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Abstract. Letk > 3 be an odd integer. In this paper we investigate all positive integer solutions of
the equations x* —kx2y + y2 = FA, x* —kx2y +y%2 = FA? —4), x* — (k2 —4)y? = F4A4,
and x2 — (k2 —4)y* = F4A with A = F(k F2). We show that if k = 1(mod8) and k2 —4 be a
square-free integer, then the equation x* —kx2y + y2 = (k —2) (k% —4) has no positive integer
solutions. Moreover, if k2 —4 be a square-free integer, then the equation x* —kx2y + y2 =
—(k +2)(k? — 4) has no positive integer solutions.
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1. INTRODUCTION

Let k and s be two nonzero integers with k2 4 4s > 0. The generalized Fibonacci
sequence is defined by Uy (k,s) =0, U; (k,s) = 1, and Uy 41 (k,s) = kU, (k,s) +
sUp—1 (k,s) for n = 1 and generalized Lucas sequence is defined by Vp (k,s) = 2,
Vi(k,s) =k, and Vy41 (k,s) = kVy (k,s) + sV,—1 (k,s) for n = 1, respectively.
Moreover, generalized Fibonacci and Lucas numbers for negative subscripts are defined
as U_, = —(-=s)7"U, and V_, = (—s)™"V, for n € N. Especially
U_n(k,—1) = -U,(k,—1) and V_,(k,—1) = V,(k,—1) for every natural number
n.

In the literature, there are many papers dealing with the number of the solutions
of the equation ax* 4+ bx2?y + cy? —d = 0. In [7], the author investigated all non-
negative integer solutions of the equations x* —kx2y + y? = 1,4, under the as-
sumption that k is even. If k # 318 and k is not a perfect square, then all non-
negative integer solutions of the equation x2 —kxy? 4+ y* =1 are (x,y) = (k, 1),
(1,0), (0,1). If k = 338, then all positive integer solutions of this equation are
(x,y) = (13051348805,6214), (114243,6214). If k is a perfect square, then all pos-
itive integer solutions of this equation are (x, y) = (1, vk), (k2 —1, vk). Moreover,
the author showed that if k = 2v? for some integer v, then all positive integer solu-
tions of the equation x2 —kxy2 4+ y* = 4 are (x,y) = (2,+/2k), (2k2 —2,/2k).
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Otherwise, the only nonnegative integer solution of this equation is (x, y) = (2,0).
In [2], wherein the author investigated all positive integer solutions of the equation
x2 —kxy? + y* = ¢ for ¢ € {F1,F2,F4}, with the assumption that k is odd for
the particular cases ¢ = 1 or 4. He showed that the equation x% —kxy? + y* = 4
has no positive integer solutions. Moreover, he showed that if y = k2 for some odd
integer k, then the only integer solution of the equation x2 —kxy?+y* =1isy = 1.
Otherwise, all positive integer solutions of this equation are y = 1 or k. Moreover,
he showed that the equation

x2—kxy?+y*=-1 (1.1)
has no integer solutions when k = 3. Otherwise, the only integer solution of the
equation (1.1) is y = 1. In addition, he showed that the equation

x*—kxy*+y*=—4 (1.2)

has a solution only when & = 3 or 6. If k = 3, then all positive integer solutions of
equation (1.2) are given by (x, y) = (2,2) or (10,2). If k = 6, then all positive integer
solutions of equation (1.2) are given by (x,y) = (1,1),(5,1),(29,13) or (985, 13).
Let k be an odd integer. In this paper, firstly, we solve the equations x2 =

Va(k,—1)F Vy_1(k,—1) and x? = Uy, (k,—1) F U, —1 (k,—1), respectively. We show
that if k = 3(mod8), then the equation xZ = V,,(k,—1) + V,,_1 (k,—1) has no solu-
tions and if k = 1(mod8), then the equation x2 = Vj,(k,—1) — V,,_1(k,—1) has no
solutions. Lastly, we find all positive integer solutions of the following equations

x*— (k> —4)y? = 4(k +2),

xt— (k2 —4)y? = —4(k—-2),

x2— (k2 —4)y* =4k +2),

x2—(k*—4)y* = —4(k —2),

xt—kx?y +y* =—(k-2),

and
x*—kx?y+y?>=k+2.
We show that if k = 1(mod 8), then the equation x* — (k? —4)y% = —4(k —2) has no

integer solutions. Moreover, if k2 — 4 is square-free, then we investigate all positive
integer solutions of the equations

x*—kx?y +y2 = (K2 —-4)(k—2)
and
xt—kx?y+y? = —(k2—4)(k +2).
4

We show that if kK = 1(mod8) and k? — 4 is square-free, then the equation x* —
kx2?y + y? = (k —2)(k? — 4) has no positive integer solutions. Moreover, if k2 —4
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is square-free, then we show that the equation x* —kx?y + y2 = —(k +2)(k%2 —4)
has no positive integer solutions. Let (%) represent Jacobi symbol. Then

