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1. INTRODUCTION

There are numerous methods for investigating and approximate constructing of
the solutions of the boundary value problems for ordinary differential equations and,
in particular, for differential equations with impulses (see, e. g., [1, 2, 5, 6] and the
references therein). From the large variety of them, we can distinguish the numerical-
analytic method of successive approximations developed in [5, 6] where the problem
on the existence and approximate construction of periodic solutions of the impulsive
differential system of the form

x0.t/D f .t;x/; t ¤ �i ; x.�i C0/�x.�i /D Ii .x/:

is studied on the assumption that f is a the time-periodic function. Another important
assumption guaranteeing the applicability of the approach of the works mentioned
requires that f and Ii should satisfy the Lipschitz conditions with sufficiently small
constants.

In this paper we attempt to generalise the numerical-analytic method of succes-
sive approximations [5,6] to nonlinear systems of differential equations with impulse
action of the form

x0.t/D A.t/xCf .t;x/; t ¤ �i ; x.�i C0/�x.�i /D BixCIi .x/;

in the cases where there exist a nontrivial solutions of the corresponding linear bound-
ary value problem. The Lipschitz conditions concerns not all right-hand side term but
only the non-linearity.

c
 2008 Miskolc University Press
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2. REGULARISATION OF LINEAR IMPULSIVE BOUNDARY VALUE PROBLEMS

Let us first consider a linear inhomogeneous system of differential equations with
impulse action

x0.t/D A.t/xCh.t/; t 2 Œa;b�n f�1; �2; : : : ; �pg;

x.�i C0/�x.�i /D Bix.�i /Cai ; i D 1; : : : ;p;
(2.1)

under the linear functional boundary conditions

lx D ˛; (2.2)

where A.�/ and h.�/ are, respectively, .n�n/-matrix and .n�1/-vector functions that
arepiecewise continuous, with discontinuity of the first kind at t D �i , i D 1;2; : : : ;p.
The second relation in (2.1) determines the jumps of the solutions. Here Bi , i D
1;2; : : : ;p; are .n�n/-constant matrices such that

det.1nCBi /¤ 0; i D 1;2; : : : ;p;

fa1;a2; : : : ;ap;˛g � Rn are constant column vectors, and a � �1 < �2 < � � � < �p �
b. Equality (2.2), where l is an n-dimensional bounded linear vector functional,
determines the boundary conditions.

Let PC.Œa;b�n f�ig
p
iD1;R

n/ stand for the space of functions xW Œa;b�! Rn which
are continuous from the left with discontinuity of the first kind at the points �i ,
i D 1; : : : ;p endowed with the norm kxk D supfjx.t/j W t 2 Œa;b�g. Moreover, let
PC1loc.Œa;b� n f�ig

p
iD1;R

n/ denote the set of functions x 2 PC.Œa;b� n f�ig
p
iD1;R

n/

which are continuously differentiable on every open interval contained in Œa;b� n
f�ig

p
iD1. A function x 2 PC1loc.Œa;b� n f�ig

p
iD1;R

n/ is said to be a solution of the
problem (2.1), (2.2) if it satisfies the equalities (2.1) and verifies also the boundary
condition (2.2).

According to the Riesz theorem [3], for an arbitrary linear bounded vector func-
tional l WPC.Œa;b�nf�ig

p
iD1;R

n/!Rn, there exist a matrix function of bounded vari-
ation C.�/ such that by means of Riemann–Stieltjes integral we can represent the
boundary condition (2.2) in the formZ b

a

ŒdC.t/�x.t/D ˛:

It is known [5] that solution x.t;x0/ of impulsive differential system (2.1) having
the initial value x.a;x0/D x0 is of the form

x.t;x0/DX.t/x0C

Z t

a

X.t;s/h.s/dsC
X

a��i<t

X.t;�i C0/ai ; (2.3)

where X.�/ is a fundamental matrix for the linear homogeneous impulsive system

x0.t/DA.t/x; t 62 f�ig
p
iD1; x.�iC0/�x.�i /DBix; i D 1;2; : : : ;p: (2.4)
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Recall that the matrix function X has the properties� X.a/ D 1n, X.t/ D X.t;a/,
whereX.t;s/DX.t/X�1.s/, andX.t;�iC0/DX.t;�i /.1nCBi /�1, i D 1;2; : : : ;p.

