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1. INTRODUCTION

Linear differential-algebraic equations (DAEs) with constant coefficients

Ad—x=Bx+f(t) (1.1

dt
were well studied in the middle of the past century. In particular, Luzin [12] and Gant-
macher [7] have found necessary and sufficient conditions for solvability of DAEs,
and they have proposed approaches of constructing their solutions. It should be note
that Gantmacher’s algorithm [7] for constructing particular solutions of DAEs (1.1)
was based on the idea of reduction of a pencil B — A4 to Kronecker normal form. At

the same time similar technique could not be used to DAEs with variable coefficients

A(t)zl—); = B@{t)x+ f(1), (1.2)

in general case, since its application as a rule causes changing the Kronecker’s form
of a pencil B(t) —AA(t) of system (1.2).

To solve the problem Campbell has proposed the notion of standard canonical form
of system (1.2) that was represented in the following form [3]

_ d
(’"0 . NSO(Z)) d (Mé’) f)x +h). (13)

where I and I,— are identity matrices of orders s and n — s, respectively, and Ny ()
is a nilpotent lower (or upper) triangular matrix.
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Note that in particular case, when matrix N(¢) is additionally constant, system
(1.3) is called the strong standard canonical form of system (1.2).

Later Petzold and Gear have found sufficient conditions of reduction of system
(1.2) to its Kronecker’s form [8, 13]. It allows to find the general solution of system
(1.2) and to study then Cauchy problem, boundary value problems, and others [1, 4,

, 14].

Another way to deal with DAEs is to decouple them by means of canonical pro-
jectors. Using a concept of the tractability index, the effective numerical methods
for solving DAEs were developed in the papers by Gear and Petzold [8], Griepentrog
and Mirz [9], Brenan, Campbell and Petzold [2].

Since 1980s, there is considered singular perturbed DAEs [1, 14, 19]

8A(t’8)j'_); = B(t,e)x, t € [0;T], € € (0; 9], (1.4)

where A(t,¢), B(t,¢) are n x n—matrices with real or complex-valued elements, pos-
sessing uniform asymptotic expansions of the following form

Ate) =) " Ar(t). Bt.e) =) " Br(1). e >0, 1 €[0:T],
k>0 k>0

with infinitely differentiable coefficients, and ¢ is a small parameter.
In particular, Starun [ 19] has found as many linearly independent asymptotic solu-
tions of system (1.4) as there are roots of the corresponding characteristic equation

det(Bo(t) —AAo(t)) = 0. (1.5)

It follows that if rankBg(t) is equal to the degree of the polynomial
det(Bo(t) —AAg(t)) then a formal fundamental matrix solution of system (1.4) can
be constructed [1, 14]. Generalizing Starun’s ideas Yakovets has shown that under
certain conditions system (1.4) has two types of formal solutions corresponding to
finite or infinite elementary divisors of the pencil Bo(t) —AAg(¢) [14]. Moreover,
their linear combination is formal general solution of system (1.4).

It is well known [14], in case of multiple spectrum of the main pencil By(¢) —
AAg(t) asymptotic expansions of solutions of system (1.4) should be constructed in
some fractional powers of small parameter &. Moreover, value of fractional powers of
small parameter depends on the structure of the perturbing matrices Ay (¢), B (t), k €
N. However, in the case of multiple eigenvalues of Bo(¢) —AAg(¢) the technique of
constructing asymptotic expansions is tedious and quite complicated. That is why we
propose in present paper a modified approach for finding formal asymptotic solutions
to system (1.4). Namely, our technique is based on transformation of the system with
multiple spectrum of the main pencil of matrices into system whose main pencil of
matrices has a simple spectrum [17]. On our opinion, the proposed approach is more
rational one than others.
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2. FORMAL SOLUTIONS

Assume that the following conditions are satisfied:
(i) the pencil of matrices Bo(z) — AAg(?) is regular for all ¢t € [0; T'];

(i) the pencil Bg(t) —AAg(?) has one eigenvalue A¢ (), two finite elementary di-
visors (A —A¢(2))P!, (A—2A¢(2))P2,2 < p1 < p2, and two infinite elementary
divisors of multiplicity g1 and g2, 2 < g1 < ¢»; furthermore p; + p> +q1 +
q> = n.

