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SOME REMARKS ON THE BILOCAL PROBLEM
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Abstract. Using a method proposed by T.A. Burton in [6] and Banach’s Contraction Principle,
we study the existence, uniqueness and approximation of the solution for a bilocal problem. We
compare our results with the classical similarly results given for the Fredholm integral operator
associated. The present paper extends and complements the results from [14].
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1. INTRODUCTION

It is well-known (see [1,3,9,20]) that the existence, uniqueness and the approxim-
ation of the solution for the bilocal problem�

x00 .t/D f .t;x .t/ ;x0 .t//

x .a/D x0; x .b/D x1
; t 2 Œa;b� (1.1)

can be proved using the Contraction Principle for the Fredholm integral operator

F W C 1Œa;b�! C 1Œa;b�; (1.2)

F.x/.t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/f
�
s;x .s/ ;x0 .s/

�
ds;

where

G.t;s/D

(
.b�t/.s�a/

b�a
; if a � s � t

.t�a/.b�s/
b�a

; if t � s � b
(1.3)
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is the corresponding Green function. Therefore, a function x 2 C 1Œa;b� is a solution
of (1.1) if x.t/ is a fixed point of the Fredholm integral operator (1.2) (see [1, 9, 18,
21, 24]).

In the last thirty years, it has been given a particular interest in studying the prop-
erties of the solutions for a large class of problems from nonlinear analysis. For
example, the study of the periodic solutions of two-point boundary value problems
using the method of successive approximations has been made in [19] and [22].
Moreover, in [17], Precup studies the existence, uniqueness and iterative approxima-
tion of solutions to a boundary value problem for second-order differential equation
on bounded sets in Banach spaces. The tools used here are an extension of Granas’
continuation principle for contractive mappings to spaces endowed with two metrics.
Other existence results that were obtained for these type of problems can be found in
[16]. Then, in [12] the problem of existence of solutions for Fredholm and Volterra
integral equations are investigated. Using a monotone method, are given sufficient
conditions when integral equations have their solutions in a corresponding sector.
Here, some delay differential and integral inequalities are also discussed. Return-
ing to the method of successive approximations, recently, in [5], are presented some
convergence and numerical stability properties of the method applied to two-point
boundary value problems for nonlinear second order neutral differential equations in
Banach spaces. The considered algorithm has a practical stopping criterion and its
accuracy is illustrated by examples. Other discussions about the properties of the
successive approximation sequence and the numerical methods built using them can
be found in [2, 4, 7, 8, 10, 11, 13, 23].

Following a method proposed by T.A. Burton in [6], in this paper we study the
bilocal problem using the Contraction Principle for another operator, namely:

B W C Œa;b�! C Œa;b�;

B.u/.t/D f

0@t; b� t
b�a

x0C
t �a

b�a
x1�

bZ
a

G.t;s/u.s/ds; (1.4)

x1�x0

b�a
�

bZ
a

H.t;s/u.s/ds

1A ;
where

H.t;s/D

� a�s
b�a

; if a � s � t
b�s
b�a

; if t � s � b
: (1.5)

More exactly, we construct an approximation scheme for the solution of the bilocal
problem (1.1) based on the method of successive approximations. Since the constant
obtained for the so-called Burton operator defined by (1.4) is less than the constant
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of the Fredholm operator, the successive approximations sequence offers a better
approximation for the solution of problem (1.1).

Burton’s approach was also exemplified in [14] and the main purpose was to ap-
proximate the solution of the Cauchy problem and its derivative using two operat-
ors: Volterra operator, in the classical case, and Burton operator, after the method
proposed in [6]. Then, in [15], the same method was used to give existence and
uniqueness results for first order differential equations and systems.

Throughout the paper, the norms on C 1 Œa;b� and C Œa;b� are given by

kxk� D sup
t2Œa;b�

jx.t/jC sup
t2Œa;b�

ˇ̌
x0 .t/

ˇ̌
(1.6)

and
kuk D sup

t2Œa;b�

ju.t/j ; (1.7)

respectively.
We also recall an important existence and uniqueness result that we shall use in

our framework (see [1]). Here, the solution of the bilocal problem is given as the
fixed point of the Fredholm operator (1.2), where the considered norm is given by
(1.6).

