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1. INTRODUCTION

Let us consider the problem

X(t) = f(t.x(0).x(a(), te]:=[0T], L1)

x(0)=rx(T), re(0,1], '
where f € C(J xR x R, R) and the function o € C(J, J) is such that «(¢) < ¢ for all
telJ.

In this paper we extend some results of paper [3] concerning the case where r =
1 and f satisfies a left-sided Lipshitz condition with suitable constants. We show
the applicability of the monotone iterative method in obtaining monotone sequences
approximating the extremal solutions of (1.1). We refer, e. g., to [2] for details about
the monotone iterative method. Note that we use more general definition of lower
and upper solution than the classical definition used, e. g., in [1].

We start by proving a comparison theorem used in the sequel. In Section 3, we
prove the existence of a solution of the linear problem associated to (1.1). Finally, we
prove the existence of monotone sequences approximating the extremal solutions of
problem (1.1).
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2. COMPARISON RESULTS

Lemma 1 ([1]). Suppose that « € C(J,J), a(t) <t on J, M € C(J,R), q €
C(J,R) is such that

q'(t) = —M()q(t)—N(t)q(a(r)), teJ,  ¢(0)=<0,

and
T t
/ N(t)eleay M©&ds gy < 1
0
where N is a nonnegative function integrable on J. Then q(t) <0 on J.

Theorem 1. Assume that r € (0, 1] and

(1) xe CYJ,R), a e C(J,J), at)<t,teJ, M € C(J,R), N is integrable
onJ, M(t)>0,teJand N(t)>0,t € J,

Q) X))+ M@)x(@t)+N@t)x(a()) <0,t € J,if x(0) <rx(T),

3) X'(t) + M(1)x (1) + N()x ((r)) + MOENOOFL [ (0) —rx(T)] <0, 1 €
J, ifx(0) > rx(T),

t
@ [ N@)ela MOds gy < 1,
Then x(t) <0,t € J.

Proof. In case (1), we assume that x > 0on J and x # 0. Then x'(z) <0,7 € J, so
x is nonincreasing and x(¢) < x(0) t € J so x(0) > x(T'). On the other hand, we have
x(0) <rx(T)<x(T). Thus x(0) = x(T') and x is a constant function, x(¢) = C > 0.
Sox’=0and [M(t)+ N(t)]C <0. Hence C =0 and finally x(¢) =0,¢ € J. Itis
a contradiction.

Thus we can consider that x has some negative value. Note that if x(0) < 0, then
x(t) <0,t € J,by Lemma 1. Assume that x(0) > 0, then x(7") > 0. Let us consider
the function v defined by

v(t) = elo M©dsy (), te .

T
We have v(0) = x(0) >0 and v(T) = elo M(s)ds . (T') > 0. Since x has some nega-
tive value, there exists 7« € (0, T) such that

v(t) zéﬁ}}]”()

Note that
V(1) = el MOs prpyx (1) + o MOEs (1) < N (1)elair MOy (4 (1)).

The integration of this from 74 to T yields

T 15
—v(ty) < v(T)—v(tx) < — / N(t)eley ME)s (o (1)) dt
Ix



APPROXIMATION OF SOLUTIONS OF BVP FOR DELAY DE 93

T
<—v(te) | N@)ele M dsgr < (1),
e

So —v(tx) < —v(tx), which is a contradiction. Thus x(0) < 0 and, in view of
Lemma 1, we get x(t) <0,t € J.
In case (3), let us consider the function

w(t) =x(@)+ % [x(0)—rx(T)], tel.
It yields that w(0) = rw(T). Moreover,
w'(1) + M(O)w () + NOw(a@)) = x"(t) + M(#)x () + N(#)x (e (1))
. M)t +N@a(t)+1

rT
This is included in case (2). Thus w(¢) <0, ¢ € J and finally x(¢) <0,t € J. OJ

[x(0) —rx(T)] < 0.

3. LINEAR PROBLEM

Now we are going to prove the existence of solution of linear problem associated
to (1.1). We will need that result in succeeding section.

Theorem 2. Let 0 € C(J,R), « € C(J,J), a(t) <t,t € J, M,N € C(J,R),
M@#)>0,teJ, Nt)=0,t e J and
xX'(t)+M(@)x(t)+N@)x(a(t)) =o(t), tel,

x(0)=rx(T), re(0,1]. G-

Moreover, assume that there exist functions yo,zo € C1(J,R) such that
(1) yo<zoonl,

(2)
Vo) +M(t)yo(r) + N(t)yo(a(r)) <o(t)—a(t), telJ,
2o(t) + M(0)zo(1) + N(0)zo(a(1)) = o (1) —b(t), t€J,
where
o) = {9‘4 e if y0(0) < ryo(T).
L [Y0(0) —ryo(T)] if yo(0) > ryo(T),
and
bt = {9‘4 N if20(0) = rzo(T),
T [20(0) —rzo(T)] ifz0(0) <rzo(T).

