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Abstract. In this paper, we will consider the coupled fixed point problem for single-valued op-
erators satisfying a symmetric contraction condition with respect to maximum. An application
to a periodic boundary value problem illustrates the results. The study of a coupled coincidence
problem is also suggested.
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1. INTRODUCTION

An interesting extension of the Banach’s contraction principle was given, in the
framework of so-called b-metric spaces (or quasimetric spaces), by S. Czerwik, see
[5]. For some previous results concerning the topology of b-metric spaces see also
I.A. Bakhtin [1], L.M. Blumenthal [4], J. Heinonen [8] and the references therein.

The concept of coupled fixed point and the study of coupled fixed point prob-
lems appeared, for the first time, in some papers of Opoitsev (see [11]), and then in
the paper-source of D. Guo and V. Lakshmikantham [7], where the monotone itera-
tion technique is exploited. Then, T. Gnana Bhaskar and V. Lakshmikantham in [6]
considered the contraction type method and gave important abstract results and nice
applications to periodic boundary value problems. For other contributions, see [10],
[15], [16] and the references therein.
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If .X;d/ is a metric space and T W X �X ! X is an operator, then, by definition,
a coupled fixed point for T is a pair .x�;y�/ 2X �X satisfying�

x� D T .x�;y�/

y� D T .y�;x�/ :
(1.1)

We will denote by CF ix.T / the coupled fixed point set for T .
Some nice generalizations of the results given in [6] were presented by V. Berinde

in [3], where a symmetric contraction type condition on the operator T is assumed.
See also [12] for a similar approach, but using a different metric.

The aim of this paper is to present, in the context of b-metric spaces, some coupled
fixed point theorems for another type of symmetric contractions with respect to the
maximum. An application to a boundary value problem, via a system of integral
equations will illustrate the theory.

2. PRELIMINARIES

Throughout this paper N stands for the set of natural numbers, while N� for the
set of natural numbers except 0.

We will recall now the definition of a b-metric space.

Definition 1 (Bakhtin [1], Czerwik [5]). Let X be a nonempty set and let s � 1 be
a given real number. A functional d W X �X ! RC is said to be a b-metric if all the
axioms of the metric are satisfied, with the following exception:

d.x;´/� sŒd.x;y/Cd.y;´/�; for all x;y;´ 2X:

A pair .X;d/ with the above properties is called a b-metric space.
Some examples of b-metric spaces are given in [2], [5], ...
It is worth to mention that the b-metric on a nonempty set X need not be con-

tinuous. Moreover, open balls in such spaces need not be open sets in the topology
induced by d . The convergence of sequences is defined in the classical way, i.e.,
.xn/n2N �X converges to x 2X if .d.xn;x//n2N! 0 as n!1. In this context, a
set Y �X is said to be closed if for any sequence .xn/n2N in Y which is convergent
to some x, we have that x 2 Y .

Lemma 1. Let .X;d/ be a b-metric space with constant s � 1. Then, the func-
tional Qd W .X �X/� .X �X/! RC defined by

Qd..x;y/; .u;v// WDmaxfd.x;u/;d.y;v/g

is a b-metric on X �X with the same constant s � 1.

Proof. We will only establish the third axiom of the b-metric. We have to prove
that, for every .x;y/; .u;v/; .a;b// 2X �X , we have:

Qd..x;y/; .u;v//� s
�
Qd..x;y/; .a;b//C Qd..a;b/; .u;v//

�
;
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which means that

maxfd.x;u/;d.y;v/g � s .maxfd.x;a/;d.y;b/gCmaxfd.a;u/;d.b;v/g/ :

Since d is a b-metric on X , we know that

d.x;u/� s.d.x;a/Cd.a;u// and d.y;v/� s.d.y;b/Cd.b;v//:

Thus, using the inequality between positive real numbers

maxf˛Cˇ;C ıg �maxf˛;gCmaxfˇ;ıg;

we immediately get the conclusion. �

We also mention two continuity concepts. Let .X;d/ be a b-metric space. Then f
is called:

a) continuous on X if for every x 2 X and any sequence .xn/n2N in X which
converges to x in .X;d/, it follows that the sequence .f .xn//n2N converges to f .x/
in .X;d/;

b) with closed graph if for every sequence .xn/n2N in X which converges to x
in .X;d/ and the sequence .f .xn//n2N converges to y in .X;d/ as n!1, we have
that y D f .x/.

If X is a nonempty set and f WX!X , then we denote F ix.f / WD fx 2X W x D
f .x/g; the fixed point set for f and by Graph.f / WD f.x;f .x// j x 2Xg; the graph
of f .

