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Abstract. The Szeged index Sz(G) of a connected graph G is defined as the sum of the terms
ny(e|G)ny(e|G) over all edges e = uv of G, where ny(e|G) is the number of vertices of G
lying closer to u than to v and ny (e|G) is the number of vertices of G lying closer to v than to u.
In this paper, some variants of the Szeged index such as the edge PI index, edge Szeged index,
edge-vertex Szeged index, vertex-edge Szeged index, and revised edge Szeged index are studied
under rooted product of graphs. Results are applied to compute these graph invariants for some
chemical graphs by specializing components in rooted products.
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1. INTRODUCTION

In this paper, we consider connected finite graphs without loops or multiple edges.
Let G be such a graph with vertex set V(G) and edge set E(G). We denote by
d(u,v|G) the distance between the vertices # and v in G which is the length of any
shortest path in G connecting # and v. Let e = uv be the edge of G connecting the
vertices u and v. The quantities ng(e|G), ny(e|G), and n,(e|G) are defined to be
the number of vertices of G equidistant from u and v, the number of vertices of G
whose distance to u is smaller than the distance to v, and the number of vertices of
G whose distance to v is smaller than the distance to u, respectively, i.e.,

no(e|G) = {z € V(G) 1 d(z,ulG) = d(z,v[G)j}|,

ny(elG) =1{z € V(G) : d(z,u|G) < d(z,v|G)},

ny(e|G) = {z € V(G) 1 d(z,v|G) <d(z,u|G)}|.
For an edge e = uv € E(G) and a vertex z € V(G), the distance between z and
e is defined as d(z,e|G) = min{d(z,u|G),d(z,v|G)}. The quantities mg(e|G),

my (e|G), and my (e|G) are defined to be the number of edges of G equidistant from
u and v, the number of edges of G whose distance to u is smaller than the distance
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to v, and the number of edges of G whose distance to v is smaller than the distance
to u, respectively, i.e.,

mo(e|G) = [{f € E(G) :d(u, f|G) = d(v, f|G)}],
my(e|G) = [{f € E(G) :d(u, f|G) <d(v, f|G)}],

my(e|G) = [{f € E(G):d(v, f|G) <d(u, f|G)}].
For the vertex z € V(G), we define

mz(G) = |{e =uv € E(G): d(u,z|G) # d(v,z|G)}|.

Chemical graphs, particularly molecular graphs, are graph-based descriptions of
molecules, with vertices representing the atoms and edges representing the bonds. A
numerical invariant associated with a chemical graph is called fopological index or
graph invariant. Topological indices are used in theoretical chemistry for the design
of chemical compounds with given physicochemical properties or given pharmaco-
logic and biological activities [0, 20]. The Wiener index [21], defined as the sum
of distances between all pairs of vertices in a chemical graph, is the oldest and the
most thoroughly studied topological index from both theoretical and practical point
of view. Motivated by the original definition of the Wiener index, the Szeged index
[11] was introduced in 1994 which coincides with the Wiener index for a tree. It
found applications in quantitative structure-property-activity-toxicity modeling [16].
The Szeged index of a graph G is defined as

S2G)= Y mue|G)my(elG).

e=uveE(G)

In recent years, some variants of the Szeged index such as the vertex PI index [17],
edge Pl index [15], edge Szeged index [12], edge-vertex Szeged index [18], vertex-
edge Szeged index 9], revised Szeged index [19], and revised edge Szeged index [7]
have attracted much attention in both chemistry and mathematics. These indices are
defined for a graph G as follows:

PI(G)= Y [nu(e|G)+ny(e]G)].

e=uveE(G)
PLG) = Y [muelG)+my(el®)],
e=uveE (G)
Sze(G)= ) mu(elG)my(e|G),
e=uveE (G)
1
Szev(G) = b Z [”u(e|G)mv(e|G) +”v(e|G)mu(e|G)]v

e=uveE(G)
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Szue(G)=% Y. [ru(elGymu(elG) +ny(e|G)my(e|G)],

e=uveE(G)
no(e|G no(e|G
s @)= Y e+ i) + 09y,
e=uveE(G)
mo(e|G mo(e|G
525G = Y matel6)+ "D el + 0D
e=uveE(G)
We refer the reader to [ 1, 10, 14] for more information on these indices.

