t))), & t \in J := [0, T], \\ x(0) = rx(T), & r \in (0, 1], \end{cases}$$
(1.1)

where $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ and the function $\alpha \in C(J, J)$ is such that $\alpha(t) \le t$ for all $t \in J$.

In this paper we extend some results of paper [3] concerning the case where r = 1 and f satisfies a left-sided Lipshitz condition with suitable constants. We show the applicability of the monotone iterative method in obtaining monotone sequences approximating the extremal solutions of (1.1). We refer, e. g., to [2] for details about the monotone iterative method. Note that we use more general definition of lower and upper solution than the classical definition used, e. g., in [1].

We start by proving a comparison theorem used in the sequel. In Section 3, we prove the existence of a solution of the linear problem associated to (1.1). Finally, we prove the existence of monotone sequences approximating the extremal solutions of problem (1.1).

© 2008 Miskolc University Press

2. COMPARISON RESULTS

Lemma 1 ([1]). Suppose that $\alpha \in C(J, J)$, $\alpha(t) \leq t$ on $J, M \in C(J, \mathbb{R})$, $q \in C(J, \mathbb{R})$ $C^{1}(J,\mathbb{R})$ is such that

$$q'(t) \leq -M(t)q(t) - N(t)q(\alpha(t)), \quad t \in J, \qquad q(0) \leq 0,$$

and

$$\int_0^T N(t) e^{\int_{\alpha(t)}^t M(s) ds} dt \le 1,$$

where N is a nonnegative function integrable on J. Then $q(t) \leq 0$ on J.

Theorem 1. Assume that $r \in (0, 1]$ and

- (1) $x \in C^1(J, \mathbb{R}), \alpha \in C(J, J), \alpha(t) \leq t, t \in J, M \in C(J, \mathbb{R}), N$ is integrable on J, M(t) > 0, $t \in J$ and $N(t) \ge 0$, $t \in J$,
- (2) $x'(t) + M(t)x(t) + N(t)x(\alpha(t)) \le 0, t \in J, \text{ if } x(0) \le rx(T),$ (3) $x'(t) + M(t)x(t) + N(t)x(\alpha(t)) + \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [x(0) rx(T)] \le 0, t \in J, \text{ if } x(0) > rx(T),$ (4) $\int_0^T N(t)e^{\int_{\alpha(t)}^t M(s)ds} dt \le 1.$

Then
$$x(t) < 0, t \in J$$
.

Proof. In case (1), we assume that $x \ge 0$ on J and $x \ne 0$. Then $x'(t) \le 0, t \in J$, so x is nonincreasing and $x(t) \le x(0)$ $t \in J$ so $x(0) \ge x(T)$. On the other hand, we have $x(0) \le rx(T) \le x(T)$. Thus x(0) = x(T) and x is a constant function, x(t) = C > 0. So $x' \equiv 0$ and $[M(t) + N(t)]C \leq 0$. Hence C = 0 and finally $x(t) = 0, t \in J$. It is a contradiction.

Thus we can consider that x has some negative value. Note that if $x(0) \le 0$, then $x(t) \le 0, t \in J$, by Lemma 1. Assume that x(0) > 0, then x(T) > 0. Let us consider the function v defined by

$$v(t) = e^{\int_0^t M(s)ds} x(t), \quad t \in J.$$

We have v(0) = x(0) > 0 and $v(T) = e^{\int_0^T M(s) ds} x(T) > 0$. Since x has some negative value, there exists $t_* \in (0, T)$ such that

$$v(t_*) = \min_{t \in [0,T]} v(t) < 0.$$

Note that

$$v'(t) = e^{\int_0^t M(s)ds} M(t)x(t) + e^{\int_0^t M(s)ds} x'(t) \le -N(t)e^{\int_{\alpha(t)}^t M(s)ds} v(\alpha(t)).$$

The integration of this from t_* to T yields

$$-v(t_*) < v(T) - v(t_*) \le -\int_{t_*}^T N(t) e^{\int_{\alpha(t)}^t M(s)ds} v(\alpha(t)) dt$$

92

$$\leq -v(t_*)\int_{t_*}^T N(t)e^{\int_{\alpha(t)}^t M(s)\,ds}dt \leq -v(t_*).$$

So $-v(t_*) < -v(t_*)$, which is a contradiction. Thus $x(0) \le 0$ and, in view of Lemma 1, we get $x(t) \le 0, t \in J$.

