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Abstract. In this paper a compactness criterion in weighted variable Lebesgue spaces is proved.
In particular, are proved a compactness criterion in variable exponent sequence Lebesgue spaces.
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1. INTRODUCTION

Compactness results in the usually Lebesgue spaces are often vital in existence
proofs for nonlinear partial differential equations. A necessary and sufficient condi-
tion for a subset of usually Lebesgue spaces to be compact is given in what is of-
ten called the Kolmogorov compactness theorem, or Frechet-Kolmogorov theorem.
Furthemore, we trace out the historical roots of Kolmogorov compactness theorem,
which originated in [12] (see also [19]).

In this paper we extend Kolmogorov compactness criterion to the case of weighted
variable Lebesgue spaces. The aim of this paper is to give a characterization of pre-
compact sets in weighted variable Lebesgue space. Moreover, we study the precom-
pactness of weighted sequence spaces. The theory of variable Lebesgue spaces was
intensively developed during the last two decades, inspired both by difficult open
problems in this theory and possibly applications shown in [16]. We refer to detail in
[1–4, 13, 17, 18] and e.t.c.

Let us mention some generalizations of the Riesz-Kolmogorov theorem. Recently
in [7] and [11] was shown the Riesz-Kolmogorov compactness theorem on metric
spaces. In [8] full characterization of relatively compact sets is given in the case of
variable Lebesgue spaces on metric measure spaces. In [20] the compactness theorem
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in Lp.G/ on locally compact group G is shown. In [14] Kolmogorov theorem for
p D 2 in terms of the Fourier transform is given (see also [5, 6]).

2. PRELIMINARIES

An "-cover of a metric space is a cover of the space consisting of sets of diameter
at most ": A metric space is called totally bounded if it admits a finite "-cover for all
": It is well known that a metric space is compact if and only if it is complete and
totally bounded (see [21]). Since we are interested in compactness results for subsets
of Banach spaces, we concentrate our attention on total boundedness.

Let Rn be the n-dimensional Euclidean space of points x D .x1; :::;xn/ : Let p
be a Lebesgue measurable function on Rn such that 1 � p � p.x/ � p �1; p D
ess infx2Rn p.x/; p D ess supx2Rn p.x/; and ! is a weight function on Rn; i.e. !
is non-negative, almost everywhere (a.e.) positive function on Rn: The Lebesgue
measure of a set ˝ will be denoted by j˝j:

Definition 1. By Lp.x/;! .Rn/ we denote the set of all measurable functions f on
Rn such that for some �0 > 0

Ip;!.f /D

Z
Rn

�
jf .x/j

�0

�p.x/
!.x/dx <1:

Note that the expression

kf kLp.�/;!.Rn/ D kf kp.�/;! D inf

8<:� > 0 W
Z
Rn

�
jf .x/j

�

�p.x/
!.x/dx � 1

9=;
defines the norm in the space Lp.x/;! .Rn/ : The spaces Lp.x/;! .Rn/ is a Banach
function space with respect to the norm (see [3]).

By P log .Rn/ we denote the class of variable exponents satisfying following con-
dition:

jp.x/�p.y/j �
C1

�lnjx�yj
; 0 < jx�yj �

1

2
;

jp.x/�p1j �
C2

ln.eCjxj/
; jxj> 2;

where C1 and C2 are positive constants independents on x;y and lim
jyj!1

p.y/D p1:

Let us define the class Ap.�/ consisting of those weights ! 2 Lloc1 .Rn/ such that

sup
B

jBj�1



!1=p.�/




Lp.�/




!�1=p.�/



Lp0.�/

<1;

where the supremum is taken over all balls B �Rn and
1

p.x/
C

1

p0.x/
D 1:
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Here is the key lemma for many compactness results.

Lemma 1. [9] Let X be a metric space. Assume that, for every " > 0; there exists
some ı > 0; a metric space W; and a mapping ˚ W X 7! W so that ˚ŒX� is totally
bounded, and whenever x;y 2X are such that d .˚.x/; ˚.y// < ı; then d.x;y/ < ":
Then X is totally bounded.

Let f 2 Lloc1 .Rn/ and we define the Hardy-Littlewood maximal function

Mf.x/D sup
x2B

jBj�1
Z
B

jf .y/jdy

and

.f �g/.x/D

Z
Rn

f .y/g.x�y/dy

denoted the usual convolution operator.

Theorem 1. [10] Let p 2 P log .Rn/ with 1 < p � p <1 and ! is a weight
function.