The rooted product G1{G,} of a graph G and a rooted graph G, is the graph
obtained by taking one copy of G and |V (G)| copies of G, and by identifying the
root vertex of the i-th copy of G, with the i-th vertex of Gy, fori = 1,2,...,|V(Gy)|.

In this paper, we study the edge PI index, edge Szeged index, edge-vertex Szeged
index, vertex-edge Szeged index, and revised edge Szeged index under rooted product
of graphs. Results are applied to compute these invariants for some chemical graphs
by specializing components in rooted products. For more information on computing
topological indices of rooted product see [2-5, 8, 13,22].

2. RESULTS AND DISCUSSION

Let G; and G, be two connected graphs with vertex sets V(Gp) and V(G2) and
edge sets E(G1) and E(G»), respectively. In this section, we compute some variants
of the Szeged index for rooted product of G; and G,. Throughout this section, the
graph G is assumed to be rooted on the vertex x € V(G») and the degree of x in G,
is denoted by 6. Also, we denote by n; and m;, the order and size of the graph G;,
respectively, where i € {1,2}. In addition, for notational convenience, we define

N = > ny(e|Ga), N = > nu(e|Ga),
e=uveE(G,), e=uveE(G,),
d(u,x|G2)<d(v,x|G2) d(u,x|G2)<d(v,x|G2)
M = Z my(e|Ga), M = Z my(e|G2).
e=uveE(Gy), e=uveE (G,),
d(u,x|G2)<d(v,x|G>) d(u,x|Gr)<d(v,x|G2)

Theorem 1. The edge PI index of the rooted product G1{G,} is given by
Ple(G1{G2}) = Ple(G1) +ma P1y(G1) +n1 Pl(G2)

+n1(m1 +(n1—1)m2)mx(G2). 2.1
Proof. From the definition of the edge PI index, we have
PI,(G1{Ga}) = > [mu(elGi{Ga}) + my(e|G1{G2})].

e=uveE(G1{G>})

We partition the above sum into two sums as follows:
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The first sum S consists of contributions to P1.(G1{G>}) of edges from G1,
S = Z [mu(e|G1{G2}) + my(e|G1{G2})].
e=uveE(G))
By definition of rooted product, we have

S1 = Z [(mu(e|G1) +many(e|G1)) + (my(e|G1) +many(e|G1))]
e=uveE(G))

- Z [mu(e|G1) +my(e|Gr)]

e=uveE(G))
+my Z [”u(e|Gl)+nv(e|Gl)]
e=uveE(G))
= Ple(Gl) —{—MQPIU(G])

The second sum S5 consists of contributions to PI.(G1{G>}) of edges from n; cop-
ies of G3,

Sy =m Z [mu(e|G1{G2}) + my(e|G1{G2})].
e=uveE(Gy)
By definition of rooted product, we have

Sy =n, > [m1 + (21— Dma + my (€| G2) +my(e|Ga2)]
e=uveE(G»),
d(u,x|G2)#d (v,x|G2)
+ny > [mu(e]G2) +my(e|G2)]

e=uveE(G>y),
d(u,x|G2)=d(v,x|G>2)

=m| M [ (€]G2) +my(e|G2)]

e=uveE (G,),
d(u,x|G2)#d (v,x|G2)

FY [muelG) +myelGa)]]

e=uveE(Gy),
d(u,x|G2)=d(v,x|G2)