3. EXISTENCE AND UNIQUENESS RESULTS FOR THE COUPLED FIXED POINT
PROBLEM WITH MAX-SYMMETRIC CONTRACTION TYPE OPERATORS

We will present first a coincidence point result which is an extension to the case
of b-metric spaces and to a coincidence point problem of a well known fixed point
theorem given by Ran and Reurings [14].

Theorem 1. Let .X;d/ be a b-metric space with constant �� 1, Y be a nonempty
set and ”�” be a partial order relation on Y . Let � be a b-metric on Y with constant
s � 1 and g; t WX ! Y be two operators which have closed graph. Suppose that:

(i) t .X/� g.X/;
(ii) .t.X/;�/ is a complete subset of Y ;
(i) there exists k 2 .0; 1

s
/ such that d.t.x/; t.y// � kd.g.x/;g.y//;8x;y 2

X with g.x/� g.y/;
(ii) there is x0 2X such that g.x0/ 2 t .X/ and g.x0/� t .x0/;
(iii) t is increasing wit respect to g, i.e.,

x1;x2 2X and g.x1/� g.x2/) t .x1/� t .x2/:

Then, there exists x� 2 X and y� 2 t .X/ such that g.x�/ D t .x�/ D y� and,
moreover, the sequence .´n/n2N defined by g.´nC1/D t .´n/, starting from any point
´0 2X which is comparable to x0, converges to a coincidence point of t and g.
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Proof. Let us define f WD t ıg�1. Then, we have for f the following properties:
1) f is a single-valued operator on t .X/;
2) f W t .X/! t .X/;
3) f has closed graph;
3) �.f .y1/;f .y2//� k�.y1;y2/, for all y1;y2 2 t .X/ with y1 � y2;
4) f is increasing on t .X/;
5) if y0 WD g.x0/, then y0 � .t ıg

�1/.y0/D f .y0/:

By Theorem 3.1 in [12], we obtain that F ix.f / ¤ ¿. Let y� 2 F ix.f /. Then
.t ı g�1/.y�/ D y�. Thus, if we denote x� WD g�1.y�/, then we have t .x�/ D
g.x�/ D y�, showing that x� is a coincidence point for t and g. Moreover, the
sequence ynC1D f .yn/ (where n2N), starting from y0 WD t .x0/ converges to y� as
n!1, while the sequence xn defined by g.xnC1/D t .xn/ (where n2N) converges
to x� as n!1. The final part of the conclusion follows from Theorem 3.1 in
[12]. �

Remark 1. Notice that, as in the fixed point equation case, the uniqueness of the
fixed point of f and global convergence of the successive approximations sequence
of f (and, as a consequence, that of the coincidence point) can be obtained adding
the hypotheses that g is an injection and every pair of elements of X has a lower
bound or an upper bound (or an equivalent assumption that for every x;y 2 X there
exists ´ 2X which is comparable to x and y).

Remark 2. The particular caseX D Y and g.x/D x, leads to Theorem 3.1 in [12].

We recall now the concept of mixed monotone operator.

Definition 2. Let .X;�/ a partially ordered set and T W X �X ! X: We say that
T has the mixed monotone property if T .�;y/ is monotone increasing for any y 2X
and T .x; �/ is monotone decreasing for any x 2X .

Let .X;�/ be a partially ordered set and d be a b-metric on X . Notice that we can
endow the product space X �X with the following partial order:

for .x;y/; .u;v/ 2X �X; we write .x;y/�P .u;v/, x � u;y � v:

Our first existence result for the coupled fixed point problem (1.1) is the following.

Theorem 2. Let .X;�/ be a partially ordered set and let d W X �X ! RC be a
complete b-metric on X with constant s � 1. Let T W X �X ! X be an operator
with closed graph which has the mixed monotone property on X �X . Assume that
the following conditions are satisfied:

(i) there exists k 2 .0; 1
s
/ such that

maxfd.T .x;y/;T .u;v//;d.T .y;x/;T .v;u//g � kmaxfd.x;u/;d.y;v/g; 8x � u;y � vI

(ii) there exist x0;y0 2X such that x0 � T .x0;y0/ and y0 � T .y0;x0/I
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Then, the following conclusions hold:
(a) there exists .x�;y�/ 2 X �X a solution of the coupled fixed point problem

(1.1), such that the sequences .xn/n2N; .yn/n2N in X defined, for n 2N, by�
xnC1 D T .xn;yn/

ynC1 D T .yn;xn/ ;
(3.1)

have the property that .xn/n2N ! x�, .yn/n2N ! y� as n!1. Moreover, for
every pair .x;y/ 2 X �X with x � x0 and y � y0 (or reversely), we have that
.T n.x;y//n2N converges to x� and .T n.y;x//n2N converges to y�.

