TRACES OF PERMUTING GENERALIZED N-DERIVATIONS OF RINGS

MOHAMMAD ASHRAF, ALMAS KHAN, AND MALIK RASHID JAMAL

Received 03 November, 2015

Abstract. Let $n \geq 1$ be a fixed positive integer and R be a ring. A permuting n-additive map $\Omega : R^n \to R$ is known to be permuting generalized n-derivation if there exists a permuting n-derivation $\Delta : R^n \to R$ such that $\Omega(x_1, x_2, \ldots, x_n) = \Delta(x_1, x_2, \ldots, x_n)$ holds for all $x_i \in R$. A mapping $\delta : R \to R$ defined by $\delta(x) = \Delta(x, x, \ldots, x)$ for all $x \in R$ is said to be the trace of Δ. The trace ω of Ω can be defined in the similar way. The main result of the present paper states that if R is a $n!/\mathbb{S}$-torsion free semi-prime ring which admits a permuting n-derivation such that the trace ω of Ω satisfies $\delta(x) = \Delta(x, x, \ldots, x)$ for all $x \in R$, then ω is commuting on R. Besides other related results it is also shown that in a $n!/\mathbb{S}$-torsion free prime ring if the trace ω of a permuting generalized n-derivation Ω is centralizing on R, then ω is commuting on R.

2010 Mathematics Subject Classification: 16W25; 16U80

Keywords: derivation, generalized derivation, permuting n-derivation, centralizing map, prime ring

1. Introduction

Throughout R will denote an associative ring with center $Z(R)$. For any $x, y \in R$, $xy - yx$ denotes the commutator $[x, y]$. A ring R is said to be prime (resp. semi-prime) if $aRb = \{0\}$ implies either $a = 0$ or $b = 0$ (resp. $aRa = \{0\}$ implies $a = 0$). Let $m \geq 1$ be a fixed positive integer. A map $f : R \to R$ is said to be centralizing (resp. commuting) on R if $[f(x), x] \in Z(R)$ (resp. $[f(x), x] = 0$) holds for all $x \in R$. An additive mapping $d : R \to R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. Following [4], an additive mapping $F : R \to R$ is said to be a generalized derivation on R if there exists a derivation $d : R \to R$ such that $F(xy) = F(x)y + xd(y)$ holds for all $x, y \in R$. Suppose n is a fixed positive integer and $R^n = R \times R \times \cdots \times R$. A map $\Delta : R^n \to R$ is said to be permuting if the relation $\Delta(x_1, x_2, \ldots, x_n) = \Delta(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)})$ holds for all $x_i \in R$ and for every permutation $\{\pi(1), \pi(2), \ldots, \pi(n)\}$. The concept of derivation and symmetric bi-derivation was generalized by Park [7] as follows: a permuting map $\Delta : R^n \to R$ is said to be a permuting n-derivation if Δ is n-additive (i.e.; additive
in each coordinate) and \(\Delta(x_1, x_2, \cdots, x_i x'_i, \cdots, x_n) = x_i \Delta(x_1, x_2, \cdots, x_i, \cdots, x_n) \) +
\Delta(x_1, x_2, \cdots, x_i, \cdots, x_n) x'_i \) holds for all \(x_i, x'_i \in R \). A 1-derivation is a derivation and a 2-derivation is a symmetric bi-derivation while a 3-derivation is known as permuting tri-derivation.

A well known result due to Posner [8] states that a prime ring \(R \) which admits a non-zero centralizing derivation is commutative. In fact, this result initiated the study of centralizing and commuting mappings in rings. Since then, several authors have done a great deal of work concerning commutativity of prime and semi-prime rings admitting different kinds of maps which are centralizing or commuting on some appropriate subsets of \(R \) (see [5, 6] and [7] for further references). Let \(R \) be a prime ring, a well known result due to Posner [8] states that a prime ring \(R \) is a permuting generalized derivation if there exists a permuting map, be the trace of \(\Delta \). Moreover, it can be easily seen that \(\Delta(x_1, x_2, \cdots, -x_i, \cdots, x_n) = -\Delta(x_1, x_2, \cdots, x_i, \cdots, x_n) \) for all \(x_i \in R, i = 1, 2, \cdots, n \).