()

for every a € Z. Moreover, we have

—1
(7) =l if and only if k = 1,5(mod8), (1.3)
2 ) .
(E) =l if and only if k = 1,7(mod8), (1.4)
and
-2
(7) = 1l if and only if k = 1,3(mod8). (1.5)

2. PRELIMINARY RESULTS

From now on, [ represents a perfect square. Now we give the following lemma
from [5].

Lemma 1. Let k be odd. If Vy,(k,—1) = O for some natural number n, then n = 1
and k is a perfect square.

The following two theorems are given in [3].

Theorem 1. Let k > 3 be an odd integer. If Vy,(k,—1) = kO for some natural
numbern, thenn = 1.

Theorem 2. Let k > 3 be an odd integer. If Vy,,(k,—1) = qO for some q | k with
q>1landn=>1,thenn=1.

The following theorem is given in [6].

Theorem 3. Letn € NU{0},m,r € Z, and m be a nonzero integer. Then

Usmn+r = Ur(modUpy,), (2.1)
Uamntr = (=1)"Ur(mod V), (2.2)
Vamn+r = Vr(modUpy), (2.3)
and
Vamntr = (=1)"V;(mod Vyy), 2.4)

where U, = Uy, (k,—1) and V,, = V,(k,—1).
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When k is odd, it is seen that V,r = 7(mod 8) and thus

-1
=—1 2.5
() 25
for r > 1. It can be easily seen that

(k—l—l)z(k—l):l 2.6)
V2r Vzr

for r > 1. Moreover, it can be shown that if k = 1,7(mod 8), then

k+2
=1 2.7
(5:) ex)
and
k=2\ [ —1 ifk=1,7(mod8),
( Var ) B { 1 ifk =3(mod8). (2:8)

From now on, instead of U, (k,—1) and V;, (k,—1), we will write U,, and V},, respect-
ively. The following seven theorems are given in [4].

Theorem 4. Let k > 3 be an integer and k + 2 be not a perfect square. Then
all positive integer solutions of the equation x* —kxy + y? = k + 2 are given by
(X,)’) = (Ul’l+1 + Ul’laUn + Un—l) Wlthn Z 1~

Theorem 5. Let k > 3. Then all positive integer solutions of the equation x* —

kxy 4+ y% = —(k —2) are given by (x,y) = (Ups1—Up, Uy —Un_1) withn > 0.

Theorem 6. Let k > 3 an integer and k + 2 be not a perfect square. Then all
positive integer solutions of the equation x> — (k? —4)y? = 4(k + 2) are given by

Theorem 7. Let k > 3 an integer and k + 2 be a perfect square. Then all positive
integer solutions of the equation x> — (k? —4)y? = 4(k +2) are given by (x,y) =
(\/k +2Vu—», Un_z) withn > 1.

Theorem 8. Let k > 3. Then all positive integer solutions of the equation x* —

(k2 —4)y? = —4(k —2) are given by (x,y) = (Vu — V1, Up —Un—_1) withn > 1.

Theorem 9. Let k > 3 an integer and k> — 4 be square-free. Then all positive
integer solutions of the equation x> —kxy + y? = —(k + 2)(k*> — 4) are given by
(x,3) = (Va1 + Vo, V. + Va—1) with n > 0.

Theorem 10. Let k > 3 an integer and k? — 4 be square-free. Then all posit-
ive integer solutions of the equation x> —kxy + y? = (k —2)(k? — 4) are given by
(x,9) = Vu+1 =V, Vo = Vu—1) withn > 1.
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3. SOME THEOREMS AND LEMMAS

From now on, we will assume that n > 0 and k > 3 is odd.

Lemma 2. Ifk = 3(mod?8), then (kz;k_l) =—1.

or

Proof. An induction method shows that

Vor = k —1(modk?—k—1) ifriseven,
= —k(modk*—k—1) ifrisodd.