In case (3), let us consider the function

$$w(t) = x(t) + \frac{t}{rT} [x(0) - rx(T)], \quad t \in J$$

It yields that w(0) = rw(T). Moreover,

$$w'(t) + M(t)w(t) + N(t)w(\alpha(t)) = x'(t) + M(t)x(t) + N(t)x(\alpha(t)) + \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [x(0) - rx(T)] \le 0.$$

This is included in case (2). Thus $w(t) \le 0, t \in J$ and finally $x(t) \le 0, t \in J$. \Box

3. LINEAR PROBLEM

Now we are going to prove the existence of solution of linear problem associated to (1.1). We will need that result in succeeding section.

Theorem 2. Let $\sigma \in C(J, \mathbb{R})$, $\alpha \in C(J, J)$, $\alpha(t) \le t$, $t \in J$, $M, N \in C(J, \mathbb{R})$, $M(t) > 0, t \in J, N(t) \ge 0, t \in J$ and

$$\begin{cases} x'(t) + M(t)x(t) + N(t)x(\alpha(t)) = \sigma(t), & t \in J, \\ x(0) = rx(T), & r \in (0, 1]. \end{cases}$$
(3.1)

Moreover, assume that there exist functions $y_0, z_0 \in C^1(J, \mathbb{R})$ *such that*

(1) $y_0 \le z_0 \text{ on } J$, (2)

$$y'_{0}(t) + M(t)y_{0}(t) + N(t)y_{0}(\alpha(t)) \le \sigma(t) - a(t), \quad t \in J,$$

$$z'_{0}(t) + M(t)z_{0}(t) + N(t)z_{0}(\alpha(t)) \ge \sigma(t) - b(t), \quad t \in J,$$

where

$$a(t) = \begin{cases} 0 & \text{if } y_0(0) \le ry_0(T), \\ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[y_0(0) - ry_0(T) \right] & \text{if } y_0(0) > ry_0(T), \end{cases}$$

and

$$b(t) = \begin{cases} 0 & \text{if } z_0(0) \ge r z_0(T), \\ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[z_0(0) - r z_0(T) \right] & \text{if } z_0(0) < r z_0(T). \end{cases}$$

(3)
$$\int_0^T N(t) e^{\int_{\alpha(t)}^t M(s) ds} dt \le 1.$$

Then there exists, in sector $[y_0, z_0]_* = \{w \in C^1(J, \mathbb{R}) : y_0(t) \le w(t) \le z_0(t), t \in J\},\ a unique solution of (3.1).$

Proof. First we prove the uniqueness of a solution. Let x_1 , x_2 be solutions of (3.1). Put $v_1 = x_1 - x_2$ and $v_2 = x_2 - x_1$. Then

$$v_1(0) = x_1(0) - x_2(0) = r[x_1(T) - x_2(T)] = rv_1(T),$$

$$v_1'(t) + M(t)v_1(t) + N(t)v_1(\alpha(t)) = \sigma(t) - \sigma(t) = 0, \quad t \in J,$$

and

$$v_2(0) = rv_2(T),$$

$$v'_2(t) + M(t)v_2(t) + N(t)v_2(\alpha(t)) = 0, \quad t \in J.$$

In view of Theorem 1, we have $v_1 \le 0$ and $v_2 \le 0$. Hence $x_1 = x_2$.