Then M W Lp.x/;! .Rn/ 7! Lp.x/;! .R
n/ is bounded if and only if ! 2 Ap.�/: The

embedding constant depends on p and !:

Theorem 2. Let p 2 P log .Rn/ and let  W Rn 7! R be an integrable function.
Assume that  ".x/ WD "�n 

�
x
"

�
for all " > 0 and 	.x/ WD sup

jyj�jxj

 .y/ 2 L1 .R
n/ :

Then
a) Then exists A > 0 such that sup

">0

j.f � "/.x/j � 2AMf .x/; where A depends

on 	; f 2 Lp.x/;! .Rn/ and M is Hardy-Littlewood maximal operator;

b) If
Z
Rn

 .x/dx D 1; then for f 2 Lp.x/;! .Rn/ we have f � "! f for "! 0

a. e. x 2Rn: If additionally p <1; then lim
"!0C

kf � "�f kp.�/;! D 0:

Proof of Theorem 2 analogously to the proof of non-weighted case (see [4]).
Thus, from Theorem 1 and Theorem 2 (a) we obtain the following

Theorem 3. Let p 2 P log .Rn/ with 1 < p � p <1 and ! 2 Ap.�/: Then

kf � "kp.�/;! � 2Akf kp.�/;! ;

where A is independent of " and f:
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3. MAIN RESULTS.

Let w D fwng be a sequence of positive numbers. Let

lpn
.w/ WD

(
x W x D .x1; : : : ;xn; : : :/ ;

1X
kD1

�
jxkj

�0

�pk

wk <1

)
denote weighted variable sequence Lebesgue spaces with the norm

kxklpn .w/
WD




xw 1
pn





lpn

D inf

(
� > 0 W

1X
kD1

�
jxkj

�

�pk

wk � 1

)
:

Theorem 4. Let 1� pn � sup
n
pn <1; wD fwng be a sequence of positive num-

bers and S � lpn
.w/: A subset S is totally bounded if and only if:

(i) it is pointwise bounded;
(ii) for every " > 0 there is some n such that, for every x 2 S



xw 1

pk






lpk

.k>n/

< ":

Proof of Theorem 4. Let S � lpn
.w/ satisfies the two condition. Given " > 0; fix

n as in the second condition, and define a mapping ˚ W S 7!Rn by

˚.x/D .x1; : : : ;xn/ :

By the pointwise boundedness of S; the image ˚.S/ is totally bounded. Let x;y 2 S
with

j˚.x/�˚.y/jlpn .w/
D inf

8<:� > 0 W X
k�n

�
jxk �ykj

�

�pk

wk � 1

9=;< ":
We have

kx�yklpn .w/

� 2

0@j˚.x/�˚.y/jlpn .w/
C inf

8<:� > 0 W
1X

kDnC1

�
jxk �ykj

�

�pk

wk � 1

9=;
1A

< 2"C2"D 4":

By Lemma 1, S is totally bounded.
Note that conditions .i/ and .i i/ are also necessary. �

Remark 1. Note that in the case w D 1 Theorem 4 was proved in [8]. Also, for
p.x/D p D const; ! D 1 Theorem 4 was proved in [9].
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Theorem 5. Let p 2 P log .Rn/ and 1 � p � p.x/ � p <1: Suppose that ! is
a weight function on Rn and ! 2 Ap.�/: Then a subset S of Lp.x/;! .Rn/ is totally
bounded if and only if:

1) S is bounded in Lp.x/;! .Rn/ ; i.e. sup
f 2S

kf kp.�/;! <1I

2) for every "> 0 there is some �>0 such that, for every f 2S kf kLp.�/;!.jxj>�/<

"I

3) lim
"!0C

kf � "�f kp.�/;! D 0; uniformly for f 2 S:

Proof of Theorem 5. Necessity. Assume that S is totally bounded. The existence
of a finite "-cover for S; for any "; clearly implies the boundedness of S; thus estab-
lishing condition 1).

Now we prove the necessity of 2). To establish condition 2), let " > 0 be given
and let fU1; : : : ;Umg be an "-cover of S and choose gj for j D 1; : : : ;m: Select � > 0
such that 

gj

Lp.�/;!.jxj>�/

< "; j D 1; : : : ;m:

If f 2 Uj ; then


f �gj

p.�/;! � "; and so

kf kLp.�/;!.jxj>�/ �


f �gj

Lp.�/;!.jxj>�/

C


gj

Lp.�/;!.jxj>�/

� 2";

thus establishing condition 2).
To prove 3) we first note that, by Theorem 2 b), given " > 0; there exists an hk

indexed to each gk such that

k h �gk �gkkp.�/;! < "

where h < hk : Put h0 D min
1�k�l

hk; we have k h �gk �gkkp.�/;! < " for all k D

1; : : : ; l where h < h0: Then for h < h0 and all f 2 S by Theorem 3 we have a
suitable gr such that

k h �f �f kp.�/;! �k h � .f �gr/kp.�/;!Ckf �grkp.�/;!Ck h �gr �grkp.�/;!

� .2AC1/ kf �grkp.�/;!C " < .2AC2/";

which proves the necessity of 3).
Sufficiency part of Theorem 5 is proved analogously to the non-weighted case, i.e.

when ! D 1 (see [15]).
This completes the proof of Theorem 5. �

Remark 2. Note that in the case ! D 1 and when ˝ � Rn is a bounded open
set Theorem 5 was proved in [15]. Also, for p.x/ D p D const; ! D 1 and other
condition than 3) Theorem 5 was proved in [9].
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