(b) In particular, if the b-metric d is continuous, then the following estimation
holds

maxfd.T n.x0;y0/;x
�/;d.T n.y0;x0/;y

�/g �
skn

1� sk
�maxfd.x0;T .x0;y0//;d.y0;T .y0;x0//g;

for all n 2N�:

Proof. We denoteZ WDX�X . By (ii), we have that ´0 WD .x0;y0/�P .x1;y1/ WD

´1: If we define x2 WD T .x1;y1/ and y2 WD T .y1;x1/, then we get

x2 WD T .x1;y1/D T
2.x0;y0/ and y2 WD T .y1;x1/D T

2.y0;x0/:

With these notations, due to the mixed monotone property of T , we have that

x2 D T .x1;y1/� T .x0;y0/D x1 and y2 D T .y1;x1/� T .y0;x0/D y1;

which means that ´1 D .x1;y1/�P .x2;y2/ WD ´2:

By this approach, we obtain the sequences .xn/n2N; .yn/n2N in X with�
xnC1 D T .xn;yn/

ynC1 D T .yn;xn/ ;
(3.2)

By induction, we can easily verify that

´n WD .xn;yn/�P .xnC1;ynC1/ WD ´nC1; 8 n 2N:

Hence, .´n/n2N is a monotone increasing sequence in .Z;�P /.
We introduce now the functional Qd WZ�Z! RC defined by

Qd..x;y/; .u;v// WDmaxfd.x;u/;d.y;v/g:

By Lemma 1, the functional Qd defines a b-metric on Z with the same constant s � 1
and, moreover, if the space .X;d/ is complete, then .Z; Qd/ is complete too.

We define on Z the operator F WZ!Z given by

F.x;y/ WD .T .x;y/;T .y;x//:

Notice first that ´nC1 D F.´n/, for n 2 N, where ´0 WD .x0;y0/. Secondly, let us
observe that, by the mixed monotone property of T , we have that F is monotone
increasing with respect to �P , i.e.,

.x;y/; .u;v/ 2Z; with .x;y/�P .u;v/ ) F.x;y/�P F.u;v/:

Notice also that, since T has closed graph, then F has closed graph too.
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We prove now that F is a contraction in .Z; Qd/ on all comparable (with respect to
�P ) elements of Z. Indeed, for all ´;w 2 Z with ´ WD .x;y/ �P .u;v/ WD w, we
have
Qd.F.´/;F.w//D Qd.F.x;y/;F.u;v//D Qd..T .x;y/;T .y;x//; .T .u;v/;T .v;u///D

maxfd.T .x;y/;T .u;v//;d.T .y;x/;T .v;u//g� kmaxfd.x;u/;d.y;v/gD k Qd.´;w/:
Moreover, since

Qd.F.´n/;F .´nC1//� k
n Qd.´0;´1/;

we have that

Qd.´n;´nCp/� sk
n.1C skC�� �C .sk/p�1/ Qd.´0;´1/D sk

n 1� .sk/
p

1� sk
Qd.´0;´1/:

(3.3)
Thus, by our hypotheses and the definition of F , we get that F satisfies all the as-
sumptions in Theorem 1 (for the particular case presented in Remark 2). Hence we
get that F has at least one fixed point ´� 2Z and, for any ´ 2Z which is comparable
with ´0, the sequence of successive approximations for F starting from ´ converges
to a fixed point of F . In particular, the sequence ´n D .xn;yn/ constructed below
converges in .Z; Qd/ to ´� WD .x�;y�/ as n!1 and, if additionally, the b-metric d
is continuous, we have the following estimation of the error:

Qd.´n;´
�/�

skn

1� sk
� Qd.´0;´1/; for all n 2N�;

which means that

maxfd.xn;x
�/;d.yn;y

�/g �
skn

1� sk
�maxfd.x0;x1/;d.y0;y1/g; for all n 2N�:

As a consequence, we also have that .xn/n2N! x�, .yn/n2N! y� in .X;d/ as n!
1. Moreover, by the particular case of Theorem 1 noticed in Remark 2, for every pair
.x;y/ 2 X �X with x � x0 and y � y0 (or reversely), we have that .T n.x;y//n2N

converges to x� and .T n.y;x//n2N converges to y�. Notice also, that by (3.3),
letting p !1, we get the final estimation of the conclusion. This completes the
proof. �

Concerning the uniqueness of the coupled fixed point, by Remark 1, we get the
following result.