+n1(m1 +(ny— l)mz) [{e = uv € E(Gy) : d(u,x|Gy) # d(v,x|G2)}|
=n1PLe(G2) +ni(my+ (n1—)ma)mx(G2).
Eq. (2.1) is obtained by adding the quantities S; and S5. g
Theorem 2. The edge Szeged index of the rooted product G1{G»>} is given by
52¢(G1{G2}) = S2.(G1) +m352(G1) +2m2S2ev(G1) +1152¢(G2)
+n1(mi+ (n1—)mx) M. (2.2)
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Proof. From the definition of the edge Szeged index, we have
Sze(G1{G2}) = > my (e|G1{G2})my(e|G1{G2}).
e=uveE(G1{G>})

We partition the above sum into two sums as follows:
The first sum S consists of contributions to Sz.(G1{G2}) of edges from G,

Si= ), mu(e|Gi{Ga})my(e|G1{Ga}).
e=uveE(G,)
By definition of rooted product, we have

S1= Z [m“(e|G1)+m2nu(e|G1)][mv(€|G1)+le’lv(6|G1)]
e=uveE(G1)

= Y. muelGomy(elG+my Y mule|Giny(e|Gr)
e=uveE(G)) e=uveE(G))

+my Z [”u(e|G1)mv(e|G1)+”v(e|Gl)mu(e|Gl)]
e=uveE(Gy)
= Sz¢(G1) +m352(G1) +2m2Szev (G1).

The second sum S5 consists of contributions to Sz,(G1{G>}) of edges from n1 cop-
ies of Go,

Sa=ni Y mu(elGi{Ga})my(e|G1{G2}).

e=uveE(Gy)
By definition of rooted product, we have
S, =m Yo [t (11— Dma+ (el G2)]mo(e|Ga)
e=uveE(Gy),
d(u,x|G2)<dv,x|G2)
+n Z my(e|G2)my(e|G2)
e=uveE(Gy),

d(u,x|G2)=d(v,x|G2)

=m| 3 mu(e|G2)my (€| G2)
e=uveE(Gy),
d(u,x|G2)<d(v,x|G2)

+ 3 (el G2)my (] Ga) |
e=uveE(Gy),
d(u,x|G2)=d(v,x|G2)

+ni(mi + (n1 —1)my) Z my(e|Gy)

e=uveE(G»),
d(u,x|G2)<d(v,x|G2)

= nlSZe(G2)+n1(m1 + (11 —1)m2)ﬁ.
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Eq. (2.2) is obtained by adding the quantities S; and S5. 0

Theorem 3. The edge-vertex Szeged index of the rooted product G1{G»} is given
by

1 _
S2ev(G11G2}) = n2826v(G1) +n2m2S8z2(G1) +n18260(G2) + 5”1”2(’11 —-HM

1 _
+§n1(m1+m2(n1—1))N. (2.3)
Proof. From the definition of the edge-vertex Szeged index, we have

S2e@iGD =5 Y [mlGiGam(elGi{Ga)
e=uveE(G1{G3})

+1y(e|G1{G2})mu(e|G1{G2})].

We partition the above sum into two sums as follows:
The first sum S consists of contributions to Sz, (G1{G2}) of edges from G1,

S1= Z [nu(e|G1{G2})my(e|G1{G2}) +ny(e|G1{G2})my(e|G1{G2})].
e=uveE(G))

By definition of rooted product, we have

1
Si=3 Y [remuelGy[mu(elGr) +many(elGy)]
e=uveE(G))

+ 12110(€|G1) (] Gr) + mam(e]G1)

i Y [mulelGmy(elGr) +nu(elGrymu(elGy)]

2
e=uveE(Gy)
+nomy Z ny(e|Gi)ny(e|Gr)
e=uveE(G))

=n282¢v(G1) +n2m2Sz(Gy).