Then there exist the nonsingular of matrices P(z,¢), Q(t,e) € C*°([0; T] x [0; &0])
such that
P(t,e)A(t,e)Q(t,e) = H(t,e) =diag{Ny(t,e),I,(t,e)}, (2.1)
P(t,e)B(t,e)Q(t,e) = Q2(t,e) =diag{ly(t,e), Wy(t,e)}, 2.2)
where 1,(t,0) = 1y, I,(¢,0) = I, I; and I, are the identity matrices of orders ¢
(¢ =q1+q2) and p (p = p1+ p2), respectively;
Ng(1,0) = Ng=diag{Ng,,Ng,}, Wp(1,0) =diag{Wp, (1), Wp, (1)}, p = p1+ p2,

Ny; is the square matrix of order ¢g; such that

010 0
00 1 0
L =12,
000 1
000 0
and Wy, (t) = Ao(t) Iy, + Np,, i = 1,2[15,16,18].

We set x(t,e) = Q(t,¢)y(t,e). Then system (1.4) can be written in the form
d
eH(z,s)d—); — C(t,¢)y, 2.3)
where C(t,e) = Q2(t,e) —eH(t,e) 0~ (t,e)Q'(t.¢), Q'(t,0) =0, ¢ € [0; T].

t
The transformation y(¢,&) = exp (é [ Ao(2)dt | z(t,e) changes system (2.3) into
0

gH(z,e)fl—f = (C(t.6)— Ao () H(t,8))z.

It should be noted that the pencils £2(¢,0) — Ao(t)H(¢,0) — AH(¢,0) and
diag{ly,Np} —Adiag{Ny,I,} have the same Kronecker normal form [7]. There-
fore, without loss of generality, we can assume that
£2(t,0) =diagl{ly,Np}, Ny =diag{Np,, Np,}.
Let us define the matrices

H(t.e) =Y e"Hp(1), C(t.e) =Y *Cr(0),

k>0 k>0
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where Ho(t) = Ho = diag{Ng.Ip}, Co(t) = Co = diag{ly,Np}.
We seek an asymptotic solutions of system (2.3) in the following form:

t
1
Vilt.6) = ui(t.eyexp | £ f Aoyt |, i =T, (2.4)
£
a;

where u; (¢, ) are n-dimensional vectors, A; (¢, &) are scalar functions, and
ui(te) =y (1), Ait.e) = > A (t.e). i = Ton,
k>0 k>0

[14]. Constants a; are defined below.
Substituting representation (2.4) into system (2.3), we get

(Co+eCy ()i (t.8) — (Ho +eHy (1)u; (t,)A; (.€) = eH (1, €)u} (1, £)—
=Y & Crui(t,e)+ Y & He(ui 1, )i (t,¢), 2.5)
k>2 k>2

where Ci(t) = diag{Ci4(t).Cip(t)}, Hi(t) = diag{H14(t),H1p(t)}; here,
Ci14(t), H14(t) are square matrices of order g.
Let K(z,¢) be defined by K(t,¢) =diag{ly+Ci4(t),Ip +cHip(t)}. Then
K™ (te) =) " Mp(t) =diaglly+ ) 6" Mg (1). 1, + > e My (1)}
k>0 k>1 k>1
and M1(¢) = diag{—Ciq(t),—H1p(1)}.
Multiplying both sides of relation (2.5) on the left by K~1(¢,¢), we obtain
(Co+eD1 ()i (t,€)— (Ho + e Fy (0)us (1.0)Ai (t,6) = £ Y ek Fe(yu] (1.)—
k>0
=Y e Druit.e) + Y Fr(oui (1. e)Xi(t.¢),
k>2 k>2
where
Dy(t) = diagi0. D1p(1)} = diagl0.Cip(t) — Hip(t)Np}.
Fi(t) = diag{Fi4(t).0} = diag{Hi4(t) — C14(1)Ny. 0},
Do(t) = Ca(t) +diag{0, Map(t)Np — H1p(t)C1p(t)},
k—2
Di(t) =Y Mi(t)C—i (1) + diag 0. Micy()Np + M1, C1p(0)}. k =3,
i=0
Fa(t) = Ha(t) +diag{M24(t)Ng — C14(t) H14(1),0},
k—2
Fi(t) = ) Mi(t) Hi—i (1) + diag{Myg (t)Ng + My g H14(1),0}, k = 3.
i=0
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Equating the coefficients at the powers of ¢ in the following way, we get
(Co+eD1(t) =L (t.&) (Ho + e Fy (1)) (t.8) = 0, (2.6)
(Co+eD1(t) =X (t.&)(Ho + e Fy )T (t.6) = d(t,e), se N, (27)

