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1. INTRODUCTION

Let us consider the problem(
x0.t/D f .t;x.t/;x.˛.t///; t 2 J WD Œ0;T �;

x.0/D rx.T /; r 2 .0;1�;
(1.1)

where f 2 C.J �R�R;R/ and the function ˛ 2 C.J;J / is such that ˛.t/� t for all
t 2 J .

In this paper we extend some results of paper [3] concerning the case where r D
1 and f satisfies a left-sided Lipshitz condition with suitable constants. We show
the applicability of the monotone iterative method in obtaining monotone sequences
approximating the extremal solutions of (1.1). We refer, e. g., to [2] for details about
the monotone iterative method. Note that we use more general definition of lower
and upper solution than the classical definition used, e. g., in [1].

We start by proving a comparison theorem used in the sequel. In Section 3, we
prove the existence of a solution of the linear problem associated to (1.1). Finally, we
prove the existence of monotone sequences approximating the extremal solutions of
problem (1.1).
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2. COMPARISON RESULTS

Lemma 1 ([1]). Suppose that ˛ 2 C.J;J /, ˛.t/ � t on J , M 2 C.J;R/, q 2
C 1.J;R/ is such that

q0.t/� �M.t/q.t/�N.t/q.˛.t//; t 2 J; q.0/� 0;

and Z T

0

N.t/e
R t
˛.t/M.s/dsdt � 1;

where N is a nonnegative function integrable on J . Then q.t/� 0 on J .

Theorem 1. Assume that r 2 .0;1� and
(1) x 2 C 1.J;R/, ˛ 2 C.J;J /, ˛.t/ � t , t 2 J , M 2 C.J;R/, N is integrable

on J , M.t/ > 0, t 2 J and N.t/� 0, t 2 J ,
(2) x0.t/CM.t/x.t/CN.t/x.˛.t//� 0, t 2 J , if x.0/� rx.T /,
(3) x0.t/CM.t/x.t/CN.t/x.˛.t//CM.t/tCN.t/˛.t/C1

rT
Œx.0/�rx.T /�� 0, t 2

J , if x.0/ > rx.T /,
(4)

R T
0 N.t/e

R t
˛.t/M.s/dsdt � 1.

Then x.t/� 0, t 2 J .

Proof. In case (1), we assume that x � 0 on J and x 6� 0. Then x0.t/� 0, t 2 J , so
x is nonincreasing and x.t/� x.0/ t 2 J so x.0/� x.T /. On the other hand, we have
x.0/� rx.T /� x.T /. Thus x.0/D x.T / and x is a constant function, x.t/DC >0.
So x0 � 0 and ŒM.t/CN.t/�C � 0. Hence C D 0 and finally x.t/D 0, t 2 J . It is
a contradiction.

Thus we can consider that x has some negative value. Note that if x.0/ � 0, then
x.t/� 0, t 2 J , by Lemma 1. Assume that x.0/ > 0, then x.T / > 0. Let us consider
the function v defined by

v.t/D e
R t
0M.s/dsx.t/; t 2 J:

We have v.0/D x.0/ > 0 and v.T /D e
R T
0 M.s/dsx.T / > 0. Since x has some nega-

tive value, there exists t� 2 .0;T / such that

v.t�/D min
t2Œ0;T �

v.t/ < 0:

Note that

v0.t/D e
R t
0M.s/dsM.t/x.t/C e

R t
0M.s/dsx0.t/� �N.t/e

R t
˛.t/M.s/dsv.˛.t//:

The integration of this from t� to T yields

�v.t�/ < v.T /�v.t�/� �

Z T

t�

N.t/e
R t
˛.t/M.s/dsv.˛.t//dt
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� �v.t�/

Z T

t�

N.t/e
R t
˛.t/M.s/ dsdt � �v.t�/:

So �v.t�/ < �v.t�/, which is a contradiction. Thus x.0/ � 0 and, in view of
Lemma 1, we get x.t/� 0, t 2 J .