The second sum Sy consists of contributions to Sz¢,(G1{G>}) of edges from n
copies of G,

Si=om Y [mlelGi{Gahmu(elGr1GaY)
e=uveE (G,)

+ ny(e|G1{G2})mu(e|G1{G2})].
By definition of rooted product, we have

1
Se=5m Y. [[uelG) +nam = 1]muelGa)
e=uveE(G>,),
d(u,x|G,)<d(v,x|G3)
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+ny(e|Ga)[m1 +ma(ny—1) +mu(€|G2)]]

1
+ E”l Z [nu (e|G2)my(e|G2) +nv(e|G2)mu(€|G2)]
e=uveE(Gy),
d(u,x|G2)=d(v,x|G2)
1
=sm[ X [mulelGamu(elGa) +nu(elGaImu(e|G2)]
e=uveE(Gy),
d(u,x|G2)<d(v,x|G3)
Y [melGamy(elGa) + (el Gmue|Ga) ]
e=uveE(G,),
d(u,x|G2)=d(v,x|G2)
1
+§n1n2(”1—1) Z my(e|G2)
e=uveE(G,),
d(u,x|G2)<d(v,x|G>)
1
+§n1(m1+m2(n1—1)) Z ny(e|Ga)
e=uveE(G»),

d(u,x|G2)<d(v,x|G2)

1 — 1 —
=n182ev(G2) + 5”1”2(”1 DM + 5n1(m1 +ma(ny—1))N.
Eq. (2.3) is obtained by adding the quantities S; and S5. ([l

Let G be a graph with edge set E(G). We define the second vertex PI index of G
as

PIPG)= Y [nu(elG)* +ny(e]G)?].
e=uveE(G)

Theorem 4 ( [9]). Let G be a graph of order n and size m. Then

mn? 1 1
Sz*(G) = - ZPI,SZ)(G) +552(G). (2.4)

Theorem 5. The vertex-edge Szeged index of the rooted product G1{G>} is given
by

1
Szve(G1{G2}) = n2Szpe(G1) + 5n2m2P152>(G1) +1118Zve(G2)
1
+§n1n2(n1—1)(m1 +ma(ny—1))mx(Gz) (2.5)

1 1
+ 5”1(1%1 +ma(n; —1))N + 5”1”2(”1 -D)M.
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Proof. From the definition of the vertex-edge Szeged index, we have

Se@GGN =5 Y [mlelGiiGa (el {Ga))
e=uveE(G{G>})

+1(e|G1{Ga}my (e]G1{Ga}) .
We partition the above sum into two sums as follows:

The first sum S consists of contributions to Sz,.(G1{G2}) of edges from G,

Si=5 Y [mlGHGmuelGr{Ga) (el iGamyelG1Ga)]

e=uveE(Gq)
By definition of rooted product, we have

Si=5 X [remelGnimitelGy) £ manuteiG)]

e=uveE(Gi)
121y (e G1) [y (€] Gr) + many(e]G1)]

— i Y el GmaelGr) + (el Gymy(elG)

2
e=uveE(G))

1
+5namy Z [nu(e|G1)* +ny(e|G1)?]
e=uveE(Gy)

1
= 1252ve(G1) + EnzmzPIP(Gl).

The second sum S, consists of contributions to Sz,(G1{G>}) of edges from n;
copies of G,

1
S2=5m Y [muelGi{Gapmu(elGi{GaY
e=uveE(G>)
+1(e|G1{Ga})my (e]G1{G2}) .
By definition of rooted product, we have

Sy = i 3 [ [l Ga) + n2(ny = D)][my +ma(ny = 1)

2
e=uveE(G>y),
d(u,x|G2)<d(v,x|G2)

+muy(e|G2)] + nv(eIGz)mv(ele)]

i Y [mlelGamu(elGa) + my(elGalmy(e]Ga)]