where

¥ ey = 3 RO@ Ve = DT P e+

k=0 k=2

s k s—1
j (s—k—j k T(s—k
+ 33 BT X (e) + (Ho+eFi(0) Y 7P .02 P 1.e).
k=2j=0 k=0
According to the form of the matrices Cyp and Hyp, we rewrite equation (2.6) as

(Ig =2 (1.6)(Ng + e F1g ()i (1,€) = 0, (2.8)
(Np + D1, (1) = A0 (t,6) )0 D (t,6) = 0, (2.9)
~(0)
where ﬁfo) (t,e) = ﬂ(l)) (t.) )
u;, (t,€)
Consider equation (2.8). The characteristic equation of Ny 4 &F14(¢) has the form
w? + B1(t, w4 .. 4 Byo1(t,&)w + By (t,e) =0, (2.10)

where
Bjt.e)=0(), e—0, j=1,g2—1,

Baa(t.e) = —h{) L (e+ O(E?). € 0,

Bi(t,e)=0(?),e—>0,i=q+1,q—1,

Ba(t.8) = h) 1 (Dhgly, 1 (V6> + O(e), & — 0,

for all ¢ € [0; T]; here, hl(})(t) is the element of the matrix H1(¢).
Let the following condition be satisfied.

i) A (0) # 0. K L (0) # 0, h(t) #£ 0, ¢ € [0:T), where h(r) =

¢y) D )] 1)
hql,l(t)hq,qﬁrl(t) _hq1,q1+1(t)hq1 ().
We construct the characteristic polygon for the equation (2.10) [10, 14]. Its vertices

are the points (g;0), (¢1;1), and (0;2).
Since tgf; = qll’ tgh = qlz, then the solutions of equation (2.10) have the follow-

ing form:
a1/, (1) 1 2 . N
wj(t,e) = \hy 1()er +0(en), j =141,

1 2 P
wi(t.e) = /L) L (0% +0(%). j=q1+1.q.
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Letg;(t,¢), j = W, be columns of the matrix 7, (7, ¢), where

Tq_l(t,e)(Nq +eF14(t)Ty(t,e) = Wq(t,s) =diag{wi(t,e), wa(t,e),....wy(t,€)}.

Then

The components of the vectors ¢;(f,¢€), j = 1,491, and ¢;(t,¢€), ] = g1+ 1,¢g can be
taken as the cofactors of the first and (g1 + 1)th rows of the matrix Ny + eF14(f) —
w; (t,¢)1y, respectively. Hence it follows that

pj(t,e) =

1
(@l Oh), (0 + 0T
1 2
h(t)edt + O(g1)
2 3
aj(h(1)eT + O(er)
L a-1
a]q.1 ()h(t)e 11 + O(e)
1
—a? N (ORS) (0) + O(e71)
1 2
—af (Ohfy) (71 + O(e™)
—a?(ql_l)(l‘)h

(
J q
O(e)

\ 0(e)

NN
L (M)e 11 4+ 0(e)
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gr—1 (1) d2—d] d2—q1+1
bj—ch ([)hql,ql+1(t)8 ”? o+ 0(8 2 )
q2—4q1+1 dr—q1+2

D O g 1@ %= 06 =)