Theorem 1. If there exist two positive constants L1 and L2 such that the function
f W Œa;b��R�R! R satisfy the Lipschitz condition

jf .t;u;v/�f .t;u;v/j � L1 ju�ujCL2 jv�vj ; (1.8)

for all t 2 Œa;b�, u;v;u;v 2 R, and

˛F DmaxfL1;L2g

 
.b�a/2

8
C
b�a

2

!
< 1 (1.9)

holds, then:
(i) problem (1.1) has a unique solution x�; the unique fixed point of the Fredholm
operator (1.2);
(ii) x� can be approximated by the sequence x0;x1 D F .x0/ ;x2 D F .x1/ ; :::;xn D

F .xn�1/ ; ::: and we have

xn�x
�


� � ˛n

F

1�˛F
kx1�x0k

� ; (1.10)

for all n� 1:

The paper is organized as follows: in Section 2 using Burton’s method, we obtain
an existence and uniqueness results for the solution of the bilocal problem (1.1) and
then, in Section 3 we present the main results in approximating this solution with
the sequence of successive approximations of the two operators defined by (1.2) and
(1.4). As we have already mentioned, since Banach’s Contraction Principle offers an
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approximation of the fixed point, we compare these approximations in the last sec-
tion.

2. EXISTENCE AND UNIQUENESS FOR BURTON OPERATOR CASE

In order to obtain the fixed point problem for the Burton operator (1.4), which is
equivalent with the considered bilocal problem, we start with

x0 .t/D

tZ
a

x00 .s/dsCx0 .a/ ;

which gives

x .t/D

tZ
a

x0 .s/dsCx .a/

D

tZ
a

0@ sZ
a

x00 .u/du

1AdsCx0 .a/.t �a/Cx0

D

tZ
a

tZ
u

x00 .u/dsduCx0 .a/.t �a/Cx0

D

tZ
a

.t � s/x00 .s/dsCx0 .a/.t �a/Cx0:

Since x1 D x .b/ we have that

x1 D

bZ
a

.b� s/x00 .s/dsCx0 .a/.b�a/Cx0;

obtaining the formula for x0 .a/ ;

x0 .a/D
x1�x0

b�a
�

bZ
a

b� s

b�a
x00 .s/ds:

Using this formula, we obtain that

x0.t/D
x1�x0

b�a
�

bZ
a

H.t;s/x00.s/ds (2.1)
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and

x .t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/x00.s/ds; (2.2)

where G.t;s/; H.t; s/ are given by (1.3) and (1.5), respectively.
Replacing (2.1) and (2.2) in (1.1), the bilocal problem (1.1) is equivalent with

x00 .t/D f

0@t; b� t
b�a

x0C
t �a

b�a
x1�

bZ
a

G.t;s/x00 .s/ds;

x1�x0

b�a
�

bZ
a

H.t;s/x00 .s/ds

1A :
At this point, Burton’s approach suggests to find solutions of (1.1) by using the

fixed points of the operator (1.4). This appears if problem (1.1) is rewritten as

x00 .t/D f

0@t; b� t
b�a

x0C
t �a

b�a
x1�

bZ
a

G.t;s/x00 .s/ds;

x1�x0

b�a
�

bZ
a

H.t;s/x00 .s/ds

1A� B �x00�.t/ :
In order to obtain the equivalent integral form of the bilocal problem , denote

x00.t/D u.t/:

Hence, the solution of the bilocal problem is the solution of the Burton operator
defined by (1.4).

In what follows, we give our main existence and uniqueness result. For this, we
consider the problem (1.4) defined on the Banach space C Œa;b�, with the norm given
by (1.7).