Motivated by the concept of generalized derivation in ring, we introduce the notion of permuting generalized \(n \)-derivation in ring. Let \(n \geq 1 \) be a fixed positive integer. A permuting \(n \)-additive map \(\Omega : R^n \to R \) is known to be permuting generalized \(n \)-derivation if there exists a permuting \(n \)-derivation \(\Delta : R^n \to R \) such that \(\Omega(x_1, x_2, \cdots, x_i x'_i, \cdots, x_n) = \Omega(x_1, x_2, \cdots, x_i, \cdots, x_n)x'_i + x_i \Delta(x_1, x_2, \cdots, x_i, \cdots, x_n) \) holds for all \(x_i, x'_i \in R \). For an example of permuting generalized \(n \)-derivation, let \(n \geq 1 \) be a fixed positive integer and \(R = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \right\} | a, b, c \in \mathbb{C} \) where \(\mathbb{C} \) is a complex field. Consider permuting \(n \)-derivation \(\Delta \) as above and define \(\Omega : R^n \to R \) such that

\[
\Omega \left(\begin{pmatrix} 0 & a_1 & b_1 \\ 0 & 0 & c_1 \\ 0 & 0 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & a_n & b_n \\ 0 & 0 & c_n \\ 0 & 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & a_1 \cdots a_n \\ 0 & 0 & c_1 \cdots c_n \end{pmatrix}.
\]

Then \(\Omega \) is a permuting generalized \(n \)-derivation on \(R \) associated with a permuting \(n \)-derivation \(\Delta \) on \(R \).

Let \(\omega : R \to R \) such that \(\omega(x) = \Omega(x, x', \cdots, x) \). Then \(\omega \) is known as the trace of \(\Omega \). A permuting \(n \)-additive map \(\Lambda : R^n \to R \) is said to be a permuting left \(n \)-multiplier (resp. permuting right \(n \)-multiplier) if \(\Lambda(x_1, x_2, \cdots, x_i x'_i, \cdots, x_n) = \Lambda(x_1, x_2, \cdots, x_i, \cdots, x_n) x'_i \) (resp. \(\Lambda(x_1, x_2, \cdots, x_i x'_i, \cdots, x_n) = x_i \Lambda(x_1, x_2, \cdots, x'_i, \cdots, x_n) \)) holds for all \(x_i, x'_i \in R \). If \(\Lambda \) is both permuting left \(n \)-multiplier as well as right \(n \)-multiplier, then \(\Lambda \) is called a permuting \(n \)-multiplier.

Motivated by the results due to Posner [8], Vukman obtained some results concerning the trace of symmetric bi-derivation in prime ring (see [9, 10]). Ashraf [1] proved similar results for semi-prime ring. In the year 2009, Park [7] introduced the concept of symmetric permuting \(n \)-derivation and obtained some results related to
the commuting traces of permuting n-derivations in rings. Further, the first author together with Jamal and Parveen [2, 3] obtained commutativity of rings admitting n-derivations whose traces satisfy certain polynomial conditions.

The main objective of this paper is to find the analogous results for permuting generalized n-derivation in the setting of prime and semi-prime rings. In fact, our theorems present a wide generalization of the results obtained in [1], Theorem 2.1, [7], Theorem 2.3, [7], Theorem 2.5, [9], Theorem 1, [9], Theorem 2, [10], Theorem 2 etc.

2. Results

We begin with the following known results which are frequently used in our discussion.

Lemma 1 (Lemma 2.4 in [7]). Let n be a fixed positive integer and let R be a $n!$-torsion free ring. Suppose that $y_1, y_2, \ldots, y_n \in R$ satisfy $\lambda y_1 + \lambda^2 y_2 + \cdots + \lambda^n y_n = 0 \ (or \ \in Z(R))$ for $\lambda = 1, 2, \ldots, n$. Then $y_i = 0 \ (or \ y_i \in Z(R))$ for all i.

Lemma 2 (Theorem 2.3 in [7]). Let $n \geq 2$ be a fixed positive integer and R be a non-commutative $n!$-torsion free prime ring. Suppose that there exists a permuting n-derivation $\Delta : R^n \to R$ such that the trace δ of Δ is commuting on R. Then we have $\Delta = 0$.