PLEI2 ()R, L (e =+ 0(e)

— 1
b 0+ 06)
1 - S -
It (O ()7 + 0(e72)

(p](t’g): ’j:q1+17q’

_ e
b2 0n) (e =+ 0(e)

(€Y) ; @ ;

argh, ” . (1) +2m] argh, ” . (1) +2m]

aj(t) = q“/|h§]1)1(t)| cos— LT T g del T .j =141,
b q1 q1

(6] ; (6] ;

argh (t)+2nj argh (t)+2nj

by = R/l mn'(“’s e it =Tz,
i 92 q2

It is easy to see that the matrix 7 (7,¢) is nonsingular. Indeed, let us define the

matrix
B T(t’g) T(I,S)
Ty(t.e) = (T;(t,e) Ti(t,e)) ’

where T7(¢,¢) is a square matrix of order ¢;. Then

detTy(t,e) =det Ti(t,e)det(Ty(t,e)— T3([,8)T1_1(Z,8)T2(Z,8)) =

where

q2
= detVi()detVa)(h) L )RR @ [ [0 ()T + 0T ), y > 0,

q,q1+1
i=1
where
T O N St (5 Wt (ON
1 1 1
Vie)=1 ai(®) a(t) ... aq @) |,
VR R )
b2y b)) L bgg‘l(t)\
1 1 1
V)= bi(r) ba(t) ... bg(0) |.

\b%272(t) bE2(1) ... bET2(r)
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because [7]
1
det Ty(t.6) = det Vi () . (O~ (0)e" ' T oE"T .
Further, detV;(t) and detV,(t) are Vandermonde determinants up to a sign. Thus,
detVi(t) #0,detV,(t) #0,t €[0;T], and det Ty(t,e) #0,t € [0; T].
Substituting the representation

T (1,8) = T, (t, )70 (1,¢), @.11)
into equation (2.8), we get
(Ig =20, )W 4 (1,)T Y (t,6) = 0. 2.12)
Therefore,
29, e) = ,
i () wi (1,€)

G0 =1, GO0y =0, 1 €[0:T] i # ). i,j =T.q,

where {71'(? ) (t,e)}; is the jth component of qll)(t g).
Consider now equation (2.9). Suppose the following.

. 1 1

(iv) C%%m g+1(0) ;é 0, c,(l 21+p1+1(t) #0, c(t) # 0(, )t € [O;T](, )where c(t) =
1 1 1 .

Cq+p1 q+1(t)cn q+p1+1(t) q+p1 q+p1+1(t)cn,q+1([)’ €ij (#) is the ele-

ment of the matrix Cy ().

Then the solutions of equation
det(Np+eD1p(t)—wlp) =0 (2.13)
have the following form:

1 2 -
wj(t.e) = "} cﬁpl,qﬂ(t)epl +0(er1), j=q+1.9+p1,

1 2 - @@
wj(t.e) = "§/c ,(11;+p1+1(t)8"2 +0(er2), j=q+p1+1n.

Let us T, (z,¢) be the square matrix of order p such that
T, (1, 6)(Np +eD1p (D) Tp(t,6) = Wp(t,e) =
= diag{U)q+1(t,8), wq+2(t98)’ ceey wn(t58)}
Substituting the representation
T (1,6) = Tp(1,6)G D (1, 6) (2.14)
into (2.9), we obtain
W _1’(0) I ~(0) 0. 2.15
(Wp(t.e)—=2;7(t.8)Ip)q;, (1.6) = (2.15)

Thus -
2 (t,e) = wi(1.6),
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G(e))i =1, G o)y =0, 1 €[0:T) i # j.irj =q+ Lo,

T04,e)=0,1€[0;T), i =q+1,n,

701,e)=0,1€[0:;T), i =T,4.
We rewrite equation (2.7) for s = 1 as follows:

and

(I =20 (t,6)(Ny + e Frg )T (1,6) = d P2, 8), (2.16)
(Np 48D 1,(1) = A2 t,6) [,)a Y (1,6) = 45 (1, 8), 2.17)
A1) ()
) (t,8) ~(1) (t,€)
whereu M (t,e) = (ﬁfz (t 8)) and a’l.1 (t,e) = (d(l)(t ))