Now we show that if x is a solution of (3.1), then $y_0 \le x \le z_0$. Put $w_1 = y_0 - x$ and $w_2 = x - z_0$. Then we have

$$\begin{split} w_1'(t) + M(t)w_1(t) + N(t)w_1(\alpha(t)) &\leq \sigma(t) - \sigma(t) = 0 \quad \text{if } w_1(0) \leq rw_1(T), \\ w_1'(t) + M(t)w_1(t) + N(t)w_1(\alpha(t)) + \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [w_1(0) - rw_1(T)] \\ &\leq \sigma(t) - \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [y_0(0) - ry_0(T)] \\ &- \sigma(t) + \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [y_0(0) - ry_0(T)] \\ &= 0 \quad \text{if } w_1(0) > rw_1(T), \end{split}$$

and

$$\begin{split} w_2'(t) + M(t)w_2(t) + N(t)w_2(\alpha(t)) &\leq 0 \quad \text{if } w_2(0) \leq rw_2(T) \\ w_2'(t) + M(t)w_2(t) + N(t)w_2(\alpha(t)) \\ &+ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[w_2(0) - rw_2(T) \right] \leq 0 \quad \text{if } w_2(0) > rw_2(T). \end{split}$$

In view of Theorem 1, $w_1 \le 0, w_2 \le 0$ on J. It shows that $y_0(t) \le x(t) \le z_0(t)$, $t \in J$.

Finally, we prove that problem (3.1) has the solution *x*. Let us consider two functions

$$\overline{y}_{0}(t) = \begin{cases} y_{0}(t) & \text{if } y_{0}(0) \leq ry_{0}(T), \\ y_{0}(t) + \frac{t}{rT} [y_{0}(0) - ry_{0}(T)] & \text{if } y_{0}(0) > ry_{0}(T), \end{cases}$$

and

$$\overline{z}_0(t) = \begin{cases} z_0(t) & \text{if } z_0(0) \ge r z_0(T), \\ z_0(t) + \frac{t}{rT} [z_0(0) - r z_0(T)] & \text{if } z_0(0) < r z_0(T). \end{cases}$$

We have $y_0(t) \leq \overline{y}_0(t)$ and $\overline{z}_0(t) \leq z_0(t)$, $t \in J$. Moreover, $\overline{y}_0(0) \leq r \overline{y}_0(T)$ and $\overline{z}_0(0) \geq r \overline{z}_0(T)$. Note that if $y_0(0) > r y_0(T)$, then $\overline{y}_0(0) = r \overline{y}_0(T)$ and if $z_0(0) < r z_0(T)$, then $\overline{z}_0(0) = r \overline{z}_0(T)$.

94

We show that \overline{y}_0 and \overline{z}_0 are classical lower and upper solutions, respectively, of (3.1) and that $\overline{y}_0 \leq \overline{z}_0$. We have

$$\begin{aligned} \overline{y}'_{0}(t) + M(t)\overline{y}_{0}(t) + N(t)\overline{y}_{0}(\alpha(t)) &= y'_{0}(t) + M(t)y_{0}(t) + N(t)y_{0}(\alpha(t)) \\ &\leq \sigma(t), \ t \in J, \quad \text{if } y_{0}(0) \leq ry_{0}(T) \end{aligned}$$

and

$$\begin{split} \overline{y}_{0}'(t) + M(t)\overline{y}_{0}(t) + N(t)\overline{y}_{0}(\alpha(t)) \\ &= y_{0}'(t) + M(t)y_{0}(t) + N(t)y_{0}(\alpha(t)) \\ &+ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[y_{0}(0) - ry_{0}(T) \right] \\ &\leq \sigma(t) - \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[y_{0}(0) - ry_{0}(T) \right] \\ &+ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[y_{0}(0) - ry_{0}(T) \right] \\ &= \sigma(t), \ t \in J, \quad \text{if } y_{0}(0) > ry_{0}(T). \end{split}$$

Similarly,

$$\overline{z}_0'(t) + M(t)\overline{z}_0(t) + N(t)\overline{z}_0(\alpha(t)) \ge \sigma(t), \quad t \in J.$$

Thus \overline{y}_0 is a classical lower and \overline{z}_0 a classical upper solution of (3.1). Now consider the function $w = \overline{y}_0 - \overline{z}_0 \in C^1(J, \mathbb{R})$. We have

$$w'(t) + M(t)w(t) + N(t)w(\alpha(t)) \le 0, \quad t \in J$$

and $w(0) \le 0$. Lemma 1 yields $w \le 0$ on J, hence $\overline{y}_0 \le \overline{z}_0$.