Lemma 3 (Theorem 2.6 in [7]). Let $n \geq 2$ be a fixed positive integer and R be a $n!$-torsion free prime ring. Suppose that there exists a non-zero permuting n-derivation $\Delta : R^n \to R$ such that the trace δ of Δ is centralizing on R then R is commutative.

As stated in the beginning, there has been a great deal of work concerning centralizing and commuting mappings. The following result shows that if the trace δ of a permuting n-derivation Δ is centralizing on R then it is commuting on R. In fact, we prove rather a more general result:

Theorem 1. Let $n \geq 2$ be a fixed positive integer and R be a $(n+1)!$-torsion free semi-prime ring admitting a permuting n-derivation Δ such that the trace δ of Δ satisfies $[[\delta(x), x], x] = 0$ for all $x \in R$. Then δ is commuting on R.

Proof. From our hypothesis we have

$$[[\delta(x), x], x] = 0 \ \text{for all} \ x \in R. \quad (2.1)$$

An easy computation shows that the traces δ of Δ satisfies the following relations

$$\delta(x + y) = \delta(x) + \delta(y) + \sum_{r=1}^{n-1} \binom{n}{r} h_r(x, y) \text{ for all } x, y \in R$$

where $h_r(x, y) = \Delta(x, x, \ldots, x, y, y, \ldots, y)$. (n-r)-times r-times
Consider a positive integer $k, 1 \leq k \leq n + 1$. Replacing x by $x + ky$ in equation (2.1), we obtain

$$kQ_1(x, y) + k^2 Q_2(x, y) + \ldots + k^{n+1} Q_{n+1}(x, y) = 0$$

for all $x, y \in R$, where $Q_i(x, y)$ denotes the sum of the terms in which y appears i times. By (2.1) and Lemma 1, we have for all $x, y \in R$,

$$[[\delta(x), x], y] + [[\delta(x), y], x] + n[[\Delta(x, x, \ldots, y), x], x] = 0.$$ \hspace{1cm} (2.2)

Replacing y by x in (2.2) we get

$$0 = [[\delta(x), x], xy] + [[\delta(x), xy], x] + n[[\Delta(xy, x, x, \ldots), x], x] + n[[\delta(x)y, x], x]$$

$$= [[\delta(x), x], xy] + [x[\delta(x), y], x] + n[[\delta(x)x, xy], x] + n[[\delta(x)y, x], x]$$

$$= [[\delta(x), x], x] + x[[\delta(x), x], x] + x[[\delta(x), y], x] + [x, x] [[\delta(x), y], x]$$

$$+ [\delta(x), x][y, x] + [[\delta(x), x], x]y + n[[\Delta(xy, x, x, \ldots), x], x]$$

$$+ n\delta(x)[y, x, x] + n\delta(x)[x, x] + n[[\delta(x), x], x]y + n[[\delta(x), x], x]y.$$ \hspace{1cm} (2.3)

Using (2.1) and (2.2) we find that

$$(2n + 1)[\delta(x), x][y, x] + n\delta(x)[y, x, x] = 0$$

for all $x, y \in R$. \hspace{1cm} (2.3)

Similarly, replacing y by yx in (2.2), one can get

$$(2n + 1)[y, x][\delta(x), x] + n[[y, x], x] \delta(x) = 0$$

for all $x, y \in R$. \hspace{1cm} (2.4)

Replacing y by yz in (2.3), we have

$$0 = (2n + 1)[\delta(x), x][y, x, x] + n\delta(x)[y, x, x, x]$$

$$= (2n + 1)[[\delta(x), x][y, x, x] + [\delta(x), x]y[x, x]] + n\delta(x)y[[x, x], x]$$

$$+ n\delta(x)[y, x, x][x, x] + n\delta(x)[y, x][x, x] + n\delta(x)[y, x, x][x, x]$$

$$= (2n + 1)[\delta(x), x][y, x, x] + n\delta(x)[y, x, x][x, x] + n\delta(x)[y, x, x][x, x].$$ \hspace{1cm} (2.5)

Using equation (2.3)

$$(2n + 1)[\delta(x), x][y, x, x] + n\delta(x)[y, x, x][x, x] + n\delta(x)[y, x, x][x, x] = 0.$$ \hspace{1cm} (2.5)

Replacing y by $\delta(x)$ in the above relation we find that

$$(2n + 1)[\delta(x), x][\delta(x), x] + n\delta(x)^2[[x, x], x] + 2n\delta(x)[\delta(x), x][x, x] = 0.$$ \hspace{1cm} (2.5)