Theorem 3. If, in addition to the hypotheses of Theorem 2, we suppose either that
for every .x;y/; .u;v/ 2X �X there exists .´;w/ 2X �X such that�

.x � ´;y � w/ or .´� x;w � y/

.u� ´;v � w/ or .´� u;w � v/; (3.4)

or that

every pair of elements of X has a lower bound or an upper bound, (3.5)
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then the coupled fixed point in Theorem 2 is unique and for every pair .x;y/ 2X �X
we have that .T n.x;y//n2N converges to x� and .T n.y;x//n2N converges to y� as
n!1.

Concerning the existence of a fixed point for T (in the sense that T .x;x/D x), we
can prove the following result.

Theorem 4. If we assume that all the hypotheses of Theorem 3 take place, then
for the unique coupled fixed point .x�;y�/ of T we have that x� D y�, i.e., x� is a
fixed point for T .

Proof. We will work again on Z with the metric Qd WZ�Z! RC defined by
Qd..x;y/; .u;v// WDmaxfd.x;u/;d.y;v/g:

From Theorem 3, the coupled fixed point problem for T has a unique solution .x�;y�/.
We will consider two cases:

Case 1. If x� and y� are comparable, then, from the contraction condition on
T , written for x D v WD x�;y D uD y�, we obtain

maxfd.T .x�;y�/;T .y�;x�//;d.T .y�;x�/;T .x�;y�//g � kmaxfd.x�;y�/;d.y�;x�/g;

which yields that d.x�;y�/ � kd.x�;y�/. Since k < 1, we get that d.x�;y�/D 0.
Thus x� D y�.

Case 2. If x� and y� are not comparable, then there exists ´ 2 X which is
comparable to x� and y�. Suppose, for example, that x� � ´ and y� � ´. In view of
the definition of the partially order relation �P on X �X , we obtain that .x�;y�/,
.x�;´/, .´;x�/ and .y�;x�/ are comparable with respect to �P . From the proof of
Theorem 2, we know thatF WX�X!X�X , given byF.x;y/D .T .x;y/;T .y;x//
is a k-contraction on all comparable (with respect to �P ) elements of Z. Moreover

Qd.F n.u/;F n.v//� kn Qd.u;v/;8u;v 2X �X; with u�P v:

Then, for u WD .x�;´/ and v WD .x�;y�/, we get
Qd.F n.x�;´/;F n.x�;y�//� kn Qd..x�;´/; .x�;y�//D knd.´;y�/:

Similarly, for u WD .x�;´/ and v WD .´;x�/, we obtain
Qd.F n.x�;´/;F n.´;x�//� kn Qd..x�;´/; .´;x�//D knd.x�;´/;

while for u WD .y�;x�/ and v WD .´;x�/, we can write that
Qd.F n.y�;x�/;F n.´;x�//� kn Qd..y�;x�/; .´;x�//D knd.y�;´/:

As a consequence of the above three relations, we have

d.x�;y�/D Qd..x�;y�/; .y�;x�//D Qd.F n.x�;y�/;F n.y�;x�//�

s
�
Qd.F n.x�;y�/;F n.x�;´//C Qd.F n.x�;´/;F n.y�;x�//

�
�

s Qd.F n.x�;y�/;F n.x�;´//C s2
�
Qd.F n.x�;´/;F n.´;x�//C Qd.F n.´;x�/;F n.y�;x�//

�
�
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sknd.´;y�/Cs2kn.d.x�;´/Cd.y�;´//D sknŒ.1Cs/d.y�;´/Csd.x�;´/�! 0 as n!1:

Hence, we get that x� D y�.
In a similar way, we can treat the rest of the cases. The proof is now complete. �

It is worth to mention now that if we consider the coupled fixed point problem
(1.1) in a complete b-metric space and we assume that the maximum-symmetric con-
traction condition on T holds on X �X , then the following theorem can be deduced.
Notice that, in this case, we can relax the condition on the contraction constant to
k < 1.