2 e=uveE(G,),
d(u,x|G2)=d(v,x|G2)
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1
=sm| X [uElGmu(elGa) +no(elGaymy(e|Ga)
e=uveE(Gy),
d(u,x|G2)<d(v,x|G2)
Y [mulelGam(elGa) +nu(elGamy(e|Go) ]
e=uvekE (Gy),

d(u,x|G2)=d(v,x|G2)

+ %nlnz(nl —1)(m1 +ma(ny —1))‘{6 =uv € E(Gy) :d(u,x|G»)

1
<d(v,x|G2)}‘+§n1(m1+m2(n1—1)) Z ny(e|Ga)
e=uveE(G,),
d(u,x|G2)<d(v,x|G>)
1
+5mina(n—1) > my (e|G2)
e=uveE(G,),

d(u,x|G2)<d(v,x|G2)

1
=n182Zve(G2) + 5”1”2(’11 —1)(m1 +ma(n1—1))mx(G2)

1 1
+ Enl(n“ +ma(ny — 1))&4— 51’111’12(1’11 —1)M.
Eq. (2.5) is obtained by adding the quantities S and S. U

Using Eq. (2.4), we can get an alternative formula for the vertex-edge Szeged
index of the rooted product of G; and G».

Corollary 1. The vertex-edge Szeged index of the rooted product G1{G3} is given

by
Szve(G1{G2}) = n2S2ve(G1) +n2m2Sz(G1) —2n2m2S2*(G1) + 118 Zve(G2)
1 1
+ En%nzmlmz + 5"1”2(”1 — 1) (m1 +ma(ny —1))mx(Gz)
1 1
+§n1n2(n1—l)M+ 5”1(m1+m2(n1—1))ﬂ. (2.6)

Proof. From Eq. (2.4), we get
PIP(Gy) = min? —487*(G1) +25z(Gy).

Eq. (2.6) is obtained by applying the above equation in Eq. (2.5) and simplifying the
resulting expression. U

Let G be a graph with edge set E(G). We define the second edge PI index of G as

PIP@G)= Y [mu(e|G)*+my(e]G)].
e=uveE (G)
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Theorem 6 ([9]). Let G be a graph of size m. Then
m3 1 1
$23(G) = - = PIP(G) +552(G). @.7)

Lemma 1. The second edge PI index of G1{G2} is given by
PIP(G1{G2}) = PIP(G) + m3 PI{P (G1) + 4m2Szve(Gr)
+n1 I (Ga) +n1(my + (n1 = 1)m2) *m(G2)
+2n1(my+ (n1—ma) M. (2.8)
Proof. From the definition of the second edge PI index, we have
PIP(Gi{G) = Y. [mu(elG1{Ga})* +mu(e|G1{G2})?].
e=uveE(G1{G2})

We partition the above sum into two sums as follows:
The first sum S; consists of contributions to P/, 652)(G1 {G,}) of edges from G,

S1= Z [mu(e|G1{G2})* +my(e|G1{G2})?].
e=uveE(G)
By definition of rooted product, we have

Si= Y [(mulelGy) +many(e|G1))’ + (my(€|G1) +many (€|G1))’]
e=uveE(G))

= Z [mu(e|G1)2+mv(€|G1)2]

e=uveE(Gy)

+m3 > [nu(elG1)? +ny(e|G)?]
e=uveE(G;)

+2my Y [nu(elGrmu(e|Gr) +ny(e|Gr)my(e]G)]
e=uveE(G))
=PI (G1) +m3PIP (G1) +4m2S24e(Gy).