Let r be even. Then we obtain

k2—k—1 k2—2k—2 Vlrz_l Vor
()= (5 5)

o k=1 2 (k—1)/2
B (k2—k—1) B (kz—k—l) (kz—k—l)

EPINC= =N (S kz—k—l)
- ) ((k—l)/z

-1 k=3
= (-1 (m) =(E=D(ED * =-1

Let r be odd. Then we have

(—k2 —k-1 ) — (_1)(k2_2k_2)(vzrz_l) (—Vzr )

Var k?2—k—1

_ (kz_‘—l’j_l) - (kz__l:—l) (kZ—kk—l)

_ (=2 () (_"2 —k— 1)

k
= (_71) = (-n(F) = 1.

Since the proof of the following lemma is easy, we omit it.

k(modk? +k —1) if r is even,
—k —1(modk?®+k—1) ifr is odd.

By using the above lemma, we can give the following lemma.

Lemma 3. V,r = {

Lemma 4. Ifk = 1,5(mod8), then (M) =1.

2r
Theorem 11. Let k = 1,5,7(mod8). If the equation x> = Vy, + Vy,—1 has a solu-

tion, thenn = 0 or 1. If k = 3(mod8), then we have two solutions (n,k) = (3,3),
(3,43).
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Proof. Assume that x2 = V,, + V,,_1 for some positive integer x. Firstly, let k =
1,5,7(mod8) and n > 2. We divide the reminder of the proof into four cases.

Case 1: Assume that n = 4g — 1 with ¢ > 0. Thenn = 2-2"a — 1 with a odd and
r > 1. By (2.4) and (2.3), it follows that

X2 =Vy+ Voo =—(Vo1+Vop) = (k> +k—=2)(modVar)
and
X2 =Vy+ Va1 =Vo + Vo =k +k—2=-2(mod Us).
The above congruences give (%) =1 and (_?2) = 1. Since (_72) =1,

we obtain k = 1,3(mod8) by (1.5). Since k = 1,5,7(mod?8), it follows that k =
1(mod8). By (2.6), (2.5), and (2.7), we get

() () () () e
Vor Vor Vor Vor

a contradiction.
Case 2: Assume that n = 4¢g with g > 1. Thenn = 2-2"a with a odd and r > 1.
By (2.4), we get

X2 =V +Vuor=—Vo+Voy) = —(k +2)(mod Vyr).

This shows that (%) — 1. Then by (2.5), it follows that (%)

= (I;zlr) <I§/-;2) = (1 (%) =1l,ie, (’i,—;z) = —1. Moreover, since

2 =Vag+Vag1=Vo+ Vo1 =k +2=2(modUy),

we obtain (u%) = (%) = 1. By (1.4), we get k = 1,7(mod8). Then by (2.7), it

follows that (%) = 1, which contradicts the fact that (%) =—1.

Case 3: Assume that n = 4¢ + 1 with ¢ > 0. Then n = 2-2"a + 1 with a odd and
r > 1. By (2.4) and (2.3), it follows that

x2 = Vy 4+ Vo1 = =(Vi + Vo) = —(k +2)(mod Var)
and

X2 =Vag1+Vag=Vi+Vo =k +2=2(modUs).
Both the congruences above give (%) =1and (U%) = (%) = 1. Then by (1.4)
and (2.7), we have a contradiction.

Case 4: Assume that n = 4¢ + 2 for some ¢ > 0. Then n = 2-2"a + 2 with a odd
and r > 1. By (2.4) and (2.3), it follows that

X2 =Vy+Vyr=—Va+ V) = —(k2+k—2)(modVar)

and
X2 =Vy+ Voo = Vo4 V) = —=2(modUs).
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These show that (%) =1 and (72) = 1. Since (72) = 1, we obtain k =
1,3(mod8) by (1.5). It follows that k = 1(modS8) since k = 1,5,7(mod8). By (2.6),
(2.5), and (2.7), we get

() () () -
Var Var Vor Var

a contradiction. Thus we get n < 2. If n = 2, then we obtain 2=V +V =
k? 4k —2. The case that k = 2 is impossible since k > 3. Thus we get n = 0 or 1.
Now, assume that k = 3(mod8). Letn = 6q +r with 0 <r < 5. Then we get

Vo = Veg+r = Vr(modUs)

by using (2.3). Since 8 | Us, it follows that V,, = V,.(mod 8) with 0 < r < 5 and since
k =3(mod8), it can be easily seen that V,, = Vp, V1, V5, V3, Vy, Vs =2,3,7(mod8).
Then we obtain x> = V, + V,_1 = 5,2,1(mod8). Since x?> = 0,1,4
(mod8), we get r =3 or 4.