Theorem 5. Let .X;d/ be a complete b-metric space with constant s � 1. Let
T W X �X ! X be an operator. Assume that there exists k 2 .0;1/ such that, for all
.x;y/; .u;v/ 2X �X , we have

maxfd.T .x;y/;T .u;v//;d.T .y;x/;T .v;u//g � kmaxfd.x;u/;d.y;v/g:

Then, the following conclusions hold:
(a) there exists a unique solution .x�;y�/ 2 X �X of the coupled fixed point

problem (1.1), and, for any initial point .x0;y0/ 2 X �X , the sequences .xn/n2N,
.yn/n2N defined, for n 2N, by�

xnC1 D T .xn;yn/

ynC1 D T .yn;xn/ ;
(3.6)

converge to x� and respectively to y� as n!1.
(b) In particular, if k < 1

s
and the b-metric d is continuous, then, for all n 2N�,

the following estimation holds

maxfd.T n.x0;y0/;x
�/;d.T n.y0;x0/;y

�/g �
skn

1� sk
�maxfd.x0;T .x0;y0//;d.y0;T .y0;x0//g:

Proof. We introduce on Z WDX �X the functional Qd WZ�Z! RC defined by

Qd..x;y/; .u;v// WDmaxfd.x;u/;d.y;v/g:

Notice that, as before, Qd is a b-metric on Z with the same constant s � 1 and, if the
space .X;d/ is complete, then .Z; Qd/ is complete too.

We consider now the operator F WZ!Z given by

F.x;y/ WD .T .x;y/;T .y;x//:

It is easy to prove now that F is a contraction in .Z; Qd/ with constant k 2 .0;1/, i.e.,

Qd.F.´/;F.w//� k Qd.´;w/; for all ´;w 2Z:

The first conclusion follows now by applying the b-metric space version of the con-
traction principle, see [5] or Theorem 12.2, page 115 in [9]. For the estimation, we
can repeat the arguments in our previous existence theorems. �
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Remark 3. We notice that, using Theorem 1 and the same method as before, we
can study the following coupled coincidence problem:�

g.x/D T .x;y/

g.y/D T .y;x/ :
(3.7)

4. A THEORY OF THE COUPLED FIXED POINT SET FOR MAX-SYMMETRIC
CONTRACTIONS

In this section, we will study some qualitative properties of the coupled fixed
point set related to a symmetric contraction condition, such as: data dependence,
well-posedness, Ulam-Hyers stability and limit shadowing property.

For the data dependence problem, we have the following result.

Theorem 6. Let .X;d/ be a complete b-metric space with constant s � 1. Let
Ti W X �X ! X (i 2 f1;2g) be two mappings. Assume that the following conditions
are satisfied:

(i) there exists k 2 .0; 1
s
/ such that, for all .x;y/; .u;v/ 2X �X , we have

maxfd.T1.x;y/;T1.u;v//;d.T1.y;x/;T1.v;u//g � kmaxfd.x;u/;d.y;v/gI

(ii) the operator T2 has at least one coupled fixed point in X �X ;
(iii) there exists � > 0 such that

d.T1.x;y/;T2.x;y//� �; for all .x;y/ 2X �X:

In the above conditions, if .x�;y�/ denotes the unique coupled fixed point for T1,
then

maxfd.x�; Nx/;d.y�; Ny/g �
s�

1� sk
;8. Nx; Ny/ 2 CF ix.T2/:

Proof. Since the operator T1 satisfies the hypotheses of Theorem 5, there exists a
unique coupled fixed point for T1, say .x�;y�/. Let . Nx; Ny/2CF ix.T2/. We consider
again the b-metric Qd WZ�Z! RC defined by

Qd..x;y/; .u;v// WDmaxfd.x;u/;d.y;v/g:

Then, we have:
Qd..x�;y�/; . Nx; Ny//D Qd..T1.x

�;y�/;T1.y
�;x�//; .T2. Nx; Ny/;T2. Ny; Nx///�

s
�
Qd..T1.x

�;y�/;T1.y
�;x�//; .T1. Nx; Ny/;T1. Ny; Nx///C Qd.T1. Nx; Ny/;T1. Ny; Nx//; .T2. Nx; Ny/;T2. Ny; Nx//

�
�

s
�
kmaxfd..x�; Nx/;.y�; Ny//gC�

�
D s

�
k Qd..x�;y�/; . Nx; Ny//C�

�
:

Thus,
Qd..x�;y�/; . Nx; Ny//�

s�

1� sk
;

and the proof is complete. �
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We will study the well-posedness of the coupled fixed point problem (1.1).

Definition 3. Let .X;d/ be a b-metric space with constant s � 1 and T WX �X!
X be an operator. By definition, the coupled fixed point problem (1.1) is said to be
well-posed if:

(i) CF ix.T /D f.x�;y�/g;
(ii) for any sequence .xn;yn/n2N inX�X for which d.xn;T .xn;yn//! 0 and

respectively d.yn;T .yn;xn//! 0 as n!1, we have that .xn/! x� and .yn/!

y� as n!1.