In case (3), let us consider the function

w.t/D x.t/C
t

rT
Œx.0/� rx.T /�; t 2 J:

It yields that w.0/D rw.T /. Moreover,

w0.t/CM.t/w.t/CN.t/w.˛.t//D x0.t/CM.t/x.t/CN.t/x.˛.t//

C
M.t/tCN.t/˛.t/C1

rT
Œx.0/� rx.T /�� 0:

This is included in case (2). Thus w.t/� 0, t 2 J and finally x.t/� 0, t 2 J . �

3. LINEAR PROBLEM

Now we are going to prove the existence of solution of linear problem associated
to (1.1). We will need that result in succeeding section.

Theorem 2. Let � 2 C.J;R/, ˛ 2 C.J;J /, ˛.t/ � t , t 2 J , M;N 2 C.J;R/,
M.t/ > 0, t 2 J , N.t/� 0, t 2 J and(

x0.t/CM.t/x.t/CN.t/x.˛.t//D �.t/; t 2 J;

x.0/D rx.T /; r 2 .0;1�:
(3.1)

Moreover, assume that there exist functions y0;´0 2 C 1.J;R/ such that
(1) y0 � ´0 on J ,
(2)

y00.t/CM.t/y0.t/CN.t/y0.˛.t//� �.t/�a.t/; t 2 J;

´00.t/CM.t/´0.t/CN.t/´0.˛.t//� �.t/�b.t/; t 2 J;

where

a.t/D

(
0 if y0.0/� ry0.T /;
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /� if y0.0/ > ry0.T /;

and

b.t/D

(
0 if ´0.0/� r´0.T /;
M.t/tCN.t/˛.t/C1

rT
Œ´0.0/� r´0.T /� if ´0.0/ < r´0.T /:

(3)
R T
0 N.t/e

R t
˛.t/M.s/dsdt � 1.

Then there exists, in sector Œy0;´0��Dfw 2C 1.J;R/ W y0.t/�w.t/� ´0.t/; t 2 J g,
a unique solution of (3.1).
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Proof. First we prove the uniqueness of a solution. Let x1, x2 be solutions of
(3.1). Put v1 D x1�x2 and v2 D x2�x1. Then

v1.0/D x1.0/�x2.0/D rŒx1.T /�x2.T /�D rv1.T /;

v01.t/CM.t/v1.t/CN.t/v1.˛.t//D �.t/��.t/D 0; t 2 J;

and

v2.0/D rv2.T /;

v02.t/CM.t/v2.t/CN.t/v2.˛.t//D 0; t 2 J:

In view of Theorem 1, we have v1 � 0 and v2 � 0. Hence x1 D x2.
Now we show that if x is a solution of (3.1), then y0 � x � ´0. Put w1 D y0�x

and w2 D x�´0. Then we have

w01.t/CM.t/w1.t/CN.t/w1.˛.t//� �.t/��.t/D 0 if w1.0/� rw1.T /;

w01.t/CM.t/w1.t/CN.t/w1.˛.t//C
M.t/tCN.t/˛.t/C1

rT
Œw1.0/� rw1.T /�

��.t/�
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /�

��.t/C
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /�

D0 if w1.0/ > rw1.T /;

and

w02.t/CM.t/w2.t/CN.t/w2.˛.t//� 0 if w2.0/� rw2.T /

w02.t/CM.t/w2.t/CN.t/w2.˛.t//

C
M.t/tCN.t/˛.t/C1

rT
Œw2.0/� rw2.T /�� 0 if w2.0/ > rw2.T /:

In view of Theorem 1, w1 � 0;w2 � 0 on J . It shows that y0.t/ � x.t/ � ´0.t/,
t 2 J .