Theorem 2. If function f W Œa;b��R�R! R satisfy the Lipschitz condition (1.8)
and

˛B D L1 �
.b�a/2

8
CL2 �

b�a

2
< 1 (2.3)

holds, then:
(i) problem (1.1) has a unique solution x� which can be determined with u�; the
unique fixed point of the Burton operator (1.4);
(ii) u� can be approximated by the sequence u0;u1 DB .u0/ ;u2 DB .u1/ ; :::;un D
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B .un�1/ ; ::: and we have

un�u
�


� ˛n

B

1�˛B
ku1�u0k ; (2.4)

for all n� 1:

Proof. .i/ For any u;u 2 C Œa;b� we have

jB .u/.t/�B .u/.t/j

� L1 �

bZ
a

jG.t;s/j ju.s/�u.s/jdsCL2 �

bZ
a

jH.t;s/j ju.s/�u.s/jds

�

0@L1 � sup

bZ
a

jG.t;s/jdsCL2 � sup

bZ
a

jH.t;s/jds

1Aku�uk
�

 
L1 �

.b�a/2

8
CL2 �

b�a

2

!
ku�uk :

Taking the supremum, we have that

kB .u/.t/�B .u/.t/k � ˛B � ku�uk :

Since ˛B < 1 we have that the operator B is a ˛B -contraction and hence, the exist-
ence and uniqueness of the fixed point of (1.4). Now, applying Banach’s Contraction
Principle, we obtain .i i/. Moreover, the unique solution of the considered bilocal
problem (1.1) is given by

x�.t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/u�.s/ds;

where G .t;s/ is the corresponding Green function. �

3. COMPARISON OF THE APPROXIMATIONS

In the previous sections we have given two existence and uniqueness results for
the solution of the bilocal problem (1.1). But, in the classical result given in The-
orem 1 we have that the fixed point of the Fredholm operator (1.2) is the solution
x� .t/ for the ”trajectory” x .t/; also, from Theorem 2, the fixed point of the Bur-
ton operator (1.4) is the solution u� .t/ for the ”acceleration” x00 .t/ : In both cases we
have the approximation of the solution with the successive approximations sequences
.F .xn//n2N and .B .un//n2N, respectively: In what follows we study in what man-
ner we can approximate x� .t/ by the sequence .B .un//n2N and also, u� .t/ by the
sequence .F .xn//n2N.
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Proposition 1. If function f W Œa;b��R�R! R satisfy the Lipschitz condition
(1.8) and there exist some constants ˛F given by (1.9) and ˛B given by (2.3) such
that ˛B � ˛F ; then:
(i) For any x0 2 C

1 Œa;b� ; the sequence .F .xn//n2N has the property

.F .xn//
00
�u�



� .˛B/
n�1



.F .x0//
00
�u�



 I (3.1)

(ii) For any u0 2 C Œa;b� ; the sequence .B .un//n2N has the property

B .un/�x
�


� � .˛F /

n�1


B .u0/�x

�


� : (3.2)

Proof. First, we observe that�
x�
�00
D u�;

x�.t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/u�.s/ds;

and, since ˛B � ˛F , we obtain that ˛B < 1: Hence, both Theorems 2 and 1 can be
applied.
.i/ Consider the sequence .xn/n2N with

xn.t/D F .xn�1/.t/D

D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/f
�
s;xn�1 .s/ ;x

0
n�1 .s/

�
ds;

x0n .t/D
�1

b�a
x0C

1

b�a
x1�

bZ
a

H.t;s/f
�
s;xn�1 .s/ ;x

0
n�1 .s/

�
ds

and
x00n .t/D f

�
t;xn�1 .t/ ;x

0
n�1 .t/

�
:

We have that ˇ̌
x00n .t/�u

� .t/
ˇ̌

D
ˇ̌
f
�
t;xn�1 .t/ ;x

0
n�1 .t/

�
�

�f

0@t; b� t
b�a

x0C
t �a

b�a
x1�

bZ
a

G.t;s/u�.s/ds;

�1

b�a
x0C

1

b�a
x1�

bZ
a

H.t;s/u�.s/ds

1A
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� L1

ˇ̌̌̌
ˇ̌xn�1 .t/�

b� t

b�a
x0�

t �a

b�a
x1C

bZ
a

G.t;s/u�.s/ds

ˇ̌̌̌
ˇ̌

CL2

ˇ̌̌̌
ˇ̌x0n�1 .t/�

x1�x0

b�a
C

bZ
a

H.t;s/u�.s/ds

ˇ̌̌̌
ˇ̌

� L1

bZ
a

jG.t;s/j �
ˇ̌
x00n�1 .s/�u

�.s/
ˇ̌
ds

CL2

bZ
a

jH.t;s/j �
ˇ̌
x00n�1 .s/�u

�.s/
ˇ̌
ds

�

0@L1 � sup

bZ
a

jG.t;s/jdsCL2 � sup

bZ
a

jH.t;s/jds

1A

x00n�1 .s/�u
�.s/




�

 
L1 �

.b�a/2

8
CL2 �

b�a

2

!