A well-posedness result is given in the following theorem.

Theorem 7. Assume that all the hypotheses of Theorem 5 take place. Additionally,
assume that the contraction constant k of T satisfies the condition k < 1

s
. Then the

coupled fixed point problem (1.1) is well-posed.

Proof. By Theorem 5 we get that CF ix.T /D f.x�;y�/g. Let .xn;yn/n2N be a
sequence inX�X for which d.xn;T .xn;yn//! 0 and respectively d.yn;T .yn;xn//

! 0 as n!1. As before, we will work on Z WD X �X with the metric Qd given
above. Then, we have:

Qd..xn;yn/; .x
�;y�//D Qd..xn;yn/; .T .x

�;y�/;T .y�;x�///�

s
�
Qd..xn;yn/; .T .xn;yn/;T .yn;xn///C Qd..T .xn;yn/;T .yn;xn//; .T .x

�;y�/;T .y�;x�///
�
�

s
�
maxfd.xn;T .xn;yn//;d.yn;T .yn;xn//gCkmaxfd.xn;x

�/;d.yn;y
�/g
�
:

Thus
Qd..xn;yn/; .x

�;y�//�
s

1� sk
maxfd.xn;T .xn;yn//;d.yn;T .yn;xn//g ! 0 as n!1:

Hence, we get that .xn/! x� and .yn/! y� as n!1. �

We will consider the Ulam-Hyers stability of the coupled fixed point problem (1.1).

Definition 4. Let .X;d/ be a b-metric space with constant s � 1 and T WX �X!
X be an operator. Let Qd be any b-metric on X �X generated by d . By definition,
the coupled fixed point problem (1.1) is said to be Ulam-Hyers stable if there exists
an increasing operator  W RC! RC, continuous in 0 with  .0/D 0, such that for
each " 2 R�

C
and for each solution . Nx; Ny/ 2X �X of the inequality

Qd..x;y/; .T .x;y/;T .y;x//� "

there exists a solution .x�;y�/2X�X of the coupled fixed point problem (1.1) such
that

Qd..x�;y�/; . Nx; Ny//�  ."/:

An Ulam-Hyers stability result for the coupled fixed point problem (1.1) is given
in the following theorem.
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Theorem 8. Assume that all the hypotheses of Theorem 5 take place. Additionally,
assume that the contraction constant k of T satisfies the condition k < 1

s
. Then the

coupled fixed point problem (1.1) is Ulam-Hyers stable.

Proof. By Theorem 5 we get that CF ix.T /D f.x�;y�/g. Let any " > 0 and let
. Nx; Ny/ 2X �X such that

maxfd. Nx;T . Nx; Ny//;d. Ny;T . Ny; Nx//g � ":

Then, working on Z WDX �X with the b-metric Qd , we have
Qd.. Nx; Ny/;.x�;y�//D Qd.. Nx; Ny/;.T .x�;y�/;T .y�;x�///�

s
�
Qd.. Nx; Ny/;.T . Nx; Ny/;T . Ny; Nx///C Qd..T . Nx; Ny/;T . Ny; Nx//; .T .x�;y�/;T .y�;x�///

�
�

s
�
maxfd. Nx;T . Nx; Ny//;d. Ny;T . Ny; Nx//gCkmaxfd. Nx;x�/;d. Ny;y�/g

�
Thus

Qd.. Nx; Ny/;.x�;y�//�
s

1� sk
";

which leads to our conclusion. �

The so-called limit shadowing property will be discussed now for the case of a
coupled fixed point problem.

Definition 5. Let .X;d/ be a b-metric space with constant s � 1 and T W X �
X ! X be an operator. By definition, the coupled fixed point problem (1.1) has
the limit shadowing property if, for any sequence .xn;yn/n2N in X �X for which
d.xnC1;T .xn;yn//! 0 and respectively d.ynC1;T .yn;xn//! 0 as n!1, there
exists a sequence .T n.x;y/;T n.y;x//n2N such that d.xn;T

n.x;y// ! 0 and
d.yn;T

n.y;x//! 0 as n!1.

A shadowing type result for the coupled fixed point problem is the following result.

Theorem 9. Assume that all the hypotheses of Theorem 5 take place. Additionally,
assume that the contraction constant k of T satisfies the condition k < 1

s
. Then the

coupled fixed point problem (1.1) for T has the limit shadowing property.