While substituting (2.3) into the boundary conditions (2.2) we can see that the
initial value x0 of the solution x.t;x0/ of the boundary value problem (2.1), (2.2)
must satisfy the equation

Gx0 D ˛�

Z b

a

Z.s/h.s/ds�

pX
iD1

Z.�i C0/ai : (2.5)

Here Z.s/D
R b
s ŒdC.t/�X.t; s/ and G DZ.a/D lX D

R b
a ŒdC.t/�X.t/.

In a noncritical case [1] (when a linear homogeneous impulsive system (2.4) does
not have a nontrivial solutions), the algebraic system (2.5) has a unique solution

x0 DG
�1
�
˛�

Z b

a

Z.s/h.s/ds�

pX
iD1

Z.�i C0/ai

�
;

which is the initial value of a unique solution of the problem (2.1), (2.2)

x.t/DX.t/G�1˛C

Z t

a

X.t;s/h.s/ds�X.t/G�1
Z b

a

Z.s/h.s/ds

C

X
a��i<t

X.t;�i C0/ai �X.t/G
�1

pX
iD1

Z.�i C0/ai :

Further we will consider a critical case [1], i. e., the case where
(A) There exist k, 1 � k � n, linearly independent solutions of the linear homo-

geneous impulsive boundary value problem

x0.t/D A.t/x; t 62 f�ig
p
iD1;

x.�i C0/�x.�i /D Bix.�i /; i D 1;2; : : : ;pI

lx D 0:

(2.6)

Lemma 1. Assume that there exist k linearly independent solutions of the linear
homogeneous boundary value problem with impulse action (2.6). Then for an arbi-
trary function h.t/ there exists a function H.t/ such that inhomogeneous impulsive
differential system

x0.t/D A.t/xCh.t/CH.t/; t 62 f�1; �2; : : : ; �pg;

x.�i C0/�x.�i /D BixCai ; i D 1;2; : : : ;p;
(2.7)

possesses a k-parametric family of solutions which satisfy the boundary condition
(2.2).

�Here and below, 1n stands for the unit matrix of dimension n.
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Proof. It is known [1] that the boundary value problem (2.7), (2.2) has a solution
if and only if the condition

PG�

�
˛�

Z b

a

Z.s/h.s/ds�

Z b

a

Z.s/H.s/ds�

pX
iD1

Z.�i C0/ai

�
D 0 (2.8)

is fulfilled,� where PG� WRn! kerG� (resp., PG WRn! kerG) is an orthoprojector to
the null space kerG�D f´ W ´ 2Rn; ´G�D 0g (resp., kerG D fy W y 2Rn; Gy D 0g)
of G� (resp., G).

We denote by the symbol PGIk the .n�k/-matrix whose columns are the linearly
independent columns of PG constituting a basis in kerG. Similarly, by PG�Ik we
denote the .k�n/-matrix whose rows are the linearly independent rows of the matrix
PG� constituting a basis in kerG�. Thus,

rankPG D rankPGIk D rankPG� D rankPG�Ik D k:

Let us set

H.t/ WDZ�.t/.PG�
k
/�R�11 PG�

k

�
˛�

Z b

a

Z.s/h.s/ds�
X

a��i<b

Z.�i C0/ai

�
(2.9)

for all t 2 Œa;b�, where R1 WD PG�IkR2.PG�
k
/� and

R2 WD

Z b

a

Z.�/Z�.�/d�:

One can see that condition (2.8) is fulfilled if H.t/ is of the form (2.9). The solution
of the impulsive differential system (2.7) is

x.t/DX.t/x0C

Z t

a

X.t;s/h.s/dsC
X

a��i<t

X.t;�i C0/ai

C

Z t

a

X.t;s/Z�.s/ds.PG�
k
/�R�11 PG�Ik

�
˛�

Z b

a

Z.s/h.s/ds�

pX
iD1

Z.�i C0/ai

�
:

(2.10)

Substituting (2.10) into (2.2) we can see that x.t/ satisfy the boundary condition
if and only if the initial value x0 is a solution of the algebraic system