Assume that r = 3. Then n = 6¢q 4+ 3 with ¢ > 0. Let g be odd. Then by (2.4), it
follows that

X2 =V + Va1 = Vegesz + Vogrz = —(Va + Vo) = Vo = —(k* = 2)(mod V3).
Since V3 = k(k? —3), we obtain
x2=—(k?-2) = —k*>+2=—1(modk?-3).

This is impossible since ]‘27_3 = —1(mod4).

Letg beevenand g > 0. Thenn = 6g+3 =2-2"a + 3 witha odd and r > 1. By
(2.4), it follows that
X2 =Vy+ Voot = Varass + Vaorato
=—(Va+ Vo) = —(k+2)(k*>—k —1)(mod Var).

This shows that (%’f%_l)) = 1. However, this is impossible since

—(k+2)(k2—k—=1)\ (=1 [k+2\[(k?—k—1\ _
( Var )_(Vzr)(Vzr)( Var )_(_1)(_1)(_1)__1

by (2.5), (2.7), and Lemma 2. If g = 0, then we get x2 = Va + Vo = k3 + k% — 3k —
2. But the integer points on Y2 = X3 4+ X2 —3X —2 are easily determined by using
MAGMA [I]tobe (X,Y) = (—2,0),(=1,F1),(3,F5),(2,F2),(43,F285). Then it
follows that k = 3 or 43.

Now, assume that r = 4. Then n = 6q + 4 with ¢ > 0. Thus we can write n =
6(q + 1) —2 = 6¢ —2 and therefore,

Vi + Vae1 = Vet—a + Ver—3 = —(Va + Va) = Vo = —(k* = 2)(mod V3).
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Since V3 = k(k? —3), we obtain
x2=—(k?-2)=—k?+2=—1(modk?*-3).

This is impossible since ]‘27_3 = —1(mod4). U

Theorem 12. Let k = 3,5,7(mod8). If the equation x*> = V,, — V,,_1 has a solu-
tion, then n = 1 or 2. Moreover, if k = 1(mod8), then the equation x> = Vy, — Vy,_,
has no solutions.

Proof. Let k = 3,5,7(mod8). Assume that x> = V,, — V;,_1 for some positive
integer x. Let n > 2. We divide the reminder of the proof into four cases.

Case 1: Assume that n = 4g — 1 with ¢ > 0. Thenn = 2-2"a — 1 with a odd and
r > 1. By (2.4) and (2.3), it follows that

x? = Vago1—Vag—a = —(V_1 = V_p) = k* —k —2(mod Var)
and
X2 = V4q_1 — V4q_2 = V_1 - V_2 = 2(m0dU2).
These show that (kz;%) =1 and (%) = 1. Since (%) = 1, it follows that k =

1,7(mod8) by (1.4). Since k = 3,5,7(mod8), we get k = 7(mod8). Then by using
(1.4) and (2.8), we obtain

1:("2—#) — (E) (k+l) =(-1)-1=—1,
Var Var Var

a contradiction.
Case 2: Assume that n = 4g with g > 1. Thenn = 2-2"a with a odd and r > 1.
By (2.4), we get

x2 = V4q — V4q_1 = —(VO - V_l) =k —2(m0dV2r).

This shows that (£=2) = 1. On the other hand, by using (2.3), we obtain
Vor

X2 =Vag—Vag—1=Vo—V_1 = —k +2=2(modU,),
which implies that (£) = 1. Then it follows that k = 1,7(mod8) by (1.4). Since

k = 3,5,7(mod8), we have k = 7(mod8). Then by (2.8), we get (1;/;2) = —1,

which contradicts the fact that (1;/_;2) =1.

Case 3: Assume that n = 4g 4+ 1 with g > 0. Thenn = 2-2"a + 1 with a odd and
r > 1. By (2.4) and (2.3), it follows that

X% =Vigt1—Vag = —(V1 = Vo) = —(k —2)(mod Var)

and
X2 = V4q+1 — V4q = V1 — Vo = —2(m0dU2).
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These show that (%) =1 and (%2) = 1. Since (_72) =1, it follows that k =

1,3(mod8) by (1.5). Since k = 3,5,7(mod8), we get k = 3(modS8). Then by (2.5)
and (2.8), we obtain

(7)) )=

which contradicts the fact that (%) =1.

Case 4: Assume that n = 4q 4+ 2 with ¢ > 0. Then n = 2-2"a + 2 with a odd and
r > 1. By (2.4) and (2.3), it follows that

x% = Vagrar—Vagy1 = —(Va— V1) = —(k* =k —2)(mod Var)

and
x2= Vagr2—Vags1 = Vo= Vi = —2(mod Us).