Proof. By Theorem 5 we know that CF ix.T / D f.x�;y�/g and, for any initial
starting point .x;y/ 2 X �X , we have that .T n.x;y//! x� and .T n.y;x//! y�

as n!1. Let .xn;yn/n2N be a sequence in X �X such that

d.xnC1;T .xn;yn//! 0 and d.ynC1;T .yn;xn//! 0;

as n!1. We consider again on Z WD X �X the b-metric Qd . Then, for every
.x;y/ 2X �X , we have

Qd..xnC1;ynC1/; .T
nC1.x;y/;T nC1.y;x///�

s
h
Qd..xnC1;ynC1/; .x

�;y�//C Qd..x�;y�/; .T nC1.x;y/;T nC1.y;x///
i
:
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For the first term of the above sum, we can write
Qd..xnC1;ynC1/; .x

�;y�//�

sŒ Qd..xnC1;ynC1/; .T .xn;yn/;T .yn;xn///C Qd..T .xn;yn/;T .yn;xn//; .T .x
�;y�/;T .y�;x�///��

s Qd..xnC1;ynC1/; .T .xn;yn/;T .yn;xn///C sk Qd..xn;yn/; .x
�;y�//�

s Qd..xnC1;ynC1/; .T .xn;yn/;T .yn;xn///C

skŒs Qd..xn;yn/; .T .xn�1;yn�1/;T .yn�1;xn�1///Csk Qd..xn�1;yn�1/; .x
�;y�//��

� � � � s

nX
pD0

.sk/n�p Qd..xpC1;ypC1/; .T .xp;yp/;T .yp;xp///C .sk/
nC1 Qd..x0;y0/; .x

�;y�//:

The first therm of the above sum converges to zero by the Cauchy Lemma (see, for
example [13]), while the second one goes to zero since sk < 1.

Thus,
Qd..xnC1;ynC1/; .T

nC1.x;y/;T nC1.y;x///! 0 as n!1;

and the conclusion follows. �

Remark 4. Notice that similar results (such as data dependence, well-posedness
property, Ulam-Hyers stability, limit shadowing property) can be established in the
framework of a metric space endowed with a partial order relation and under the
max-symmetric contraction condition with respect to the comparable elements of the
space and the mixed monotone assumption on T , but, in this case, some additional
assumptions (involving comparison properties of some elements, see Theorem 2 in
Section 3.) must be imposed.

5. AN APPLICATION TO A PERIODIC BOUNDARY VALUE PROBLEM

We will discuss now an application of the previous results to a periodic boundary
value problem of the following type:�

x0.t/D f .t;x.t//Cg.t;x.t//; t 2 .0;T /

x.0/D x.T /:
(5.1)

A solution of the above problem is a function x 2 C 1Œ0;T � satisfying the above rela-
tions.

The above problem was considered for the first time in [7] and then in some related
papers. We mention here the paper [3], where a nice improvement is given. We will
follow the above mentioned paper for the terms of our problem.

Let �1;�2 > 0 such that: �
ln 2e�1

e
� .�2��1/T;

.�1C�2/T � 1:
(5.2)
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In order to obtain the solution of (5.1) we study now the existence of a solution of
the following periodic system of differential equations:8̂̂<̂

:̂
x0C�1x��2y D f .t;x/Cg.t;y/C�1x��2y; t 2 .0;T /

y0C�1y��2x D f .t;y/Cg.t;x/C�1y��2x

x.0/D x.T /

y.0/D y.T /;

(5.3)

which is equivalent to the following system of integral equations for t 2 Œ0;T ��
x.t/D

R T
0 G1.t; s/Œf .s;x/Cg.s;y/C�1x��2y�CG2.t; s/Œf .s;y/Cg.s;x/C�1y��2x�ds

y.t/D
R T

0 G1.t; s/Œf .s;y/Cg.s;x/C�1y��2x�CG2.t; s/Œf .s;x/Cg.s;y/C�1x��2y�ds;

where G1;G2 have the same expressions like in [7]. By the assumptions (5.2), we
obtain (see [7]) that G1.t; s/� 0 and G2.t; s/� 0; for all t; s 2 Œ0;T �:

Then, we have the following existence and uniqueness result for the periodic sys-
tem (5.3).

