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Abstract. For a coequality q we say that it is regular coequality on set X ordered under the anti-
order « if there exists an anti-order 8 on X /g such that the natural mapping 7 : X — X /g is a
reverse isotone surjection of anti-ordered sets. The lattice of regular coequalities is described.
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1. INTRODUCTION AND PRELIMINARIES

This short investigation, in the framework of Bishop’s constructive mathematics
([1-3] and [9]), is continuation of the author’s previous papers [6—8]. Bishop’s con-
structive mathematics is developed on Constructive Logic ([9]) - logic without the
Law of Excluded Middle P v —P. Let us note that in Constructive Logic the ’'Double
Negation Law’ P <= ——P does not hold, but the implication P =—> —— P holds
even in Minimal Logic. We have to note that ’the crazy axiom’ =P — (P = Q)
is included in the Constructive Logic. In Constructive Logic the *Weak Law of Ex-
cluded Middle’ =P v —=—=P does not hold, too. It is interesting, that in Constructive
Logic the following deduction principle

AV B,—-A+ B

holds, but this is impossible to prove without ’the crazy axiom’. Bishop’s Construct-
ive Mathematics is consistent with Classical Mathematics.

A relational structure (X, =, #), where the relation ”” is a binary relation on X,
which satisfies the following properties:

X FEX)XFEY = YFXNLXF LT XFEYVYFLXFYANY ==X FL
will be called a set. Following Heyting, the relation # is called apartness. A relation
q on X is a coequality relation on X if and only if it is consistent, symmetric and
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cotransitive ([4, 5]):

q4S# 47 =4.9 S q*q.
where * ” is the filled product between relations (see [4]). Let 8 be a consitent re-
lation on X. We put '8 = B and *8 = B ... B (n factors, n € N). Then ([4]) the
relation ¢(B) = (,en "B » the cotransitive fulfillment of B, is the maximal consist-
ent and cotransitive relation on the set X under .

A relation « on X is an antiorder ([6]) on X if and only if
o C#, a Cakxa, #C aUa Y(linearity).
A relation o on X is a quasi-antiorder ([0]) on X if
o C#,0 Cox*o.

Let x be an element of X and let A be a subset of X. We use the notation x <
A if and only if (Va € A)(x # a), and A€ = {x € X : x > A}. If o is a quasi-
antiorder on X, then the relation ¢ = 0 Uo ™! is a coequality on X. Firstly, the
relation g€ = {(x,y) € X x X : (x,y) <1 ¢} is a equality relation on X compatible
with ¢, in the following sense (Va.,b,c € X)((a,b) € g€ A(b.c) € g = (a.c) € q).
We can construct the factor-set X /(¢€,q) = {aq® :a € X} with

aq® =1bq¢ < (a.b)paq. ag® #1b¢® < (a.b) € q.
We can also construct the factor-set X /g = {aq : a X} with
aq =1 bq < (a,b)><q, aq #1 bq < (a,b) €q.

It is easy to check that X/(¢€.q) = X/q. The mapping 7 : X — X /g, defined by
m(a) = aq for any a € X, is a strongly extensional surjection.

Secondly, note that the relation «€ is an order relation on set (X,— #,%). If the
relation —« is an order relation on (X, =,#), when the apartness is tight, = # C =
([5]), then the relation « is called excise relation on X. (The notion of anti-order re-
lation is more general then notion of excise relation.)

For a given anti-ordered set (X,=,#,«) it is essential to know if there exists
a coequality relation ¢ on X such that X /g is an anti-ordered set. This plays an
important role in the investigation of anti-ordered sets. The following question is
natural: If (X,=,##,«) is an anti-ordered set and ¢ a coequality on X, is the set
X /q an anti-ordered set? A possible anti-order on X /g could be the relation ® on
X /q defined by the anti-order @ on X, where ® = {(xq,vq) € X/qgx X/q:(x,y) €
o}. But it is not an anti-order, in general. The following question arises: Is there a
coequality ¢ on X for which X /g is anti-ordered set? The concept of quasi-antiorder
relation was introduced in [6]. According to [6], if (X,=,#,®) is an anti-ordered
set and o a quasi-antiorder on X, then the relation ¢ on X, defined by ¢ = o Uo ™!
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is a coequality relation on X and the set X/q is an ordered set under anti-order &
defined by (xg,yq) € ® <= (x,y) € 0. So, according to the results in [6], each
quasi-antiorder o on an ordered set X under anti-order « induces a coequality relation
g =oUo~ ! on X such that X /q is an ordered set under antiorder ®. In [7] we prove
that the converse of this statement also holds. If (X,=,#,«) is an anti-ordered set
and g a coequality relation on X and if there exists an antiorder relation 6; on X /g
such that (X/¢q,=1,7#1,61) is an ordered set under antiorder 6, then there exists
a quasi-antiorder o on X such that g = 0 Uo ™! and §; = ©. So, each coequality
relation ¢ on a set (X, =, #,®) such that X /¢ is an anti-ordered set induces a quasi-
antiorder on X. This was the motivation of a new notion. For that we need the
following notion: Let f be a strongly extensional mapping of anti-ordered sets from
(X,=,#,a) into (Y,=,+#, B). For f we say that it is reverse isotone if

(Va.b e X)((f(a). f(b)) € p = (a.b) €)

holds. A coequality relation ¢ on X is called regular if there is an antiorder ”6,” on
X /q satisfying the following conditions:

(1) (X/q,=1,5#1,61) is an anti-ordered set;
(2) The mapping 7 : X 3 a —> aq € X/q is an anti-order reverse isotone sur-
jection.