Finally, we prove that problem (3.1) has the solution x. Let us consider two func-
tions

xy0.t/D

(
y0.t/ if y0.0/� ry0.T /;
y0.t/C

t
rT
Œy0.0/� ry0.T /� if y0.0/ > ry0.T /;

and

x́0.t/D

(
´0.t/ if ´0.0/� r´0.T /;
´0.t/C

t
rT
Œ´0.0/� r´0.T /� if ´0.0/ < r´0.T /:

We have y0.t/ � xy0.t/ and x́0.t/ � ´0.t/, t 2 J . Moreover, xy0.0/ � r xy0.T / and
x́0.0/ � r x́0.T /. Note that if y0.0/ > ry0.T /, then xy0.0/D r xy0.T / and if ´0.0/ <
r´0.T /, then x́0.0/D r x́0.T /.
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We show that xy0 and x́0 are classical lower and upper solutions, respectively, of
(3.1) and that xy0 � x́0. We have

xy00.t/CM.t/xy0.t/CN.t/xy0.˛.t//D y
0
0.t/CM.t/y0.t/CN.t/y0.˛.t//

� �.t/; t 2 J; if y0.0/� ry0.T /

and

xy00.t/CM.t/xy0.t/CN.t/xy0.˛.t//

Dy00.t/CM.t/y0.t/CN.t/y0.˛.t//

C
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /�

��.t/�
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /�

C
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /�

D�.t/; t 2 J; if y0.0/ > ry0.T /:

Similarly,

x́
0
0.t/CM.t/x́0.t/CN.t/x́0.˛.t//� �.t/; t 2 J:

Thus xy0 is a classical lower and x́0 a classical upper solution of (3.1).
Now consider the function w D xy0�x́0 2 C 1.J;R/. We have

w0.t/CM.t/w.t/CN.t/w.˛.t//� 0; t 2 J

and w.0/� 0. Lemma 1 yields w � 0 on J , hence xy0 � x́0.
Setting (

xy0nC1.t/D �.t/�M.t/xynC1.t/�N.t/xynC1.˛.t//; t 2 J;

xynC1.0/D r xyn.T /;

and (
x́
0
nC1.t/D �.t/�M.t/x́nC1.t/�N.t/x́nC1.˛.t//; t 2 J;

x́nC1.0/D r x́n.T /;

and arguing similarly to the proof of [1, Theorem 3.1], we show that there exists
a solution of (3.1). �

4. APPROXIMATION OF EXTREMAL SOLUTIONS OF (1.1)

In this section we develop monotone iterative technique for (1.1).

Theorem 3. Let f 2 C.J �R�R;R/, ˛ 2 C.J;J /, ˛.t/ � t , t 2 J , M;N 2
C.J;R/, M.t/ > 0, t 2 J , N.t/ � 0, t 2 J . Moreover, assume that there exist func-
tions y0;´0 2 C 1.J;R/ such that

(1) y0 � ´0 on J ,
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(2) y0, ´0 are lower and upper solutions of (1.1), respectively, i. e.,

y00.t/� f .t;y0.t/;y0.˛.t///�a.t/; t 2 J;

´00.t/� f .t;´0.t/;´0.˛.t///�b.t/; t 2 J;

where

a.t/D

(
0 if y0.0/� ry0.T /;
M.t/tCN.t/˛.t/C1

rT
Œy0.0/� ry0.T /� if y0.0/ > ry0.T /;

and

b.t/D

(
0 if ´0.0/� r´0.T /;
M.t/tCN.t/˛.t/C1

rT
Œ´0.0/� r´0.T /� if ´0.0/ < r´0.T /;

(3) f .t;u;v/�f .t; xu;xv/�M.t/Œxu�u�CN.t/Œxv�v�, if y0.t/� u� xu� ´0.t/,
y0.˛.t//� u� Nu� ´0.˛.t//,

(4)
R T
0 N.t/e

R t
˛.t/M.s/dsdt � 1.