Gx0 D

�
1n�R2P

�

G�
k

R�11 PG�
k

��
˛�

Z b

a

Z.s/h.s/ds�

pX
iD1

Z.�i C0/ai

�
: (2.11)

Since PGIk
�
1n�R2P �G�

k

R�11 PG�Ik
�
D 0, the system (2.11) is solvable and its gen-

eral solution is of the form [1, 7]

�Here and below, we identify projectors with the corresponding matrices.
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x0 D PGIk�

CGC
�
1n�R2P

�

G�
k

R�11 PG�Ik

��
˛�

Z b

a

Z.s/h.s/ds�

pX
iD1

Z.�i C0/ai

�
; (2.12)

where � is an arbitrary k-dimensional column, GC is a unique Moore–Penrose gen-
eralised inverse .n�n/-matrix [4,7]. If substitute the initial value x0 given by (2.12)
in representation (2.10) we obtain the general solution of the boundary value problem
boundary value problem (2.2), (2.7):

x.t/DX.t/PGIk�

CX.t/GC
�
1n�R2P

�

G�
k

R�11 PG�
k

��
˛�

Z b

a

Z.�/h.�/d� �

pX
iD1

Z.�i C0/ai

�

C

Z t

a

X.t;s/h.s/dsC
X

a��i<t

X.t;�i C0/ai

C

Z t

a

X.t;s/Z�.s/dsP �
G�

k

R�11 PG�Ik

�
˛�

Z b

a

Z.�/h.�/d� �

pX
iD1

Z.�i C0/ai

�
:

Finally we can rewrite it in the form

x.t;�/DX.t/PGIk�CX.t/
�
GCC .R.t/�GCR2/P

�

G�
k

R�11 PG�Ik

�
˛

C

Z b

a

L.t;s/h.s/dsC

pX
iD1

L.t;�i C0/ai ; (2.13)

where

R.t/D

Z t

a

X.s/�1Z�.s/ds

and

L.t;s/D

˚
X.t;s/�X.t/

�
GCC

�
R.t/�GCR2

�
P �
G�

k

R�11 PG�
k

�
Z.s/; 0�s� t�b;

�X.t/
�
GCC

�
R.t/�GCR2

�
P �
G�

k

R�11 PG�
k

�
Z.s/; 0� t <s�b:

Considering (2.13), we conclude that the lemma is proved. �

3. THE BOUNDARY VALUE PROBLEM FOR NONLINEAR IMPULSIVE
DIFFERENTIAL EQUATIONS IN A CRITICAL CASE

Now we consider the nonlinear system of differential equations with impulse ac-
tion

x0.t/D A.t/xCf .t;x/; t 62 f�ig
p
iD1;

x.�i C0/�x.�i /D Bix.�i /CIi .x.�i //;
(3.1)
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under the boundary condition (2.2). We will investigate a critical case, i. e., the case,
when the condition (A) is fulfilled.

We suppose that, for t 2 Œa;b�, x 2 D � Rn, where D is a closed and bounded
domain, the following conditions hold:

(B) A.t/, f .t;x/ are continuous or piecewise continuous for t with discontinuity
of the first kind for t D �i respectively .n�n/-matrix function and .n� 1/-
vector function, Bi are .n�n/-constant matrices such that det.1nCBi /¤ 0,
ai ;˛ are the n-dimensional column vectors of constants, �0 < a � �1 < �2 <
� � � < �p � b, l is n-dimensional bounded linear vector functional, and the
following inequalities hold:

jf .t;x/j �M.t/; jIi .x/j �mi ;

jf .t;x0/�f .t;x00/j �K.t/jx0�x00j;

jIi .x
0/�Ii .x

00/j �Ki jx
0
�x00j;

(3.2)

where mi and Ki are constant vectors and constant matrices with nonnega-
tive components respectively, M.t/ and K.t/ are piecewise continuous vec-
tor function and matrix function with nonnegative integrable components, re-
spectively. Here the notation jf .t;x/j D col.jf1.t;x/j; : : : ; jfn.t;x/j/ is used
and all the inequalities are meant componentwise;

(C) the domain Dˇ � f� 2 Rk j B.x0.t; �/;ˇ/�D; t 2 Œa;b�g is non-empty,
where x0.t; �/DX.t/PGIk� ,