The above congruences give (%) = land (72) = 1. Since (F2) = 1, it fol-
lows that k = 1,3(mod?8) by (1.5). Since k = 3,5,7(mod8), we get k = 3(mod8).

Then by using (1.4), (2.5), and (2.8), we obtain 1 = (W) —

(;1 ) (’%,_2) (’i}“) = —1, a contradiction. Therefore, n < 2. If n = 0, then we
2r 2r 2r
have x2 = Vo — V_q = 2—k, which is impossible. So, we getn =1 or 2.

Now, assume that k = 1(mod8). Let n = 6q 4+ r with 0 <r < 5. Then by using
(2.3), we get

Vn = V6q+r = Vr(modU3).

Since 8 | Us, it follows that V,, = V,. (mod8) with 0 < r < 5. Moreover, since k =

1(mod8), it can be easily seen that V,, = Vp, V1, V5, V3, V4, Vs = 2,1,7,6(mod8).

Then we get x2 =V, — V,—1 = 1,6,7(mod8). It can be seen that r = 0 or 4.
Assume that r = 0. Then n = 6 with g > 0. Let g be odd. Then it follows that

X2 =Vp= Va1 =Veg—Veg—1 = —(Vo—V-1) =k —2(mod V3)
by (2.4). Since V3 = k(k? —3), we obtain
x2 =k —2(modk?-3),
which implies that x? = k —2 (m od sz_3) . Therefore, (
1(mod8), we get 1622—_3 = 3(mod4). These show that

- (k;z) _ () ((kz—s)/z)

(k2—=3)/2 k—2

-0 (5) (75)

k—2 _ : —
m) = 1. Since k =
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1
=(‘”'1'(m) -

a contradiction. Let ¢ be even. Thenn = 6g =2-2"a witha odd and r > 1. By (2.4),
it follows that

x2 =Vy Va1 =Vaozrg—Vaorg—1 = _(VO - V—l) =k —2(m0dV2r).
This shows that (’;,—;2) — 1, which is impossible by (2.8).

Now, assume that r = 4. Then n = 6¢q + 4 with ¢ > 0. We can write n = 6(q +
1) —2 = 6¢ —2. Let ¢ be odd. Then it follows that

X% =Vy— Va1 = Vor—2—Ver—3 = —(Vo — V_3) = Vo = —(k* = 2)(mod V)
by (2.4). Since V3 = k(k? —3), we obtain
x2=—(k?=2) = —1(modk?*-3),
which shows that x% = —1 (mod ]‘22—_3> . But this is impossible since @ =3(mod4).
Let ¢ be even. Thenn = 61 —2 =2-2"a —2 with a odd and r > 1. It follows that
X2 =Vy— Voot = Vazra—a — Vaora—3
=—(Vop—V_3) = (k=2)(k®> +k —1)(mod Var)

by (2.4). This shows that (%) = 1. Then by (2.8) and Lemma 4, we

k=2\(k+k=1\_ |
Vor Var -

which contradicts the fact that (%) = 1. This completes the proof. [J

obtain

Theorem 13. If the equation x*> = U, 11 + Uy, has a solution, thenn = 0 or 1.

Proof. Assume that x> = U,+1 + U, for some positive integer x. Now, assume
that n > 2. We distinquish four cases.
Case 1: Assume that n = 4g — 1 with g > 0. Then by (2.1), we get

x2 = Usg 4+ Usg—1 = Up +U_1 = —1(mod U5).

This shows that (_71) = 1. Then it follows that k = 1,5(mod 8) by (1.3).
Let g =3u—1 withu > 0. Then n = 12u — 5. By using (2.1), we obtain

x2 =Ursyu_s+Urzu_s=U_4+U_5s =k —3(modUs).

Since 8 | Us, we get x2 = k —3(mod8). Moreover, since k = 1,5(mod 8), it follows
that x2 = —2,2(mod8), which is impossible.
Let ¢ = 3u with u > 0. Then n = 12u — 1. Here, we get

x? = Upay—1 +Usay = U_1 + Uy = —1(mod Us)
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by (2.1). Since 8 | Us, it follows that x?> = —1(mod8), which is impossible.
Let g = 3u + 1 with ¥ > 0. Then n = 12u + 3. Here, we obtain

x% = Uiouta + Urzut3s = Us + Uz = Us = —k(mod Us)

by (2.1). Since 8 | Us, it follows that x> = —k(mod8). Moreover, since k =
1,5(mod8), we obtain x? = —1,—5(mod 8). However, this is impossible.