We call the antiorder ”6,” on X /g a regular antiorder with respect to a regular co-
equality g on X and the anti-order «.

It is obviously that the regular antiorder on X /g with respect to a regular coequal-
ity ¢ and to the antiorder @ on X is in general not unique. The following questions
now naturally arise: Does there exist the maximal regular antiorder on X /g with
respect to a regular coequality ¢ on X? Are all coequalities on anti-ordered sets
regular? Trying to find an answers for the above questions, in this note we give a
description of the family of regular coequalities. In Theorem 1 and Theorem 2 we
give necessary and sufficient conditions such that coequality on an anti-ordered set
is regular. In Theorem 3 we give a construction of the maximal quasi-antiorder on
the anti-ordered set X induced by a regular coequality ¢ on X. The section “The
lattice of regular coequalities” contains the main results of this paper. We prove that
the family of all regular coequalities with respect to the one anti-order relation on
ordered set is a complete lattice and describe that lattice.

For the necessary undefined notions, the reader is referred to books [1-3,9] and to
papers [4-8].

2. REGULAR ANTICONGRUENCES

In the following lemma we describe classes of a quasi-antiorder relation:
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Lemma 1 ([7, Lemma O]). Let o be a quasi-antiorder on set X. Then xo (0x) is
a strongly extensional subset of X, such that x ><\ xo (x ><10Xx), for each x € X.

In order to obtain the relationship between regular anticongruence and quasi-
antiorder on X, the following theorem is essential.

Theorem 1 ([7, Theorem 1]). Let (X,=,#,a) be an anti-ordered set, let q be a
coequality on X. The following are equivalent:
(1) q is regular.
(2) there exists a quasi-antiorder o on X, such that ¢ = o Uo'L.

Theorem 2 ([7, Corollary 2]). Let (X,=,#,a) be an anti-ordered set and let q be
a coequality on X. The following are equivalent:
(1) q is regular,
(2) there exists an anti-ordered set (T,=,+#,0) and a strongly extensional re-
verse isotone mapping ¢ : S —> T such that ¢ = {(a,b) € X x X : p(a) #

@(D)}.

Recall that, by Lemma 1, any class ag of coequality relation g, generated by the
element a € X, is strongly extensional subset of X. Besides, we have the following
assertion, which is crucial for the characterization of regular coequality on an anti-
ordered set (X,=,7#,a): If g is a regular coequality relation on an anti-ordered set
X, then for every ¢g- class ag in X we have

((x,y)pa A (y,2)<a AX,z<aq) = y><aq

for any x,y,z,a € X. If g is a regular coequality on a set X, then there exists an anti-
order relation € on X /q such that the natural mapping 7 : X —> X /q is a strongly
extensive reverse isotone surjection. Besides, there exists a quasi-antiorder o under «,
defined by (x,y) € 0 <= (xq, yq) € 6 such that c Uc~! = ¢q. Let ¢ be an arbitrary
element of ag. Then (a,t) € ¢ = o Uo . Thus (a,t) € o or (t,a) € 0. Hence, we
have
(@.1)eo=((a.x) €0 SqV (x.y) €0 CaV (1) €0 S qCH)

=1 F);
(t,a)eo = ((t,y) €0 C# Vv (y,2) €0 CaV(z,a)eo Cgq

=t #Y.
So, in both cases, we have that t € ag = t # y. Therefore, y ><t aq.
We also have

((x,y)<aA(y,2)RaAy€Eaq)=—>x€aqV ze€aq

for any x,y,a € X. Indeed, if x,y,z,a € X such that (x,y) <« and (y,z) >< o and
x €aq,then (a,y)€q=0Uoc"! = ((a,y) €0 V (y,a) € o). Thus, we have
((a.y)eoV(y.a) o) =

(a,x)eocCqgV(x,y)eoc Ca)V((y,2)€EocCaV(z,a)eo Cq)=
X€aqVzeaq.
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Let g be a regular coequality relation on the anti-ordered set (X, =, #, ). Then there
exists anti-order 6 on X /g such that the natural mapping 7 : X —> X/q is reverse
isotone. Hence, by [7], there exists a quasi-antiorder o under « such that g = o Uo ™!
and 6 C {(aq,bq) € X/qx X /q : (a,b) € o}. In the following theorem we show that
there exists such maximal quasi-antiorder t under o and we prove that there exists
such construction of that relation.

Theorem 3 ([7, Theorem 3]). Let q be a regular coequality relation on anti-
ordered set (X,=,#,a). Then there exists the maximal quasi-antiorder relation ©
under o such that ¢ = tUt~ ! and 6 € {(aq,bq) € X/qx X/q : (a,b) € t}. That
relation is exactly the following relation c(qNa) =(),eny "(@N).