From (2.3) we have $n\delta(x)^2[[y, x], x] = -(2n + 1)\delta(x)[\delta(x), x][y, x].$ Now using this relation in (2.5) we get

$$0 = (2n + 1)[\delta(x), x][\delta(x), x] - (2n + 1)\delta(x)[\delta(x), x][x, x]$$

$$+ 2n\delta(x)[\delta(x), x][x, x]$$

$$= ((2n + 1)[\delta(x), x][\delta(x) - \delta(x)][\delta(x), x])[x, x].$$ \hspace{1cm} (2.6)
Similarly using (2.4) one can easily obtain
\[\{(2n + 1)\delta(x)\delta(x) - [\delta(x), x]\delta(x)\}[z, x] = 0. \tag{2.7} \]

Adding (2.6) and (2.7) we arrive at
\[2n\{[\delta(x), x]\delta(x) + 2n\delta(x)\delta(x)\}[z, x] = 0. \tag{2.8} \]

Since \(2n\) divides \((n + 1)\), we find that \(R\) is \(2n\)-torsion free and hence for all \(x, z \in R\),
\[\{(\delta(x), x)\delta(x) + \delta(x)\delta(x)\}[z, x] = 0. \tag{2.8} \]

Using (2.8) in (2.6) we obtain
\[(2n + 2)\delta(x, x)\delta(x) \delta(x) [z, x] = 0 \]
for all \(x, z \in R\). Since \(2(n + 1)\) divides \((n + 1)\), we find that \(R\) is \(2(n + 1)\)-torsion free and hence for all \(x, z \in R\),
\[\{(\delta(x), x)\delta(x) = 0 \quad \text{for all} \quad x, z \in R \}. \tag{2.9} \]

Similarly application of (2.7) and (2.8) yields that
\[\delta(x, x) = 0 \quad \text{for all} \quad x \in R. \tag{2.10} \]

Replacing \(x\) by \(kx\) in equation (2.10) where \(1 \leq k \leq 2n\) and implementing Lemma 1
\[\delta(x, y) + n\delta(x)\delta(x, x, ..., y, x) + n\delta(x, x, ..., y)\delta(x, x) = 0. \tag{2.11} \]

Replacing \(y\) by \(yx\)
0 = \(\delta(x)[\delta(x), yx] + n\delta(x)[y\delta(x) + \Delta(x, x, ..., y)x, x] + n\delta(x)\delta(x, y)x]\delta(x, x) \]
= \(\delta(x)y[\delta(x), x] + n\delta(x)[y\delta(x), x] + n\delta(x)\delta(x, y][\delta(x), x] + n\delta(x)[y, x]\delta(x, x) + n\delta(x)\delta(x, x, ..., y)x]\]
= \(y\delta(x)[\delta(x), x] + n\delta(x)[y, x]\delta(x, x, ..., y)x\]
\[\text{From (2.11) we have} \]
\[-n\Delta(x, x, ..., y)[\delta(x), x]x = \delta(x)[\delta(x), y]x + n\delta(x)[\Delta(x, x, ..., y), x]x. \tag{2.12} \]

Using (2.10) and (2.12) in the above relation, we get
\[0 = (n + 1)\delta(x)y[\delta(x), x] + n\delta(x)[y, x]\delta(x) + n\Delta(x, x, ..., y)x[\delta(x), x] \]
\[-n\Delta(x, x, ..., y)[\delta(x), x]x \]
= \((n + 1)\delta(x)y[\delta(x), x] + n\delta(x)[y, x]\delta(x) - n\Delta(x, x, ..., y)[[\delta(x), x]x]. \]

This gives that
\[(n + 1)\delta(x)y[\delta(x), x] + n\delta(x)[y, x]\delta(x) = 0 \quad \text{for all} \quad x, y \in R. \tag{2.13} \]
Substituting xy for y in (2.13)

$$(n + 1)\delta(x)xy[\delta(x), x] + n\delta(x)x[y, x]\delta(x) = 0 \text{ for all } x, y \in R.$$

(2.14)

Left multiply (2.13) by x, we obtain

$$(n + 1)\delta(x)y[\delta(x), x] + nx\delta(x)[y, x]\delta(x) = 0 \text{ for all } x, y \in R.$$