@) [T N(@)eler M©Ods gy < 1.

Then there exists, in sector [yo,Zo]x = {w € C1(J,R) : yo(t) <w(t) <zo(t). t € J},
a unique solution of (3.1).
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Proof. First we prove the uniqueness of a solution. Let x;, x5 be solutions of
(3.1). Put vy = x1 —x» and vo = x, —x1. Then

v1(0) = x1(0) = x2(0) = r[x1(T) = x2(T)] = rvi(T),
V() + M)y (t) + N(@)vi(a(t)) =o(t)—o(t) =0, teJ,
and
v2(0) = rva(T),
V5 (1) + M(t)va (1) + N(t)va(a(t)) =0, telJ.

In view of Theorem 1, we have v; <0 and v, < 0. Hence x; = x».
Now we show that if x is a solution of (3.1), then yg < x < zg. Put w; = yo—x
and wy = x —Z¢o. Then we have

wi (@) +M(Owi (1) + NOwi (@) <o) —o@) =0 if wi(0) <rwi(T),

w) (1) + M(t)wy (1) +N(@)w () + M)t + flfy(f)a(l) +1

_ M(I)Z + ]ZY(f)a(t) +1 [y()(O) —ryO(T)]

o)+ M(t)t + ];];t)a(t) +1

=0 ifw1(0)>rwy(T),

[w1(0) —rwy(T)]

<o(t)

[Y0(0) —ryo(T)]

and
wa (1) + MO wa(t) + N()wa(a(t)) <0 if wy(0) < rwx(T)
w5 () + M) wa(t) + N(t)wa(a(r))
M@)yt+N@)a)+1
+
rT

In view of Theorem 1, w; < 0,w; < 0 on J. It shows that yo(¢) < x(t) < zo(?),
relJ.

Finally, we prove that problem (3.1) has the solution x. Let us consider two func-
tions

[w2(0) —rwa(T)] <0 if wa(0) > rwy(T).

Folr) = 1700 if y0(0) < ryo(T),
yo(1) + -5 [0(0) —ryo(T)] if yo(0) > ryo(T),

and
Zo(6) = {Zo(t) if 20(0) = rzo(T),
zo(t) + 757 [20(0) —rzo(T)]  if zo(0) < rzo(T).
We have yo(t) < yo(t) and Zo(¢) < zo(?), t € J. Moreover, y9(0) < ryo(T) and
Z0(0) = rzo(T). Note that if yo(0) > ryo(T), then yo(0) = ryo(T) and if z¢(0) <
rzo(T), then Zo(0) = rzo(T).
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We show that yo and Z are classical lower and upper solutions, respectively, of
(3.1) and that yg < Zo. We have

Vo) +M(1)yo(r) + N(t)yo(a(r)) = yo(r) + M(1)yo(r) + N (1) yo(a(2))
<o), ted, ifyo(0) <ryo(T)

and
7o) + M(O)Fo () +N (1) Fo(@(1))

=Yo(t) + M(1)yo(1) + N(1)yo(e(1))
§ MOEMOAOTL 10— ryo(r)]

<o)~ TOEIDAOTL 10— ryo(r)
4 OEENOOL Ly 0) o)

=o(t), teJ, if yo(0) > ryo(T).

Similarly,

Zo(t) + M()Zo () + N(1)Zo(x(t)) = o (2), t€J.

Thus yy is a classical lower and Zg a classical upper solution of (3.1).
Now consider the function w = yo —Z¢ € C'(J,R). We have

w' (t) +M@w(t)+NOw(a()) <0, tel

and w(0) < 0. Lemma 1 yields w < 0 on J, hence yg < Zp.
Setting

Y1) =0 () = M) Fn+1(t) = NO)n+1(a(t)), teJ,
yn+l(0) = ryn(T),

and

Zn+1(0) = rzp(T),
and arguing similarly to the proof of [1, Theorem 3.1], we show that there exists
a solution of (3.1). Il

{ Zp1(O) =0(®) =M@ Zny1(0) = N@OZns1(a (), teJ,

4. APPROXIMATION OF EXTREMAL SOLUTIONS OF (1.1)

In this section we develop monotone iterative technique for (1.1).