At the end of this consideration, we give the following assertion:

Theorem 4 ([7, Corollary 4]). Let g be a regular coequality on anti-ordered set
(X, =, #,a). Then there exists the maximal antiorder relation on X /q. That relation
is exactly the following relation {(aq,bq) € X/qx X/q : (a,b) € c(q¢ Na)}.

3. THE LATTICE OF REGULAR COEQUALITIES

Let (X, =, #, o) be anti-ordered set. We denote by 91 (X, «) the family of all regu-
lar coequality relations on X with respect to o and J(X,«) denotes the family of all
quasi-antiorder relation on X included in & .

Theorem 5. Let X be an anti-ordered set. Then N(X, ) is a complete lattice.

Proof. Let {qi }reg be a family of regular coequality relations on X .

(1) Then (J gk is a regular coequality relation on X. If fact, if 6 is an anti-order
relation on X /g with respect to g; and «, then | J; 6k is an anti-order relation on
X /(U qx) with respect to |, ¢x and «.

(2) For each k there exists a quasi-antiorder relation o3 on X under o such that
gk = 0x U(0ox)™1 . Then t = ¢([; 0%) is the maximal quasi-antiorder relation under
(Mg 0k S) . Thus, the relation ¢ = t U v~ ! is a coequality relation on X and the
relation @ = w ot oz ~! is an anti-order relation on X /g . So, the relation ¢ is a
regular coequality relation on X with respect to and «. 0

Let us note that family J(X,«) is a completely lattice. Indeed, in the following
theorem we give prove this fact:

Theorem 6. If {1 }icy is a family of quasi-antiorders on a set (X,=,#,a), then
Ukes t and c((\gey Tk) are quasi-antiorders in X. So, the family J(X,«) is a
completely lattice.

Proof. Let {1} }xes be a family of quasi-antiorders on a set (X, =, #) under « and
let (x,z) be an arbitrary elements of X such that (x,z) € | ¢ tx- Then, there exists
k in J such that (x,z) € 1%. Hence, for every y € X we have (x,y) € 1% (y,2) € 1%-
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So, (x,y) € Ukes t V (¥.2) € Ugey k- On the other hand, for every k in J holds
7x € «. From this we have | J;c; 7x C «.
It is clear that the relation ¢ ([, Tx) is the maximal quasi-antiorder relation under

Nkes k(S ). [

As end of this consideration we establish connection between lattices ) (X, «) and
(X, )

Theorem 7. The mapping
0 :3(X,0) — N(X,®),

defined by ¢(t) = t Ut~ 1, is a strongly extensional surjective function. Relations
e=Kergand w = Antikerg = {(r,0) € I(X,a) xI(X,a) : Ut L #£oUo™ 1}
are compatible equality and diversity relation on JI(X,«), and the following iso-
morphism J(X,a)/(e,w) = RN(X,®) exists.

Proof. (1) The mapping ¢ is a well-defined strongly extensional function: If
is a quasi-antiorder relation on X, then ¢(t) = t Ut~ ! is a coequality relation on
X . Then, there exists an anti-order relation 8 on X /g defined by (aq,bq) € 0 <=
(a,b) € 7 and the natural mapping 7 : X —> X /q(7) is reverse isotone. This means
that p(r) = tUt ! =¢ € R(X,a). Let o and 7 be elements of J(X,«) such
that e = oe. Then (r,0) € e and p(r) = tUt ' =0 Uo~ ! = ¢(0). Suppose
that p(r) = tUt ! £ 0 Uo ™! = ¢(0) for some 0,7 € J(X,«). Then there exists
an element (x,y) € X x X such that ((x,y) e tUr"! and (x,y) <o Uoc™!) or
((x,y) eocUo ' and (x,y) >t Ut~ 1). In the first case, we have:
(x,y)ervx,y) et ™ HA(x,y) <o A(x,y) <0 =
(x,y)etA(x,y)xa0)V((x,y) et L A(x,y)x071) <=
(x,y)etAnx,y)<xo)V((y,x)eTA(y,Xx)N0)= T #0.

In the second case we derive similar implication analogously.

(2) ¢ is an injective function. In fact: let v and o be elements of I(X, ) such that
p(t)y=1tUt l =0Uo~! = ¢(0). Then, (r,0) € € and 7 = oe.

(3) ¢ is an embedding. Indeed, let T and o be elements of I (X, ) such that te # oe,
i.e. such that (r,0) € w . Itmeans p(7) = tUt L £oUo~ ! =¢(0).

(4) ¢ is a surjective function: Let g be a regular coequality relation on X with respect
to o , i.e. let g be a coequality relation on X such that there exists an anti-order
0 on X/q and the natural mapping 7= : X —> X/q is reverse isotone. Then, there
exists a quasi-antiorder o (C &) on X such that c Uo~! = ¢. Thus, 0 € J(X,«) and
ploe)=o0Uo 1 =4. O
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