(2.15)

Combining (2.14) and (2.15), we get

$$(n + 1)[\delta(x), x]y[\delta(x), x] + n[\delta(x), x][y, x]\delta(x) = 0 \text{ for all } x, y \in R.$$

(2.16)

Replacing y by yz in (2.4), we obtain

$$0 = (2n + 1)[yz, x]\delta(x, x) + n[yz, x]\delta(x)$$

$$= (2n + 1)[yz, x]\delta(x, x) + n[yz, x]\delta(x) + n[y, x]z\delta(x, x)$$

$$= (2n + 1)y[z, x]\delta(x, x) + (2n + 1)[y, x]z\delta(x, x) + ny[z, x]\delta(x)$$

$$+ n[y, x]z\delta(x) + n[y, x]z\delta(x) + n[y, x]z\delta(x).$$

Using (2.4) we get,

$$(2n + 1)[y, x]z\delta(x, x) + 2n[y, x]z\delta(x) + n[y, x]z\delta(x) = 0.$$

Replacing y by $\delta(x)$ in the above relation we get

$$(2n + 1)[\delta(x), x]z[\delta(x), x] + 2n[\delta(x), x]z[\delta(x), x] = 0 \text{ for all } x, z \in R.$$

(2.17)

Combining equations (2.16) and (2.17) we find that

$$0 = (2n + 1)[\delta(x), x]z[\delta(x), x] - 2(n + 1)[\delta(x), x]z[\delta(x), x]$$

$$= [\delta(x), x]z[\delta(x), x] \text{ for all } x, z \in R.$$

Since R is semi-prime, we get $[\delta(x), x] = 0$, for all $x \in R$. □

Theorem 2. Let $n \geq 2$ be a fixed positive integer and R be a $(n + 1)!$-torsion free semi-prime ring admitting a permuting n-derivation Δ such that the trace δ of Δ satisfies $[[\delta(x), x], x] \in Z(R)$ for all $x \in R$. Then δ is commuting on R.

Proof. Replace x by $x + ky$ for $1 \leq k \leq n + 1$ in the given condition to find that

$$kQ_1(x, y) + k^2Q_2(x, y) + \ldots + k^{n+1}Q_{n+1}(x, y) \in Z(R) \text{ for all } x, y \in R,$$

where $Q_i(x, y)$ denotes the sum of the terms in which y appears i times. By Lemma 1, we have for all $x, y \in R$,

$$[[\delta(x), x], y] + [[\delta(x), y], x] + n[[\Delta(x, x, \ldots, y), x], x] \in Z(R).$$

(2.18)

Again replacing y by xy in the above expression, we get

$$x([[\delta(x), x], y] + [[\delta(x), y], x] + n[[\Delta(x, x, \ldots, y), x], x]) + (n + 2)[[\delta(x), x], y]$$

$$+ (2n + 1)[\delta(x), x][y, x] + n\delta(x)[y, x, x] \in Z(R).$$
Combining (2.18) with the latter relation, we find that
\[(3n + 3)\langle\delta(x), x\rangle\langle y, x\rangle + (3n + 1)\langle\delta(x), x\rangle\langle y, x\rangle + n\delta(x)\langle\langle y, x\rangle, x\rangle = 0.\] (2.19)

Further replace \(y\) by \(\delta(x)\) in (2.19) to get
\[(6n + 4)\langle\delta(x), x\rangle\langle\delta(x), x\rangle = 0.\]

On commuting with \(x\), we find that
\[(6n + 4)\langle\delta(x), x\rangle\langle\delta(x), x\rangle^2 = 0.\] (2.20)

Next, on replacing \(y\) by \(\langle\delta(x), x\rangle\) in (2.19) and using the given condition, we have
\[(3n + 3)\langle\delta(x), x\rangle\langle\delta(x), x\rangle = 0.\] (2.21)

Now combine (2.20) and (2.21) to get \(2\langle\delta(x), x\rangle\langle\delta(x), x\rangle^2 = 0.\)

Since, \(R\) is \((n+1)!\)-torsion free and also the center of semi-prime ring is free from nilpotent element, we have \(\langle\delta(x), x\rangle\langle\delta(x), x\rangle = 0.\) From Theorem 1, \(\delta\) is commuting on \(R\). □

Combining Theorem 2 with Lemma 3, we can prove the following:

Corollary 1. Let \(n \geq 2\) be a fixed positive integer and \(R\) be a \((n + 1)!\)-torsion free semi-prime ring admitting a non-zero permuting \(n\)-derivation \(\Delta\) such that the trace \(\delta\) satisfies \(\langle\delta(x), x\rangle\langle\delta(x), x\rangle = Z(R)\) for all \(x \in R\). Then \(R\) is commutative.