Setting

$$\begin{cases} \overline{y}'_{n+1}(t) = \sigma(t) - M(t)\overline{y}_{n+1}(t) - N(t)\overline{y}_{n+1}(\alpha(t)), & t \in J, \\ \overline{y}_{n+1}(0) = r\overline{y}_n(T), \end{cases}$$

and

$$\begin{cases} \overline{z}'_{n+1}(t) = \sigma(t) - M(t)\overline{z}_{n+1}(t) - N(t)\overline{z}_{n+1}(\alpha(t)), & t \in J, \\ \overline{z}_{n+1}(0) = r\overline{z}_n(T), \end{cases}$$

and arguing similarly to the proof of [1, Theorem 3.1], we show that there exists a solution of (3.1).

4. Approximation of extremal solutions of (1.1)

In this section we develop monotone iterative technique for (1.1).

Theorem 3. Let $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$, $\alpha \in C(J, J)$, $\alpha(t) \leq t$, $t \in J$, $M, N \in C(J, \mathbb{R})$, M(t) > 0, $t \in J$, $N(t) \geq 0$, $t \in J$. Moreover, assume that there exist functions $y_0, z_0 \in C^1(J, \mathbb{R})$ such that

(1) $y_0 \leq z_0 \text{ on } J$,

(2) y_0 , z_0 are lower and upper solutions of (1.1), respectively, i. e.,

$$y'_{0}(t) \leq f(t, y_{0}(t), y_{0}(\alpha(t))) - a(t), \quad t \in J,$$

$$z'_{0}(t) \geq f(t, z_{0}(t), z_{0}(\alpha(t))) - b(t), \quad t \in J,$$

where

$$a(t) = \begin{cases} 0 & \text{if } y_0(0) \le ry_0(T), \\ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} \left[y_0(0) - ry_0(T) \right] & \text{if } y_0(0) > ry_0(T), \end{cases}$$

and

$$b(t) = \begin{cases} 0 & \text{if } z_0(0) \ge r z_0(T), \\ \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [z_0(0) - r z_0(T)] & \text{if } z_0(0) < r z_0(T), \end{cases}$$

$$(3) \quad f(t, u, v) - f(t, \overline{u}, \overline{v}) \le M(t) [\overline{u} - u] + N(t) [\overline{v} - v], \text{ if } y_0(t) \le u \le \overline{u} \le z_0(t), \\ y_0(\alpha(t)) \le u \le \overline{u} \le z_0(\alpha(t)), \end{cases}$$

$$(4) \quad \int_0^T N(t) e^{\int_{\alpha(t)}^t M(s) ds} dt \le 1.$$

Then there exist monotone sequences $\{y_n\} \uparrow y$ and $\{z_n\} \downarrow z$ uniformly on J with $y_0 \leq y_n \leq z_n \leq z_0$ for every $n \in \mathbb{N}$ and $y, z \in C^1(J, \mathbb{R})$. Functions y and z are extremal solutions of (1.1).

Proof. Let us consider the problem

$$\begin{cases} x'(t) + M(t)x(t) + N(t)x(\alpha(t)) = \sigma_u(t), & t \in J, \\ x(0) = rx(T), & r \in (0, 1], \end{cases}$$
(4.1)

where $\sigma_u(t) = f(t, u(t), u(\alpha(t))) + M(t)u(t) + N(t)u(\alpha(t))$ for $u \in C(J, \mathbb{R})$, $y_0 \le u \le z_0$ on J. Note that, in view of Theorem 2, this problem has exactly one solution. Define operator $A: [y_0, z_0] \to [y_0, z_0]$ as $u \mapsto v$, where Au = v is the unique solution of (4.1).