x00n�1 .s/�u
�.s/



 :
From the calculus above, we conclude that the aproximation for u� is given by:

x00n�u�

� .˛B/

n�1


x001 �u�

 :

.i i/ Considering

yn.t/D B .un/.t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/un.s/ds;

y0n.t/D
x1�x0

b�a
C

bZ
a

H.t;s/un.s/ds

and

x�.t/D
b� t

b�a
x0C

t �a

b�a
x1�

bZ
a

G.t;s/f
�
s;x� .s/ ;

�
x�
�0
.s/
�
ds;

�
x�
�0
.t/D

x1�x0

b�a
C

bZ
a

H.t;s/f
�
s;x� .s/ ;

�
x�
�0
.s/
�
ds;

respectively, we obtainˇ̌
yn .t/�x

� .t/
ˇ̌
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D

ˇ̌̌̌
ˇ̌ b� tb�a

x0C
t �a

b�a
x1�

bZ
a

G.t;s/un.s/ds

�
b� t

b�a
x0�

t �a

b�a
x1C

bZ
a

G.t;s/f
�
s;x� .s/ ;

�
x�
�0
.s/
�
ds

ˇ̌̌̌
ˇ̌

�

bZ
a

jG.t;s/j �
ˇ̌̌
un.s/�f

�
s;x� .s/ ;

�
x�
�0
.s/
�ˇ̌̌
ds

D

bZ
a

jG.t;s/j �

ˇ̌̌̌
ˇ̌f
0@s; b� s

b�a
x0C

s�a

b�a
x1�

bZ
a

G.t;s/un�1.s/ds;

;
x1�x0

b�a
�

bZ
a

H.t;s/un�1.s/

1A�f �s;x� .s/ ;�x��0 .s/�
ˇ̌̌̌
ˇ̌ds

�

bZ
a

jG.t;s/jL1 �
ˇ̌
yn�1.s/�x

� .s/
ˇ̌
CL2 �

ˇ̌̌
y0n�1.s/�

�
x�
�0
.s/
ˇ̌̌
ds

�maxfL1;L2g � sup

bZ
a

jG.t;s/jds


yn�1�x

�


�

DmaxfL1;L2g �
.b�a/2

8
�


yn�1�x

�


� :

We also have thatˇ̌̌
y0n .t/�

�
x�
�0
.t/
ˇ̌̌

D

ˇ̌̌̌
ˇ̌x1�x0

b�a
�

bZ
a

H.t;s/un.s/ds�
x1�x0

b�a
C

bZ
a

H.t;s/f
�
s;x� .s/ ;

�
x�
�0
.s/
�
ds

ˇ̌̌̌
ˇ̌

�

bZ
a

jH.t;s/j �
ˇ̌̌
un.s/�f

�
s;x� .s/ ;

�
x�
�0
.s/
�ˇ̌̌
ds

D

bZ
a

jH.t;s/j �
ˇ̌̌
f
�
s;yn�1 .s/ ;y

0
n�1 .s/

�
�f

�
s;x� .s/ ;

�
x�
�0
.s/
�ˇ̌̌
ds
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�

bZ
a

jH.t;s/j
�
L1 �

ˇ̌
yn�1.s/�x

� .s/
ˇ̌
CL2 �

ˇ̌̌
y0n�1.s/�

�
x�
�0
.s/
ˇ̌̌�
ds

�maxfL1;L2g � sup

bZ
a

jG.t;s/jds


yn�x

�




DmaxfL1;L2g �
.b�a/2

8
�


yn�x

�


 :

Hence, we conclude that the aproximation for x� is given by

yn�x
�


� � .˛F /

n�1


y1�x

�


� :

�

The novelty of this paper is given by the results obtained in approximating the
solutions of problem (1.1) using the two operators defined on different spaces and
with different norms. A similar work was done in paper [14], but for the Cauchy
problem.
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