The transformation Ttﬂ)(t,e) = Ty(t, s)q(l)(t 8) (t e) = Tp(t, e)q(l)(t €)
changes (2.16), (2.17) into the equations

(Ig =2, e)W 4 (1,)T L (t,6) = g (¢, 0), (2.18)
(W p(t,8) =20, ) 1,70 (2,6) = g2 (2, 8), (2.19)
where
gV (te) =T 1 e)d P (t.e) = T o) N TY (1, TS + W (1, )T A (1, ¢).
glz)(t g) = 1(t s)d(l)(t,s) = Tp_l(t,e)T;(t s)ql(g) +’é’l(g))t(1)(t,8).
Therefore,

e
Twilte)

1)
) g/ (t.o)}jwite) ., .
{qll (t )}] w,(l‘ 8) w](t 8) 9 1 75.]’ l’.] - sC],

7)) = (Wp(t.e) =X (t.e) ) gy (t.e). i =T.q.
where fl.(ll)(t,e) = q 1(t,s)Nq (t s)ql(f), nd
TN (te) =~ £}, G5 (t.0)} =0, 1 € [0:T],
(g . e))
{q(l)(t 8)}] : i2 .J
w](t,e)—w,(t €)
70 (te) = (Ig— 10 (1, )Wy (1,6) 7 g,1 (t.e). i =q+1.n,
where fl.(zl)(t,e) T, (t.e)T)(, s)q(o).
Let Tq_l(t,s) be deﬁned by

~ _(Vi(t,e) Valt,e)
T, Y1.e) = (V;(t,s) Vi(l»e))’

AW (1e) = G (e} =0, 1 € [0:T],

A FJ L =q+1n,
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where V7 (¢, ¢) is a square matrix of order ¢.
Using the Frobenius formula for the inverse of the block matrix[7], we find:

_vi—l

o) O %) ... O 7 )
I/i(t,s)zO(gSZi(‘}l_ﬂllz)) o) O(s_vif) BN CERTDY §

o) O(E %) ... 0@ %)

1 €[0:T], e = 0; ¥i =qs,, +4as,; +4s5; +qas,;»1 = 1.4; 8 is Kronecker delta.
It should be noted that the matrix Tp_1 (t,¢) has the same form as Tq_1 (t,¢).
Let the following condition be satisfied.

(v) g2 < p1.
Then
1 ~ _
V@) = 0(%2), AP (1,6)| = 0(1), i =T,q,
_ 1 ~ -
o)l = 0™ ), (AP (te) = 01), i =g+ Lm,

t €[0;T], e > 0. In the same way we define the functions 'ﬁ'l(s) (t,8), ’Xlgs)(t,s), i =
1,n, s =2,3.... In addition,

[P @ o)l = 0B, i =T,

o

A0 (2,e) = o By i =14, (2.20)

s 2

0.0 = 0 B Gl e =G5

s=2,3,..,t €[0;T], e — 0, where [%] is the integer part of 3.

3. ASYMPTOTIC BEHAVIOR OF SOLUTIONS

Assume Rew; (t,€) #0,¢ €[0;T],i = 1,n. Then yi(m)(t,s) can be defined by

t
1 -
y ™ (t,6) = u"™ (¢, 6)exp —/A?")(t,g)dr Ji=1,n, 3.1)
&
a;

m mo .
where ul(m)(t,e) =) ekﬁfk)(t,s), )Ll(m)(t,s) = > ek/\l(k)(t,s), i =1,n,and
k=0 k=0

0, ReA”(z,6) <0,
T, ReAV(1,6) > 0, t € [0;T), ¢ € (0;¢0).

i =
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The change of variables y;(z,&) = z;(t,¢) + y; (m) (t,e) transforms system (2.3)
into

dz" — Clt.e)zi + f(1,0), (3.2)

where f(t,e) =C(t,¢) y(m)(l g)—eH(t,e)t——"— " e ( 2 Ttis easy to show that the vector

function f(¢,¢) is of order of magnitude 0(8“(’")), a(m)=m— [%] — ql].