Theorem 3. Let f € C(J xRxR,R), . € C(J,J), a(t) <t,teJ, M,N €
C(J,R), M(t)>0,teJ, N(t)>0,t e J. Moreover, assume that there exist func-
tions yo,Z0 € CI(J, R) such that

(1) yo<zoonlJ,
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(2) yo, zo are lower and upper solutions of (1.1), respectively, i. e.,
Yo(t) = f(t,y0(t), yo(e(t))) —a(t), tel,
2o(t) = f(t.z0(t). z0(@() =b(t), teJ,
where

a(t) = 1° if y0(0) < ryo(T),
M(t)t+1:’7(f)a(t)+1 o) = ryo(T)]  if ¥o(0) > ryo(T).

and

bty =15 i 20(0) > r2o(T),
M(t)t+1;f¥)ot(t)+1 [20(0)—rzo(T)] ifz0(0) < rzo(T),

(3) [t u,v)— f(r.u,v) < M@)[u—u]+ N@)[v—v], if yo(t) <u <u < zo(),
yo(@() < u < < Zo(a(1),
@ ] N@)efar MOds gy < 1.
Then there exist monotone sequences {yn} 1 v and {zn} | z uniformly on J with
Yo < ¥n < 2Zn < 2o for everyn € N and y,z € C'(J,R). Functions y and z are
extremal solutions of (1.1).

Proof. Let us consider the problem

X' () +M@@)x(t)+ N@)x(a(t)) =0y (t), teld,
x(0)=rx(T), re(,1],

where 0y, (t) = f(t,u(t),u(x()))+ M@)u@)+ N@)u(a(t)) foru e C(J,R), yo <
u < zp on J. Note that, in view of Theorem 2, this problem has exactly one solution.
Define operator A:[yo,Zo] = [Vo,Zo] as u — v, where Au = v is the unique solution
of (4.1).

First we show that A4 is well defined. Put w = yg —v. If yo(0) < ryo(T) then we
have

4.1

w(0) = y0(0) —v(0) <ryo(T)—rv(T) =rw(T)
and
w'(t) + M(H)w(t)+ N(@)w(a(t))

=yo(t) + M(0)yo(t) + N(t)yo(a (1))
—v'(t) =M @)v(t) + N(t)v(a())

< f(t,y0(»), yo(a (1)) — f(z,u(t),u(a(r)))
+ M(@)[yo(t) —u(®)] + N(1)[yo(a(t)) —u(e(r))]

<M@®)[u(@)—yo()] + N(®)[u(a(r)) — yole(r))]
+ M(@)[yo(t) —u(®)] + N(1)[yo(a(t)) —u(e(r))]

=0.
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By Theorem 1, we have w(¢) <0, ¢t € J. Similarly if yo(0) > ryo(7T) then
w(0) > rw(T)
and
M)t +N@Oa(t)+1
rT
Hence w < 0 on J. Analogously, we can show that v < zg. Thus A is well defined.
Now we prove that A is monotone increasing. Put w = v; — vy, where v = Au;,
vy = Aup and u; < u,. We have w(0) = rw(T) and
w'(t) + M()w(t)+ N(Ow(a(r))
=f @ ur (@), ur(e@))) + M@)ui (1) + N@)ui(a())
— [t uz(0),uz(a () — M(D)ua(t) — N(@)uz(a(?))
<M @)[uz(2) —u1(0)] + N(@)[uz(a(r) —ui(a())]
+ M @)[u1 () —u2(0)] + N(@)[ur(a(r)) —uz(a(?))]
=0.

w' (1) + M(@)w(t) + N()w(a(r)) + [w(0)—rw(T)] <0.

In view of Theorem 1, v; < vy. Since v{ and v, were arbitrary, A is monotone
increasing.
Define the sequences {y,} and {z,} as follows:

Yn+1 =Ay;1, Zn+1 = Az,, n=>0.

Using the mathematical induction we can show that these sequences have the prop-
erties
Yo<y1=<-=ypn<2Zpn<--<21=<20, n=0,

because A is monotone increasing. Thus the sequence {y, } is increasing and y, < zg,
n > 0. Hence, there exists lim,— o yn(¢) = y(¢) for t € J. The convergence is
uniform since {y,} is bounded in C(J,R). Similarly {z,,} | z uniformly on J. It is
easy to see that y and z are extremal solutions of (1.1). O

Example 1. Let us consider the problem
x'(1)=e ¥ _1x L L [0,1]
3 2 b 9 b

x(0) = %x(l).

Put yo = 0 and zo = 1. All assumptions of Theorem 3 are satisfied with M(¢) = 1
and N(¢) =t. Thus there exist monotone sequences converging uniformly to the
extremal solutions of above problem in the sector [0, 1].
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