The second sum S, consists of contributions to PIe(z)(Gl{Gz}) of edges from n;
copies of G,

S> =mny Z [mu(e|G1{G2})* +my(e|G1{G2})?].
e=uveE(G>)
By definition of rooted product, we have

Sz =y 3 [(m1 + (11— Dyma + moy(€]G2))” +my (e G2)?]

e=uveE(Gy),
d(u,x|G2)<d(v,x|G2)



SOME VARIANTS OF THE SZEGED INDEX 771

+n1 Z [mu(elGZ)z +mv(e|G2)2]

e=uveE(G»),
d(u,x|G2)=d (v, x|G2)

=m| 3 [ (e1G2)? +my(e]G2)]
e=uveE(Gy),
d(u,x|G,)<d(v,x|G3)
+ 3 [ (e]G2)? + my(e]G2)?]
e=uveE(Gy),
d(u,x|G2)=d(v,x|G>)
1 (mi 4 (1 — Dma)? [{e = uv € E(Ga) : d(u,x|G2) < d(v,x|G2)}]

—|—2n1(m1+(n1—1)m2) Z my (e|G7)
e=uveE(G,),
d(u,x|G2)<d(v,x|G2)
2
=n PIY(G,) +ni(my+ (n1 —1)mz) " myx(G2) + 2n1(my + (n1 — )ma) M.
Eq. (2.8) is obtained by adding the quantities S; and S5. g

Theorem 7. The revised edge Szeged index of the rooted product G1{G»} is given
by

S23(G1{G2}) = Sz3(G1) + m352*(G1) + m2(Szev(G1) — Szve(G1))

1 -
+n182;(G2) + Enl(ml +(n1—1)ma2)(M — M)

— z_ltnl (m1+ (n1— 1)m2)2mx(G2)

+%n1m2[m1(3m1 +2n1m2)+m§(n%—1)]. (2.9)
Proof. By Eq. (2.7),
S2EGHG) = 3l +mma) — L PIO (Gr{G2)) + 3 520(G1{Ga).
Now using Eq. (2.2) and Eq. (2.8), we get

SzX(G1{Gy}) = l[ml+3m1n1mz+3m1n1m2+n1m2] 4[PI(2)(G1)
+m3PIP(Gy) +4m2S2ye(G1) +n1 PIP (Gy)
+ny(my+ (ny — l)mz) mx(Gz) +2n1(my+ (ny —1)ma) M |
+5[52e(G1) + mBS2GY) +2m3S 200 (G1) + 1 $26(G2)

+nq (ml +(n1— 1)m2)M]-
Eq. (2.9) is obtained by simplifying the above expression. O
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3. EXAMPLES AND COROLLARIES

In this section, we apply the results of the previous section to compute the edge
PI index, edge Szeged index, edge-vertex Szeged index, vertex-edge Szeged index,
and revised edge Szeged index of some graphs by specializing components in rooted
product.

Let P,, Sy, and C,, denote the n-vertex path, star, and cycle, respectively. Some
Szeged-related topological indices of these graphs have been given in Table 1.

Graph | Py | Sy, | Cy,niseven | Cy,nisodd
PI, | nin—1) | nin—1) | n? | nm-1)
Ple| (m—-1)(@n-2)|(n-1Dn-2) | n(n—2) | n(n—lz)

sz | COTRENCEN w|  aee
SZe n31) ‘ 0‘ n(nz2)2 ‘ n(n;l)2
_ _ 2(p— _1)2

S| (] wmen| | e
| o] een|  en|
s<* (CONNNCES I = o
* | (n— 1)(2n —4n+3) (n—1)(2n—3) n3 n3
Sze ‘ 1 ‘ ‘ g

4
TABLE 1. Some topological indices of path, star, and cycle.

As the first example, consider the rooted product of P, and P,,, where the root vertex
of P,, is assumed to be on one of its pendant vertices (vertices of degree one). This
molecular graph is called the comb lattice graph. Using Egs. (2.1)—(2.3), (2.6), (2.9),
and Table 1, we easily arrive at:

Corollary 2. Let G = P,{ Py}, where the root vertex of Py, is assumed to be on
one of its pendant vertices. Then