Let us prove the existence of a solution of system (3.2) such that z;(a;,&) = 0.
Multiplying both sides of system (3.2) on the left by K~1(¢,¢), we get

EF(Z,E)% = D(t,e)z; +g(t,¢), (3.3)
where
F(t.e)=Ho+ Y " Fi(t), D(t.e)=Co+ Y ¥ Dy(t). g(t.e) = K~ (t.8) f(t.¢).
k>1 k>1

Let us define the matrix T'(t,¢) = diag{T,(t,€),Tp(t,€)}. Then
T~ t,e)F(t.)T(t.e) = diag{W ,(t.€).1,} +¢L(t.¢),
TVt e)D(t,6)T(t,¢) = diag{l,, Wp(t,6)} +£S(t.¢).

where
L(t,e) =diag{Ly(t,e),Lp(t,e)} =
8‘71L11(l‘ g) Sqlle(l g) 0 0
8‘12 Loi(t,¢) 8"2 Loo(t,¢) 0 0
€1 1
0 0 eP1 L33(t,e) 8”1L34(Z,8)
€1 €1
0 0 €72 Lasz(t,e) €72 Laa(t,¢)
1 1 1 1
Sqlsll(l,é‘) 8‘11512(1,8) 8‘11513(I,8) 8‘11514(l,8)
1 1 1 1
€92 851(t,8) €92 875(t,8) €92853(t,) €92 So4(t,¢
S(t.) = 2521(t) £7252(1.8) £253(t.6) &% S(te) |

e”1831(t,6) e71833(t,6) €71 833(t,8) €71 S34(t,8)
1 1 1 1
eP2841(t,8) €P2845(t,8) €72 8543(t,8) €72 844(t,8)

the diagonal blocks of L(¢,¢) and S(, ¢) are square matrices of order ¢1, g2, p1, P2,
respectively; ||L;j (¢,e)|| = O(1), ||Sij(t,e)|| = O(1),t €[0;T], e — 0.
The transformation z; (¢,&) = T (¢, €)r; (¢, ) changes system (3.3) into

~ d ;
(4 p)eeo) (5 ) oo

¢ ((qu’g) f) + eL(t,s)) T_l(t,e)T’(t,s)) 4T~V e)g(te)
V4
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driv = ~_
Sd—; =W, (t.o)rit +e(Ri1(t.&)rin + Ria(t.e)riz) +hi(t.¢), (3.4)

driz
dt

where r;(t,€) = (:’;g’g), h(t,e) = (2;8’3),

~ -1
h(t,e) = ((Wq(()t,e) I(;) +8L(t,8)) T (t,6)g(t,¢),

e—2 = Wp(t.o)riz +e(Ra1(t.8)ri1 + Roa(1,8)ri2) + ha(t.6),  (3.5)

B R (I,S) R (t,S) . 1
rea=(Rned Rein) =

X((Wq(t,e)+eLq(z,e))—1—W;l(z,g) 0 _ )+
0 ((Ip+eLp(t,8) L = I)Wy(t,¢)

~ —1
+((Wq(()t’8) IO)+8L(I,8)) S(t.e)= T~ (t,&)T'(1.2);
p

here, Rq1(t,¢) is a square matrix of order ¢. It is easy to see that ||h(z,¢)|| =
0(2™=1) t €[0:T], e — 0.
Assume that the following condition are satisfied.
(vi) Remfclgll<O,—ql1§llfl—qil,ifRewj(t,s)<O, -
Rem > cpel2 >0, —- <b <1-L ifRew;(t,e) >0, =14.
Rew; (t,¢) < c3el® <0, - < I3 < 1,if Rew;(1,¢) <0,
Rew;(t,e) > 04514 > 0, é <ly<1,ifRew;(t,e) >0, j =qg+1,n,t¢c
[0;T].

Then, without loss of generality, we can assume that
Wqt.e) =diag{We—(t.6), W g4 (t,6)}, Wp(t,6) = diag{W p—(t,6), Wp+.(t,8)}.