ˇ D max
t2Œa;b�

�ˇ̌̌
X.t/

�
GCC .R.t/�GCR2/P

�

G�
k

R�11 PG�Ik
�
˛
ˇ̌̌

C

Z b

a

jL.t;s/jM.s/dsC

pX
iD1

jL.t;�i C0/mi j

�
and B.y;%/D fx 2 Rn W jx�yj � %g for all y;% 2 Rn;

(D) the maximum eigenvalue of the following matrix Q is less then one:

QD sup
t2Œa;b�

(Z b

a

jL.t;s/jK.s/dsC

pX
iD1

jL.t;�i C0/jKi

)
:

We also consider k-parametric family of mappings L� WPC.Œa;b�nf�ig
p
iD1;R

n/!

PC.Œa;b� n f�ig
p
iD1;R

n/ and vector functional �WPC.Œa;b� n f�ig
p
iD1;R

n/! Rk de-
fined by the relations

.L�x/.t/
def
D X.t/PGIk�CX.t/

�
GCC

�
R.t/�GCR2

�
P �
G�

k

R�11 PG�Ik

�
˛

C

Z b

a

L.t;s/f .s;x.s//dsC

pX
iD1

L.t;�i C0/Ii .x.�i //
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and

�.x/
def
D PG�Ik

�
˛�

Z b

a

Z.s/f .s;x.s//ds�

pX
iD1

Z.�i C0/Ii .x.�i //

�
:

Lemma 2. Let the linear homogeneous boundary value problem (2.2), (2.4) has
k, 1� k � n, linearly independent solutions. Then:

(1) If ' 2 PC1loc.Œa;b�nf�ig
p
iD1;R

n/ is a solution of the boundary value problem
(2.2), (3.1) then there exists � 2 Rk such that ' is a solution of the system of
equations

x DL�x; (3.3)

�.x/D 0: (3.4)

Moreover, the initial value of the solution is

'.a/D PGk
�CGC

�
˛�

Z b

a

Z.s/f .s;'.s//dsC

pX
iD1

Z.�i C0/Ii .'.�i //

�
: (3.5)

(2) If ' 2 PC.Œa;b�n f�ig
p
iD1;R

n/ is a solution of the system of equations (3.3),
(3.4) with some � 2Rk then ' 2PC1loc.Œa;b�nf�ig

p
iD1;R

n/ and ' is a solution
of the boundary value problem (2.2), (3.1).

Proof. Necessity. Let ' be a solution of the problem (2.2), (3.1). Then

'.t/�X.t/'.a/C

Z t

a

X.t;s/f .s;'.s//dsC
X

a��i<t

X.t;�i C0/Ii .'.�i /: (3.6)

When substituting (3.6) into the boundary condition (2.2) we can see that '.a/ is
a solution of algebraic system

G'.a/D ˛�

Z b

a

Z.s/f .s;'.s//ds�

pX
iD1

Z.�i C0/Ii .'.�i //; (3.7)

and therefore, there exists � 2 Rk such that (3.5) holds. Consequently, �.'/ D 0.
Considering this equality, by direct computation it can be verified that ' is also a so-
lution of the equation (3.3).

Sufficiency. Let � and ' be such that equations (3.3) and (3.4) are satisfied. There-
fore, ' 2 PC1loc.Œa;b� n f�ig

p
iD1;R

n/, (3.6) fulfils and '.a/ satisfies (3.5). From this
follows that ' is a solution of problem (2.2), (3.1). �

For the investigation of the problem of the existence and approximate construct-
ing of the solutions of problem (2.2), (3.1) we consider the k-parametric family of
sequences of functions given by the formulas x0.t; �/DX.t/PGIk� and

xm.t; �/D x0.t; �/CX.t/
�
GCC

�
R.t/�GCR2

�
P �
G�

k

R�11 PG�Ik

�
˛
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C

Z b

a

L.t;s/f .s;xm�1.s;�/dsC

pX
iD1

L.t;�i C0/Ii .xm�1.�i ; �/ (3.8)

for mD 1;2; : : : and � 2 Rk . Each of these functions satisfies the boundary condition
(2.2).