Case 2: Assume that n = 4q with ¢ > 1. Then n = 2-2"a with a odd and r > 1.
By (2.2), we get

x? = Usg+1+Usg = —(Uy1 +Up) = —1(mod Var),

which is impossible by (2.5).
Case 3: Assume that n = 4g 4+ 1 with g > 0. Thenn = 2-2"a + 1 with a odd and
r > 1.By (2.2), we get

x% = Usgt2+Usg1 = —(Uz + Uy) = —(k + 1) (mod Var).

This shows that (%) = 1. Since (;Tlr) = —1and (%) — (—1 ) (k+1)’

Vor )\ Var
it follows that (’;,—jl) — 1. This is impossible by (1.5).
Case 4: Assume that n = 4¢g + 2. Thenn = 2-2"a 4 2 with a odd and r > 1. By
(2.1), we obtain
X% =Usg3 +Usgra = Us+ Uy = —1(mod Us),

i.e., (1) = 1. It follows that k = 1,5(mod8) by (1.3). On the other hand, by (2.2),
we get

x? = Usg+3+Usgi2=—(Uszs+Us) = —(k2 +k—1)(modV,r).

This shows that (%) = 1. Since (%) = (;Tlr) (%) =1 and

(;1 ) = —1, we have (%) = —1. This is impossible by Lemma 4. Therefore,
2r 2r

n<2.Ifn=2,then x2 = U3 + Uy = k% + k — 1, which shows that k = 1. This is
impossible since k > 3. Thus we getn =0 or 1. U

Since the proof of the following theorem is similar to that of above theorem, we
omit its proof.

Theorem 14. If the equation x*> = U, 1 — Uy, has a solution, then n =0 or 1.

4. MAIN THEOREMS

Now, we consider positive integer solutions of some fourth-order Diophantine
equations.
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Theorem 15. Let k + 2 be not a perfect square. If k + 1 is a perfect square, then
all positive integer solutions of the equation x* —kx?y + y* = k + 2 are given by
x,y)=Wk+1,1), Wk + 1,k 4+k—1), (1,k+1). Ifk + 1 is not a perfect square,
then the only positive integer solution of this equation is (x,y) = (1,k + 1).

Proof. Assume that x* —kx?y + y? = k 4 2 for some positive integers x and y.
Then by Theorem 4, we obtain x? = U1+ Uy, y =U, +Up—1 or x2=U,+
Un—1,y = Upt1 + Uy, withn > 0. Let x> = Uy 41 + Uy. Then it follows that n = 0
or 1 by Theorem 13. Since n > 0, we have n = 1. Then we have x?2 = Up+1 +
U,=Uy+Uy=k+1and y =U; + Uy = 1. If k + 1 is a perfect square, then
it follows that x = vk +1 and y = 1. Now, let x?> = U, + U,_1. Then we obtain
n—1=0or 1 by Theorem 13. Assume that n = 1. Then x> = U; 4+ Uy = 1 and
y=U;+U; =k + 1. Thus we have x = 1 and y = k + 1. Now, assume that n = 2.
Thenwe get x2 =Us+ Uy =k+1land y=Us+ Uy =k*>’+k—1.Ifk+1isa
perfect square, then it follows that x = vk + 1 and y = k> +k — 1. Thus if k + 1
is not a perfect square, then this equation has no positive integer solutions. Then the
proof follows. U

Theorem 16. If k — 1 is a perfect square, then all positive integer solutions of
the equation x* —kx?y + y? = —(k —2) are given by (x,y) = (1,1), (Wk —1,1),
(Wk—=1,k2 =k —1), (1,k —1). Moreover, if k — 1 is not a perfect square, then all
positive integer solutions of this equation are given by (x,y) = (1,1) or (1,k —1).

Proof. Assume that x* —kx2?y + y? = —(k —2) for some positive integers x and
y. Then by Theorem 5, we obtain x2 = Up+1—Uy, y=U,—U,—1 or x2=U,—
Up—1,y=Uy4+1—U, withn > 0. Let x2 = Un+1—U,. Then it follows thatn = 0 or
1 by Theorem 14. Assume that n = 0. Then we have x2 = Up+1—-U,=U;-Upy=1
and y = Up—U—_; = 1. Thus we have x = 1 and y = 1. Now, assume that n = 1.
Then we get x2=Uy—U=k—-landy=U,-Uy=1. Ifk—11is a perfect
square, then it follows that x = +/k —1 and y = 1. Now, let x2=U, —U,_;. Then
we obtain n = 1 or 2 by Theorem 14. Assume that n = 1. Then x2=U;-Uy=1
and y = Up — Uy = k — 1. Thus we have x = 1 and y = k — 1. Now, assume that
n=2Thenwegetx?=U,—Uy=k—landy=Us—Up =k*>—k—1.Ifk—1
is a perfect square, then it follows that x = vk —1land y = k> —k — 1. Thus if k — 1
is not a perfect square, then this equation has no positive integer solutions other than
(1,1) and (1,k—1). g