Here, Wq_(t, ¢) and f)[V/qu(t, ¢) are the diagonal matrices whose eigenvalues are the
eigenvalues of f/IV/q (t,e) with negative and positive real parts, respectively, and the
matrix W p(t,¢€) has the same structure as Wq (t,¢).

Thus, systems (3.4), (3.5) can be written as

2

:W;l(t,g)rill"i‘é‘ Z(le(l,t?)mj‘+R1,j+2(l,8)ri2j) +hi1(t.¢),
j=1

drit1

Sdt

(3.6)
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2
dr; ~_
T =Wk erna e | Y (Ra (o) + Rajya(t.o)riz) | +hia(t.e),
Jj=1
(3.7)
dri21 = 2
T =Wp_(t,e)rio1 +¢ Z(R3j(l,8)ri1j+R3,j+2(l,8)ri2j) +ha1(2,¢),
j=1
(3.8)
drizz g 2
P T =Wpy(t,e)riza+e¢ (R4j(t,e)ri1j + Ra,j12(t,8)rinj) | +haa(t,€),
j=1
3.9
where

Ri1(t,6) Riz(t,6) Riz(t,e) Ria(t,e)

Ra1(t,6) Roa(f,6) Ras(t,e) Raa(t,e)

R31(t,6) R3a(f,6) Raz(t,e) Raa(t,e)

Ra1(t,6) Raz(t,6) Raz(t,e) Raa(t,e)

the dimensions of vectors r11, ri12, i21, Ii22 anghll, hlZ,J:lZl, ho» coincide with

the orders of the matrices Wy_(t,¢), Wy (t,), Wp—(t,), W, (t,¢), respectively.
Let us write a system of integral equations equivalent to system (3.6) — (3.9):

R(t,e) =

! 2
1
o= [ Znro| YRy @erm, + R ja(ean) + e |dr
0

j=1
(3.10)
t 2 1
Vi12(l,8)=/212(l,f,8) Z(R2j(f,8)ri1j+R2,j+2(f»3)ri2j)+—hlz(f’g) dr,
T J=1 ¢
(3.11)

? 2

1

Vizl(t,é‘):/Zzl(f,f,e) E (R3j(f,8)ri1j+R3,j+2(f,8)ri2j)+Ehzl(f,s) dr,
0 J=1

(3.12)

t

2

1

Vizz(f,8)=/Zzz(l,f,8) Z(R4j(f»3)ri1j+R4,j+2(77,8)ri2j)+ghll(f»g) dt,
T J=1

(3.13)

where Z11(¢,7,¢) and Z1»(¢, T, ¢) are fundamental matrices solutions of the systems

dritt
dt

€ =W;l(t,e)r,-11, Zi(t,t,8) = Iy,
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and
dri12

dt
respectively; in the same way we define matrices Z»1(Z,7,¢) and Z»» (%, 7, €).
Let us consider the mapping {» = Ar of the set

P ={r(t,e) € C[0:T]: ||r(t,8)|| < ce®™~2y,

&

= Wit e)rna, Zia(r.t,8) = Iy,

into itself given by system (3.10) — (3.13). The mapping v = Ar is a contraction
mapping. Thus, the operator equation r = Ar (and consequently system (3.10) —
(3.13) also) has one and only one solution.

Thus, the main result of the paper can be formulated as follows.

Theorem 1. If Ag(t), By(t) € C™T10;T], s > 0, and the assumptions (i) — (vi)
are satisfied, then there exist n linearly independent solutions x; = x; (t,¢),t € [0; T],
of system (1.4) such that

l1x6i (t.8) = x™(t.)|| = O(*™2), £ — 0, m > 5,
where x™(1,6) = Q(1,6)y™ (¢, ¢).

Remark 1. If the pencil Bg(¢) —AAp(¢) has more than one distinct eigenvalue,
then system (1.4) can be reduced to a set of systems of lower order in each of which
the corresponding characteristic equation has only one eigenvalue [0, 10, 11].
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