(i) P1(G) = (nm—1)(nm—2),

’ g 11
(@) SZe(G)Z%(:;”—@-FmZ (n?—9n +2)+ Zm_l’
3 2
(1) §20(G) = ﬂ(3'1—2)+—nm (n2—6n+2)+_n:1',
nm? 2nm
() $20e(G) = —(3n —3n+2)— 1+ D1 +2) + =
. _n_ - 2_ 7nm_l
() Sz,(G) = ——(n 2)+ 2 c (n 6n+2)+ =2~

Let P, (m) denote the m—thorn path which is the graph obtained by attaching m
pendant vertices to each vertex of the path P,,. This graph can be viewed as the rooted
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product of P, and the star graph on m + 1 vertices, where the root vertex of Sy, +1
is assumed to be on its central vertex (vertex of degree m). Using Egs. (2.1)—(2.3),
(2.6), (2.9), and Table 1, we easily arrive at:

Corollary 3. The following equalities hold:
(i) P1.(PF(m)) =n*m?+nm@2n—3)+(n—1)(n—2),

2 J—

nm2 nm n
(iii) Szev (P, (M) = T(n2 +3n—1)+ ?(2;12—5) +{5 )
n3m3 + nm2
2 6

+z(§),

2
1
(v) SzX(PX(m)) = %(n2 F3In—1)+ %(4;12 7+ 1"—2(2n2 —6n+7)— .

(iv) Szve (P, (m)) =

@n2—12n+1) + %(n —1)(Tn—11)

Let C,;(m) denote the m—thorn cycle which is the graph obtained by attaching m
pendant vertices to each vertex of the cycle C,. This graph can be seen as the rooted
product of C,, and the star graph on m + 1 vertices, where Sy,+1 is assumed to be
rooted on its central vertex. Using Eqs. (2.1)—(2.3), (2.6), (2.9), and Table 1, we
easily arrive at:

Corollary 4. The following equalities hold:
2,2 ;
. * _ n'm 4+ nmQ2n—1)+nn-2) niseven,
@ PIL(Cy (m)) = { n*m?+2nmmn—1)+nn—1) nisodd,

n(nm+n—2)>
4

niseven,

nisodd,

nzinz(n +2)+ %(nz—l)-f— %(n—2) niseven,

#(nz-i—l)—i-”sz(n—l)—i-M nisodd,

(iii) Szev(Cy(m)) = %

3,3 n2m?2

=+ (5n—4) niseven
2
. 0 (202 3 4 1) 02,
(iv) Szve(Cy (m)) = n3n%3( am? e 2 ) N .
>+ 2= (5n —6n;i—1) nisodd
+nm(n—1)2+w,
2,2 3

() SzECrm) =" +2)+ S en? 4 2n -1+

4
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Finally, consider the rooted product of P, and C,. Note that because of the sym-
metry of Cy, any vertex of this graph can be considered at its root vertex. Using Egs.
(2.1)—(2.3), (2.6), (2.9), and Table 1, we easily arrive at:

Corollary 5. Let G = P,{Cp,}. Then

. n’m? +2nmmn—2)+m—1)(n—2) mis even,

@) PL(G) = n’m? +nmmn—2)—2n—1) misodd,
%(2n—1)+%(ﬂ+ll)(n—4) miseven
nm, o n—

(i) S2e(G) = { T3 =D+ (15).
- (2n—1)+ 2= (n*—3n—1) misodd
+7(4n2 —18n +17) + 21 (n2 = 2n + 6),
M—i—%(2n2—3n—11)—|—m(§) miseven,

(iii) SzZen(G) = nzgl3+nm — 97 —5) misodd
+ 2 (2 3n+5)+”(" D

%(n I’l—l—l)—i— (107’1 211’1—1) mis even

(iv) S20e(G) = ,T,fé’” az

(n (4n —15n—1) misodd
”m (2 mis even

"m(zn 3n—|—1)+"121(2n —4n +3),
nr- (2n—1)+ (n;rl) 1(5n2—9n+4) misodd
12(5n —12n? +10n—3)

(v) Sz;(G) =
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