Theorem 17. Ifk = 1,5,7(mod8), then the equation x* — (k* —4)y? = 4(k +2)
has a solution if and only if k + 2 is a perfect square. Moreover, if k = 1,5,7(mod 8)
and k + 2 is a perfect square, then the only positive integer solution of this equation is
(x,y) =Wk +2,1). Ifk = 3(mod8), then the equation x* — (k? —4)y? = 4(k +2)

has positive integer solutions only when k = 3 or 43.
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Proof. Assume that x* — (k% —4)y? = 4(k + 2) for some positive integers x and
y. Firstly, let k = 1,5,7(mod8) and k + 2 be not a perfect square. Then by Theorem
6, it follows that x2 = V), + V,,_; with n > 1. Therefore, by Theorem 11, it is seen
that n = 0 or 1. Since n > 1, we get n = 1. Then it follows that x> = k + 2. But
this is impossible since k + 2 is not a perfect square. Let k = 1,5,7(mod8) and
k + 2 be a perfect square. Then by Theorem 7, it follows that x2 = vk +2V,—».
Therefore, we obtain V,_>(vk +2,—1) = O,k +20 oral witha | vk +2. If
Va—a(Wk+2,—1) = Vk+20 or ald with a | +/k + 2, then it follows that n = 3
by Theorem 2 and Theorem 1. Then it can be seen that x = ~/k+2 and y = 1. If
Va—2(Vk+2,—1) =0, we have n = 3 and k + 2 is a perfect square by Lemma 1.
Thus if k + 2 is a perfect square, then we obtain x = +/k +2 and y = 1. Now, let
k = 3(mod8). Then k + 2 is not a perfect square and it follows that k = 3 or 43 by
Theorem 6 and Theorem 11. When k = 3, we get the solution (x,y) = (5,11). When
k = 43, we get the solution (x, y) = (285,1891). O

Theorem 18. Ifk + 1 is not a perfect square, then the only positive integer solution
of the equation x> — (k?> —4)y* = 4(k +2) is (x,y) = (k +2,1). Moreover; ifk + 1
is a perfect square, then all positive integer solutions of this equation are given by

(x,y)=(k2+k =2, Vk+1)or (k+2,1).

Proof. Assume that x? — (k2 —4)y* = 4(k + 2) for some positive integers x and
y. Then by Theorem 6, it follows that x =V, + V1, y2 =U, +U,—1 withn > 0.
Therefore, by Theorem 13, we have n = 1 or 2. Let n = 1. Then it follows that
x=Vi+Vo=k+2and y? = Uy + Uy = 1. Therefore, we obtain (x, y) = (k +2,1).
Letn =2. Thenitisseenthatx = Vo + V) =k?>—2+kand y2 = U, + Uy =k + 1.
If k + 1 is a perfect square, then we obtain x = k2 +k —2and y = vk + 1. O

Theorem 19. Let k = 3,5,7(mod8). If k = 3, then all positive integer solutions
of the equation x* — (k* —4)y? = —4(k —2) are given by (x,y) = (2,2), (1,1). If
k # 3 and k —2 is a perfect square, then the only positive integer solution of the
equation x* — (k* —4)y? = —4(k —2) is (x,y) = Wk —=2,1). Ifk #3 and k —2 is

not a perfect square, then this equation has no positive integer solutions.

Proof. Assume that x* — (k? — 4)y? = —4(k — 2) for some positive integers x
and y. Then by Theorem 8, we obtain x2 = V,, — V,,_; and y = U, — U, with
n > 0. Since k = 3,5,7(mod8) and x2 =V, —V,_1, it follows that n = 1 or 2 by
Theorem 12. Let n = 1. Then we have x2 = V; —Vp = k —2 and y=U—-Up=1.
If Kk —2 is a perfect square, then we obtain (x,y) = (vk —2,1). Otherwise this
equation has no solutions. Let n = 2. Then it follows that xX2=V,—Vi=k2-2—k
and y = U, —U; =k —1. Since x? = k? —k —2, we get 4x> = 4k?> —4k —8, i.e.,
(2k —1)2 = (2x)? = 9. This shows that k = 3. Hence, we get x =2and y =2. O