Theorem 3. Let \(n \geq 1\) be a fixed positive integer and \(R\) be a non-commutative \(n\)!-torsion free prime ring admitting a permuting generalized \(n\)-derivation \(\Xi\) with associated \(n\)-derivation \(\delta\) such that the trace \(\omega\) of \(\Xi\) is commuting on \(R\). Then \(\Xi\) is a left \(n\)-multiplier on \(R\).

Proof. Our hypothesis yields that
\[\langle\omega(x), x\rangle = 0\] for all \(x \in R\). (2.22)

It can be easily seen that
\[\omega(x + y) = \omega(x) + \omega(y) + \sum_{r=1}^{n-1} \binom{n}{r} p_r(x, y)\] for all \(x, y \in R\)

where \(p_r(x, y) = \Omega(x, \ldots, x, y, y, \ldots, y)\).

Substituting \(x + \lambda y\), where \(\lambda (1 \leq \lambda \leq n)\) is a positive integer, in place of \(x\) in the above equation we obtain
\[0 = \langle\omega(x + \lambda y), x + \lambda y\rangle\]
\[= \langle\omega(x) + \omega(\lambda y) + \sum_{r=1}^{n-1} \binom{n}{r} p_r(x, \lambda y), x + \lambda y\rangle.\]
Using (2.22), we have
\[
0 = \lambda \{[\omega(x), y] + \binom{n}{1} [p_1(x, y), x] + \lambda^2 \{ \binom{n}{1} [p_1(x, y) y] \\
+ \binom{n}{2} [p_2(x, y), x] + \cdots + \lambda^n \{ [\omega(y), x] \\
+ \binom{n}{n-1} [p_{n-1}(x, y), x] \} \text{ for all } x, y \in R.
\]
Implementing Lemma 1 we get
\[
0 = [\omega(x), y] + \binom{n}{1} [p_1(x, y), x] = [\omega(x), y] + n[\Omega(x, x, \ldots, y), x].
\]
Replacing \(y \) by \(yx \) we obtain
\[
0 = y[\omega(x), x] + [\omega(x), y] x + n[\Omega(x, x, \ldots, y) x + y\Delta(x, x, \ldots, x), x] = [\omega(x), y] x + n[y, x] \delta(x) + n[\Omega(x, x, \ldots, y), x] x = n[y, x] \delta(x) + ny[\delta(x), x].
\]
Again replacing \(y \) by \(z y \) for any \(z \in R \) we have \([z, x] y \delta(x) = 0 \) for all \(x, y, z \in R \). Since \(R \) is prime we find that for any \(x \not\in Z(R), \delta(x) = 0 \). Now for any \(y \in Z(R) \) and \(x \not\in Z(R), x + \lambda y \not\in Z(R) \). Hence,
\[
0 = \delta(x + \lambda y) = \lambda p_1(x, y) + \cdots + \lambda^{n-1} p_{n-1}(x, y) + \lambda^n \delta(y).
\]
Using Lemma 2 we obtain \(\delta(y) = 0 \) for any \(y \in Z(R) \). Thus, \(\delta(x) = 0 \) for all \(x \in R \). Lemma 1 yields that \(\Delta = 0 \). This implies that \(\Omega \) acts as a left \(n \)-multiplier.

Theorem 4. Let \(n \geq 2 \) be a fixed positive integer and \(R \) be an \(n! \)-torsion free semi-prime ring admitting a permuting generalized \(n \)-derivation \(\Omega \) with associated \(n \)-derivation \(\Delta \) such that the trace \(w \) of \(\Omega \) is centralizing on \(R \). Then \(w \) is commuting on \(R \).