Theorem 1. Assume that for the boundary value problem (2.2), (3.1) the condi-
tions (A)–(D) hold. Then:

(1) for all � 2 Dˇ � Rk , the operator L� has a fixed point x�.�; �/ in the set
PC.Œa;b� n f�ig

p
iD1;R

n/, which coincides with the limit function x�.t; �/ D
limm!1xm.t; �/ of the sequence (3.8) and the following error estimation
holds:

jx�.t; �/�xm.t; �/j � .1n�Q/
�1QmˇI (3.9)

(2) the limit function x�.t; �/ satisfies the boundary condition (2.2) for arbitrary
� 2 Rk and the initial value is

x�.a;�/D PGk
�CGC.1n�R2P

�

G�
k

R�11 PG�Ik/

�

�
˛�

Z b

a

Z.s/f .s;x�.s;�//ds�

pX
iD1

Z.�i C0/Ii .x
�.�i ; �//

�
I (3.10)

(3) the limit function x�.t/D x�.t; ��/ is a solution of the boundary value prob-
lem (2.2), (3.1) if and only if �� is a solution of the determining equation
�.�/D 0, where

�.�/
def
D �.x�.�; �//

def
D PG�Ik

�
˛�

Z b

a

Z.s/f .s;x�.s;�//ds�

pX
iD1

Z.�i C0/Ii .x
�.�i ; �//

�
: (3.11)

Proof. Since

j.L�x/.t/�x0.t; �/j �
ˇ̌̌
X.t/

�
GCC .R.t/�GCR2/P

�

G�
k

R�11 PG�
k

�
˛
ˇ̌̌

C

Z b

a

jL.t;s/f .s;x.s//jdsC

pX
iD1

jL.t;�i C0/Ii .x.�i //j � ˇ;

from the condition (C) it follows that .L�x/.t/ 2D for all � 2Dˇ , x 2 PC.Œa;b�n
f�ig

p
iD1;R

n/.
Let Q be the operator in PC.Œa;b�n f�ig

p
iD1;R

n/ acting according to the rule

.Qx/.t/D

Z b

a

jL.t;s/jK.s/x.s/dsC

pX
iD1

jL.t;�i C0/jKix.�i /:
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Then, from (3.8) and the Lipschitz conditions (3.2) we get

jxmC1.t; �/�xm.t; �/j D
ˇ̌�

L�.xm.�; �/�xm�1.�; �//
�
.t/
ˇ̌

�
�
Qjxm.�; �/�xm�1.�; �/j

�
.t/

�
�
Q2
jxm�1.�; �/�xm�2.�; �/j

�
.t/

� � � �

�
�
Qm
jx1.�; �/�x0.�; �/j

�
.t/

� .Qmˇ/.t/;

and thus

jxmCj .t; �/�xm.t; �/j �

j�1X
iD0

jxmCiC1.t; �/�xmCi .t; �/j

�

j�1X
iD0

.QmCiˇ/.t/

�

j�1X
iD0

QmCiˇ:

(3.12)

It follows from the condition (D) that xm.t; �/ is a Cauchy sequence. Therefore it
uniformly converges to a continuous function x�.t; �/. Passing to the limit as j !1
in (3.12), we prove the error estimation (3.9). Since all functions satisfy the boundary
condition (2.2), we conclude that so does the limit function x�.t; �/.

Taking the limit as m!1 we get that x�.t; �/ satisfies the equation

x.t/DX.t/PGIk�CX.t/
�
GCC

�
R.t/�GCR2

�
P �
G�

k

R�11 PG�
k

�
˛

C

Z b

a

L.t;s/f .s;x.s/ds/C

pX
iD1

L.t;�i C0/Ii .x.�i //: (3.13)

According to the Lemma 2, it means that the limit function x�.t; �/ is a solution
of the boundary value problem (2.2), (3.1) if and only if the condition �.�/ D 0 is
fulfilled. Further, putting t D a to (3.13) it is easy to see that (3.10) is the initial value
of the solution. �

The next statement gives us the satisfactory conditions for the existence of the
solution of the boundary value problem (2.2), (3.1). This conditions are based upon
the properties of the approximations xm.t; �/ and not upon those of the limit function
x�.t; �/.