Theorem 20. Let k = 1(mod8). Then the equation x* — (k* —4)y? = —4(k —2)
has no integer solutions.
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Proof. Assume that x* — (k? — 4)y? = —4(k — 2) for some positive integers x
and y. Then by Theorem 8, we obtain x> = V,, — V;,_1 and y = U, — U,,_;. This is
impossible by Theorem 12. g

Theorem 21. Ifk — 1 is not a perfect square, then the only positive integer solution
of the equation x*> — (k> —4)y* = —4(k —2) is (x,y) = (k—2,1). Moreover, ifk —1
is a perfect square, then all positive integer solutions of the equation x> — (k* —
4)y* = —4(k —2) are given by (x,y) = (k2 —=2—k, vk —1), (k—2,1).

Proof. Assume that x2 — (k2 —4)y* = —4(k —2) for some positive integers x and
y. Then by Theorem 8, we obtain x = V;, — V},_; and y2 =U, —-U,_1 withn > 0.
Therefore, by Theorem 14, it follows that » = 1 or 2. Let n = 1. Then we have x =
Vi—Vo=k—2and y2 = Uy —Up = 1. Therefore, (x,y) = (k—2,1). Now, letn = 2.
Then it follows that x = Vo — V; = k%2 —2—k and y2 = U,y —U; =k — 1. Therefore,
if k — 1 is a perfect square, then it follows that (x,y) = (k2 —k —2,~/k—1) is a
solution. O

Theorem 22. Letk = 1,5,7(mod8) and k? — 4 be square-free. Then the equation
x*—kx?y 4+ y? = —(k +2)(k? — 4) has no positive integer solutions.

Proof. Assume that x* —kx2y + y2 = —(k 4+ 2)(k? — 4) for some positive in-
tegers x and y. Then by Theorem 9, we obtain x2 = Va1 +Va,y =V 4+ Vi
orx2="V,+ Vie1,y = Vag1 + Vi with n > 0. Let x2 = Vi1 + Vy. Since k =
1,5,7(mod8), we obtain n + 1 = 0 or 1 by Theorem 11. Since n > 0, we get n = 0.
Then we have x2 = V; 4+ Vy =k +2 and y = Vo + V_1 = k + 2. This is impossible
since k2 —4 is square-free. Let x2 =V, + V,_1. Then by Theorem 11, we obtain
n =0 or 1. Thus it follows that x> = Vo + V_; = V1 + Vo = k +2. This is impossible
since k2 — 4 is square-free. U

From Theorem 9 and Theorem 11, we can give the following theorem.

Theorem 23. Let k = 3(mod8) and k? — 4 be square-free. Then the equation
x*—kx?y 4+ y? = —(k +2)(k? — 4) has no positive integer solutions.

Theorem 24. Let k = 3,5,7(mod8) and k? — 4 be square-free. Then the equation
x* —kx?y + y% = (k —2)(k? — 4) has positive integer solutions only when k =3
and in which case all positive integer solutions are given by (x,y) = (2,1), (1,4) or
@2.11).

Proof. Assume that x* —kx?y + y? = (k —2)(k* —4) for some positive integers x
and y. Then by Theorem 10, we obtain x2= Vas1—Va,y=Vy—Vy_qor x2=V,—
Va—1, ¥ = Vy41—V, with n > 1. Assume that x2 = V41— Vu. Then by Theorem
12, we obtain n + 1 = 1 or 2. Since n > 1, we get n = 1. Then it follows that x? =
Vo—Vi =k?—k—2 and y =V —Vo =k—2. Since x2=k%?—k-2, we get
4x? = 4k?> —4k -8, ie., (2k —1)2 — (2x)?> = 9. Thus it follows that k = 3. Then it
can be seen that (x, y) = (2, 1). Now, assume that x> = V;, — V},_;. Then by Theorem
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12, it follows that n = 1 or 2. Let n = 1. Then we get x2=Vi—-Vy=k—2and
y =V, — V) =k?—2—k. Thus k —2 must be a perfect square. But this is impossible
in the case that k > 3. Let kK = 3. Then we obtain x = 1 and y = 4. Let n = 2. Then
we obtain x2 = Vo, — V; = k2 —k —2. It can be shown that k = 3. Then we have
(x,y) = (2,11). This completes the proof. O

From Theorem 10 and Theorem 12, we can give the following theorem.

Theorem 25. Let k = 1(mod8) and k* — 4 be square-free. Then the equation
x*—kx?y 4+ y? = (k —2)(k? — 4) has no positive integer solutions.
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