First we show that A is well defined. Put $w = y_0 - v$. If $y_0(0) \le ry_0(T)$ then we have

$$w(0) = y_0(0) - v(0) \le ry_0(T) - rv(T) = rw(T)$$

and

$$\begin{split} w'(t) + M(t)w(t) + N(t)w(\alpha(t)) \\ &= y'_0(t) + M(t)y_0(t) + N(t)y_0(\alpha(t)) \\ &- v'(t) - M(t)v(t) + N(t)v(\alpha(t)) \\ &\leq f(t, y_0(y), y_0(\alpha(t))) - f(t, u(t), u(\alpha(t))) \\ &+ M(t)[y_0(t) - u(t)] + N(t)[y_0(\alpha(t)) - u(\alpha(t))] \\ &\leq M(t)[u(t) - y_0(t)] + N(t)[u(\alpha(t)) - y_0(\alpha(t))] \\ &+ M(t)[y_0(t) - u(t)] + N(t)[y_0(\alpha(t)) - u(\alpha(t))] \\ &= 0. \end{split}$$

96

By Theorem 1, we have $w(t) \le 0, t \in J$. Similarly if $y_0(0) > ry_0(T)$ then

$$w(0) > rw(T)$$

and

$$w'(t) + M(t)w(t) + N(t)w(\alpha(t)) + \frac{M(t)t + N(t)\alpha(t) + 1}{rT} [w(0) - rw(T)] \le 0.$$

Hence $w \le 0$ on J. Analogously, we can show that $v \le z_0$. Thus A is well defined.

Now we prove that A is monotone increasing. Put $w = v_1 - v_2$, where $v_1 = Au_1$, $v_2 = Au_2$ and $u_1 \le u_2$. We have w(0) = rw(T) and

$$w'(t) + M(t)w(t) + N(t)w(\alpha(t)) = f(t, u_1(t), u_1(\alpha(t))) + M(t)u_1(t) + N(t)u_1(\alpha(t)) - f(t, u_2(t), u_2(\alpha(t))) - M(t)u_2(t) - N(t)u_2(\alpha(t)) \leq M(t)[u_2(t) - u_1(t)] + N(t)[u_2(\alpha(t)) - u_1(\alpha(t))] + M(t)[u_1(t) - u_2(t)] + N(t)[u_1(\alpha(t)) - u_2(\alpha(t))] = 0.$$

In view of Theorem 1, $v_1 \le v_2$. Since v_1 and v_2 were arbitrary, A is monotone increasing.

Define the sequences $\{y_n\}$ and $\{z_n\}$ as follows:

$$y_{n+1} = Ay_n, \qquad z_{n+1} = Az_n, \quad n \ge 0.$$

Using the mathematical induction we can show that these sequences have the properties

$$y_0 \le y_1 \le \dots \le y_n \le z_n \le \dots \le z_1 \le z_0, \quad n \ge 0,$$

because A is monotone increasing. Thus the sequence $\{y_n\}$ is increasing and $y_n \le z_0$, $n \ge 0$. Hence, there exists $\lim_{n\to\infty} y_n(t) = y(t)$ for $t \in J$. The convergence is uniform since $\{y_n\}$ is bounded in $C^1(J, \mathbb{R})$. Similarly $\{z_n\} \downarrow z$ uniformly on J. It is easy to see that y and z are extremal solutions of (1.1).

Example 1. Let us consider the problem

$$\begin{cases} x'(t) = e^{-x(t)} - tx\left(\frac{1}{3}t\right) - \frac{1}{2}, & t \in [0, 1], \\ x(0) = \frac{1}{3}x(1). \end{cases}$$

Put $y_0 = 0$ and $z_0 = 1$. All assumptions of Theorem 3 are satisfied with M(t) = 1 and N(t) = t. Thus there exist monotone sequences converging uniformly to the extremal solutions of above problem in the sector $[0, 1]_*$.

A. DYKI

REFERENCES

- T. Jankowski, "On delay differential equations with nonlinear boundary conditions," *Bound. Value Probl.*, no. 2, pp. 201–214, 2005.
- [2] G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, *Monotone iterative techniques for nonlinear differential equations*, ser. Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, 27. Boston, MA: Pitman (Advanced Publishing Program), 1985.
- [3] J. J. Nieto and R. Rodríguez-López, "Remarks on periodic boundary value problems for functional differential equations," J. Comput. Appl. Math., vol. 158, no. 2, pp. 339–353, 2003.

Author's address

A. Dyki

Gdańsk University of Technology, Department of Differential Equations, 11/12 G. Narutowicz St., 80-952 Gdańsk, Poland

E-mail address: adyki@wp.pl