Proof. It is given that \([w(x), x] \in Z(R) \) for all \(x \in R \). Using the similar arguments as used in Theorem 2, we obtain
\[
[w(x), x] + n[\Omega(x, x, \ldots, y), x] \in Z(R) \text{ for all } x, y \in R. \quad (2.23)
\]
Replacing \(y \) by \(yx \), we obtain
\[
y[w(x), x] + [w(x), y] x + n[\Omega(x, x, \ldots, y), x] x + ny[\delta(x), x] + n[y, x] \delta(x) \in Z(R).
\]

Now in view of (2.23), we find that
\[
0 = [y, x][w(x), x] + n[y, x][\delta(x), x] + ny[[\delta(x), x], x]
+ n[y, x][\delta(x), x] + n[[y, x], x]\delta(x) \text{ for all } x, y \in R. \tag{2.24}
\]
Again replace \(y \) by \(w(x)y \) to get
\[
0 = w(x)[y, x][w(x), x] + [w(x), x]y[w(x), x] + nw(x)[y, x][\delta(x), x]
+ n[w(x), x]y[\delta(x), x] + nw(x)y[[\delta(x), x], x] + n w(x)[y, x][\delta(x), x]
+ n[w(x), x]y[\delta(x), x] + n[w(x), x][y, x]\delta(x) + nw(x)[y, x, x]\delta(x)
+ n[w(x), x][y, x]\delta(x) + n[[w(x), x], x]y\delta(x).
\]
Using (2.24) and the given condition, we find that
\[
[w(x), x]y[w(x), x] + 2n[w(x), x]y[\delta(x), x] + 2n[w(x), x][y, x]\delta(x) = 0. \tag{2.25}
\]
Further, replacing \(y \) by \([w(x), x]^2 \) in (2.25) and using the given condition, we have
\[
[w(x), x]^4 + 2n[w(x), x]^3[\delta(x), x] = 0 \text{ for all } x \in R. \tag{2.26}
\]
Again, replace \(y \) by \(yz \) in (2.25) and use (2.25), to get
\[
2n[w(x), x][y, x]z\delta(x) = 0 \text{ for all } x, y, z \in R. \tag{2.27}
\]
Next, we replace \(y \) by \(w(x) \) and \(z \) by \([w(x), x] \) to find that \(2n[w(x), x]^3\delta(x) = 0 \) for all \(x \in R \). On commuting the latter relation with \(x \) and using the given condition, we have
\[
2n[w(x), x]^3[\delta(x), x] = 0 \text{ for all } x \in R. \tag{2.28}
\]
From (2.26) and (2.28), we find that \([w(x), x]^4 = 0\). Since the center of a semi-prime ring does not contain any nilpotent element, we get \([w(x), x] = 0\). \(\square \)

Corollary 2. Let \(n \geq 2 \) be a fixed positive integer and \(R \) be a non-commutative \(n!\)-torsion free semi-prime ring admitting a permuting generalized \(n \)-derivation \(\Delta \) with associated \(n \)-derivation \(\delta \) such that the trace \(w \) of \(\Omega \) is centralizing on \(R \). Then \(\Omega \) is a left \(n \)-multiplier on \(R \).

Proof. By Theorem 3 and Theorem 2, we get the required result. \(\square \)

In conclusion, if we look at Theorem 2 closely, it is tempting to conjecture as follows:

Conjecture 1. Let \(R \) be a semi-prime ring with suitable torsion restrictions and \(\Delta \) be a non-zero permuting \(n \)-derivation. Suppose that for some integer \(m \geq 1 \), \(\delta_m(x) \in Z(R) \) for all \(x \in R \) where \(\delta_{k+1}(x) = \delta_k(x, x) \) for \(k > 1 \) and \(\delta_1(x) = \delta(x) \) stands for the trace of \(\Delta \). Then \(\delta_1(x) = 0 \) for all \(x \in R \).

Acknowledgement

The authors are indebted to the referee for his/her useful suggestions and valuable comments.
REFERENCES

Authors’ addresses

Mohammad Ashraf
Aligarh Muslim University, Department of Mathematics Aligarh, India
E-mail address: mashraf80@hotmail.com

Almas Khan
Aligarh Muslim University, Department of Mathematics Aligarh, India
E-mail address: almasleo@gmail.com

Malik Rashid Jamal
Integral University, Department of Mathematics Lucknow, India
E-mail address: rashidmaths@gmail.com