Theorem 10. Consider the periodic system of differential equations (5.3). We
suppose:

(i) f W Œ0;T ��R! R and g W Œ0;T ��R! R are continuous;
(ii) there exists �1;�2;�1;�2 > 0 such that, for every x;y 2 R with y � x, we

have
0� .f .t;x/C�1x/� .f .t;y/C�1y/� �1.x�y/

��2.x�y/� .g.t;x/��2x/� .g.t;y/��2y/� 0;

where �
�1C�2

�1C�2

�2

C

�
�1��2

�1��2

�2

<
1

2
:

(iii) the relations (5.2) are satisfied;
(iv) there exist lower and upper solution x0;y0 2 C Œ0;T � for the system (5.3)

such that (
�1.x0.T /�x0.0//C�2.y0.0/�y0.T //�

x0.T /�x0.0/
T

�1.y0.T /�y0.0//C�2.x0.0/�x0.T //�
y0.T /�y0.0/

T
I

(5.4)

Then, there exists at least one solution .x�;y�/ of the system (5.3).

Proof. We will work in the b-metric space with constant s D 2 .X;d/, with X WD
C Œ0;T � and

d.x;y/ WD max
t2Œ0;T �

..x.t/�y.t//2/D k.x�y/2kC ;

where k � kC denotes the classical Chebyshev norm.
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We can prove that all the assumptions of Theorem 2 are satisfied. We define S W
X �X !X by

S.x;y/.t/ WD

Z T

0
.G1.t; s/Œf .s;x/Cg.s;y/C�1x��2y�CG2.t; s/Œf .s;y/Cg.s;x/C�1y��2x�/ds:

Then, the system (5.3) can be written as a coupled fixed point problem for S :�
x D S .x;y/

y D S .y;x/ :
(5.5)

By (ii), it follows, in a similar way to [7], that S satisfies the mixed monotone condi-
tion.
By (iv), we have that x0.t/� S.x0;y0/.t/ and y0.t/� S.y0;x0/.t/, for all t 2 Œ0;T �.

Moreover, for x � u;y � v, we can write

.S.x;y/.t/�S.u;v/.t//2 D

.

Z T

0

G1.t; s/Œ.f .s;x/Cg.s;y/C�1x��2y/� .f .s;u/Cg.s;v/C�1u��2v/��

G2.t; s/Œ.f .s;v/Cg.s;u/C�1v��2u/� .f .s;y/Cg.s;x/C�1y��2x/�ds/
2
� Z T

0

G1.t; s/Œ�1.u�x/C�2.y�v/��G2.t; s/Œ�1.y�v/C�2.u�x/�ds

!2

D

 Z T

0
.�1G1.t; s/��2G2.t; s//

q
.u�x/2dsC

Z T

0
.�2G1.t; s/��1G2.t; s//

q
.y�v/2ds

!2

�

2

0@"Z T

0
.�1G1.t; s/��2G2.t; s//

q
.u�x/2ds

#2

C

"Z T

0
.�2G1.t; s/��1G2.t; s//

q
.y�v/2ds

#2
1A�

2

24 Z T

0

.�1G1.t; s/��2G2.t; s//ds

!2

C

 Z T

0

.�2G1.t; s/��1G2.t; s//ds

!2
35 �

maxfk.x�u/2kC ;k.y�v/2kC g D"�
�1C�2

�1C�2

�2

C

�
�1��2

�1��2

�2
#
�maxfd.x;u/;d.y;v/g:8t 2 Œ0;T �:

Thus,

d.S.x;y/;S.u;v//� kmaxfd.x;u/;d.y;v/g; where k WD
�
�1C�2

�1C�2

�2

C

�
�1��2

�1��2

�2

:

By a similar approach, we get that d.S.y;x/;S.v;u// � kmaxfd.x;u/;d.y;v/g:
Hence, for all x � u;y � v, we get

maxfd.S.x;y/;S.u;v//;d.S.y;x/;S.v;u//g � kmaxfd.x;u/;d.y;v/g:

Since k < 1
2

, all the assumptions of Theorem 2 are satisfied and the result follows by
Theorem 2. �
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We will discuss now existence and uniqueness for the solution of the periodic
boundary value problem (5.1).

Theorem 11. Consider the periodic boundary value problem (5.1). Suppose that
all the assumptions of Theorem 10 are satisfied. Then, the periodic boundary value
problem (5.1) has a unique solution x�.

Proof. Notice that the space X WD C Œ0;T � endowed with the partial order relation

x �C y” x.t/� y.t/ for all t 2 Œ0;T �;

has the property that every pair of elements of X has a lower bound or an upper
bound. Thus, we can apply Theorem 3 and Theorem 4, and we get that .x�;y�/ is
unique and x�D y�. Hence, x� is the unique solution of the periodic boundary value
problem (5.1). �
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