Then there exist monotone sequences fyng " y and f´ng # ´ uniformly on J with
y0 � yn � ´n � ´0 for every n 2 N and y;´ 2 C 1.J;R/. Functions y and ´ are
extremal solutions of (1.1).

Proof. Let us consider the problem(
x0.t/CM.t/x.t/CN.t/x.˛.t//D �u.t/; t 2 J;

x.0/D rx.T /; r 2 .0;1�;
(4.1)

where �u.t/D f .t;u.t/;u.˛.t///CM.t/u.t/CN.t/u.˛.t// for u 2 C.J;R/, y0 �
u� ´0 on J . Note that, in view of Theorem 2, this problem has exactly one solution.
Define operator AW Œy0;´0�! Œy0;´0� as u 7! v, where AuD v is the unique solution
of (4.1).

First we show that A is well defined. Put w D y0�v. If y0.0/ � ry0.T / then we
have

w.0/D y0.0/�v.0/� ry0.T /� rv.T /D rw.T /

and

w0.t/CM.t/w.t/CN.t/w.˛.t//

Dy00.t/CM.t/y0.t/CN.t/y0.˛.t//

�v0.t/�M.t/v.t/CN.t/v.˛.t//

�f .t;y0.y/;y0.˛.t///�f .t;u.t/;u.˛.t///

CM.t/Œy0.t/�u.t/�CN.t/Œy0.˛.t//�u.˛.t//�

�M.t/Œu.t/�y0.t/�CN.t/Œu.˛.t//�y0.˛.t//�

CM.t/Œy0.t/�u.t/�CN.t/Œy0.˛.t//�u.˛.t//�

D0:
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By Theorem 1, we have w.t/� 0, t 2 J . Similarly if y0.0/ > ry0.T / then

w.0/ > rw.T /

and

w0.t/CM.t/w.t/CN.t/w.˛.t//C
M.t/tCN.t/˛.t/C1

rT
Œw.0/� rw.T /�� 0:

Hence w � 0 on J . Analogously, we can show that v � ´0. Thus A is well defined.
Now we prove that A is monotone increasing. Put w D v1�v2, where v1 D Au1,

v2 D Au2 and u1 � u2. We have w.0/D rw.T / and

w0.t/CM.t/w.t/CN.t/w.˛.t//

Df .t;u1.t/;u1.˛.t///CM.t/u1.t/CN.t/u1.˛.t//

�f .t;u2.t/;u2.˛.t///�M.t/u2.t/�N.t/u2.˛.t//

�M.t/Œu2.t/�u1.t/�CN.t/Œu2.˛.t//�u1.˛.t//�

CM.t/Œu1.t/�u2.t/�CN.t/Œu1.˛.t//�u2.˛.t//�

D0:

In view of Theorem 1, v1 � v2. Since v1 and v2 were arbitrary, A is monotone
increasing.

Define the sequences fyng and f´ng as follows:

ynC1 D Ayn; ´nC1 D A´n; n� 0:

Using the mathematical induction we can show that these sequences have the prop-
erties

y0 � y1 � � � � � yn � ´n � � � � � ´1 � ´0; n� 0;

becauseA is monotone increasing. Thus the sequence fyng is increasing and yn� ´0,
n � 0. Hence, there exists limn!1yn.t/ D y.t/ for t 2 J . The convergence is
uniform since fyng is bounded in C 1.J;R/. Similarly f´ng # ´ uniformly on J . It is
easy to see that y and ´ are extremal solutions of (1.1). �

Example 1. Let us consider the problem8̂̂<̂
:̂
x0.t/D e�x.t/� tx

�
1

3
t

�
�
1

2
; t 2 Œ0;1�;

x.0/D
1

3
x.1/:

Put y0 D 0 and ´0 D 1. All assumptions of Theorem 3 are satisfied with M.t/D 1
and N.t/ D t . Thus there exist monotone sequences converging uniformly to the
extremal solutions of above problem in the sector Œ0;1��.
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