Theorem 2. Let us suppose that conditions (A)–(D) hold and furthermore:
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(1) there exists closed convex subset D0 � Dˇ � Rk such that, for some fixed
m 2N, the approximating equation

�m.�/
def
D�.xm.�; �//

def
DPG�

k

�̨
�

Z b

a

Z.s/f .s;xm.s;�//ds�

pX
iD1

Z.�i C0/Ii .xm.�i ; �//
�
D0 (3.14)

possesses only one isolated solution � D �0m of non-zero index;
(2) on the boundary @D0 of the set D0, the condition

inf
�2@D0

j�m.�/j>Q1.1n�Q/
�1Qmˇ (3.15)

is satisfied, where

Q1 D

Z b

a

jPG�
k�
Z.s/jK.s/dsC

pX
iD1

jPG�
k�
Z.�i C0/jKi :

Then there exist a solution x�.t/D x�.t; ��/ of the boundary value problem (2.2),
(3.1).

Proof. We introduce the continuous for � 2 @D0 and � 2 Œa;b� vector field family

�.�;�/D�m.�/C�.�.�/��m.�//; 0� � � 1;

connecting the vector fields �.0;�/ D �m.�/ and �.1;�/ D �.�/. Let us assume
that there exist �0 2 Œ0;1� such that �.�0; �/D 0. Then

�m.�/D��0
�
�.�/��m.�/

�
: (3.16)

From (3.9), (3.11), (3.14) and the Lipschitz condition (3.2) we have

j�.�/��m.�/j

�

Z b

a

jPG�IkZ.s/j jf .s;x
�.s;�//�f .s;xm.s;�//jds

C

pX
iD1

jPG�IkZ.�i C0/j jIi .x
�.�i ; �//�Ii .xm.�i ; �//j

�

Z b

a

jPG�IkZ.s/jK.s/jx
�.s;�/�xm.s;�/jds

C

pX
iD1

jPG�IkZ.�i C0/j jx
�.�i ; �/�xm.�i ; �/j

�Q1.1n�Q/
�1Qmˇ:

But in this case from (3.16) we obtain the inequality

j�m.�/j � j�.�/��m.�/j �Q1.1n�Q/
�1Qmˇ;
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which contradict the condition (3.15). It means that the field family �.�;�/ does not
assume the value zero on @D0, therefore vector fields�.�/ and�m.�/ are homotopic.
It means that the rotation of vector field �.�/ on the boundary @D0 is also non-zero
and consequently �.�/ assumes the value zero at least in one point �� 2D0. �

4. NONCRITICAL CASE

In a noncritical case, i. e., when there is only trivial solution of the linear homoge-
neous problem (2.6), we obtain detG ¤ 0, PGk

D 0 and �.�/� 0. This means that
is not necessary to solve the determining equation.

Theorem 3. Let us suppose that the linear homogeneous boundary value problem
(2.6) has only trivial solution, the condition (B) holds, and

(C1) B.zx0.t/; ž/�D for all t 2 Œa;b�, where

zx0.t/ WDX.t/G
�1˛; t 2 Œa;b�;

B.y;%/D fx 2 Rn W jx�yj � %g for all y;% 2 Rn, the vector ž is given by
the formula

ž D max
t2Œa;b�

 Z b

a

j zL.t;s/jM.s/dsC

pX
iD1

j zL.t;�i C0/jmi

!
;

and

zL.t;s/D

(
X.t;s/�X.t/G�1Z.s/; 0� s � t � b;

�X.t/G�1Z.s/; 0� t < s � bI

(D1) the greatest eigenvalue of the following matrix zQ is less then one:

zQ WD sup
t2Œa;b�

(Z b

a

j zL.t;s/jK.s/dsC

pX
iD1

j zL.t;�i C0/jKi

)
:

Then there exist a unique solution x�.�/ of the boundary value problem (2.2), (3.1),
which is the limit function of the sequence

zxm.t/DX.t/G
�1˛C

Z b

a

zL.t;s/f .s; zxm�1.s//ds

C

pX
iD1

zL.t;�i C0/I.zxm�1.�i //; mD 1;2; : : : :

Moreover, the initial value of x�.�/ satisfies the relation

x�.a/DG�1
�
˛�

Z b

a

Z.�/f .�;x�.�//d� �

pX
iD1

Z.�i C0/Ii .x
�.�i //

�
:
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Proof. It can be carried out in the same way as that of Theorem 1. �
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