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Abstract. Let R be a commutative Noetherian regular local ring containing a field. Let I be an
ideal of R and let ` � 0 be an integer. In this paper it is shown that for every finitely generated
R-module M and each integer i � `, the Bass numbers of the R-module H i

I
.M/ are finite,

whenever, dimSupp.H i
I
.R//� 1, for all i � `.
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1. INTRODUCTION

Let R denote a commutative Noetherian ring and let I be an ideal of R. In
[10], Hartshorne defined an R-module L to be I -cofinite, if Supp.L/ � V.I / and
ExtiR.R=I;L/ is finitely generated module for all i . He posed the following ques-
tion:

Is the category M .R;I /cof of I -cofinite modules forms an Abelian subcategory
of the category of all R-modules? That is, if f WM �! N is an R-homomorphism
of I -cofinite modules, are kerf and cokerf I -cofinite?

Hartshorne proved that if I is a prime ideal of dimension one in a complete regular
local ring R, then the answer to his question is yes. On the other hand, in [7], Delfino
and Marley extended this result to arbitrary complete local rings. Kawasaki [13]
generalized the Delfino and Marley’s result for an arbitrary ideal I of dimension one
in a local ring R. Recently, Bahmanpour et al in [4] and Melkersson in [19] have
removed the local assumption on R.

Recall that, we say that M is a minimax module if there is a finitely generated
submodule N of M , such that M=N is Artinian. The interesting class of minimax
modules was introduced by H. Zöshinger in [20] and he has given in [20] and [21]
many equivalent conditions for a module to be minimax. Also, the R-module M is

This work of the author was supported by a grant from Meshkin-Shahr branch Islamic Azad
University.

c 2016 Miskolc University Press



358 YAVAR IRANI

said to be I -cominimax, if support of M is contained in V.I / and ExtiR.R=I;M/ is
minimax for all i � 0. The concept of the I -cominimax modules were introduced in
[2] as a generalization of important notion of I -cofinite modules.

In this paper as a generalization the main results of [4] and [19] to the class of
cominimax modules we prove the following:

Let .R;m/ be a Noetherian local ring and let I be an ideal of R of dimension one.
Let M .R;I /com denote the category of I -cominimax modules. Then M .R;I /com

forms an Abelian subcategory of the category of all R-modules.
On the other hand, an important problem in commutative algebra is determining

when the set of associated primes and the Bass numbers of the i th local cohomology
module H i

I .M/ are finite. Lyubeznik conjectured that,
If R is a regular ring and I is an ideal of R, then the local cohomology modules

H i
I .R/ have finitely many associated prime ideals for all i � 0, (see [14, Remark

3.7(iii)]).
This conjecture have solved with an affirmative answer by Huneke and Sharp [12]

and Lyubeznik in [14] and [15] for regular rings containing a field. Also, in [11]
Huneke conjectured that,

For any ideal I in a regular local ring .R;m/, the Bass numbers

�j .p;H i
I .R//D dimk.p/ ExtjRp

.k.p/;H i
IRp

.Rp//

are finite for all i and j , where k.p/ WDRp=pRp. In particular the injective resolution
of the local cohomology has only finitely many copies of the injective hull of R=p for
any p.

Huneke and Sharp [12] and Lyubeznik [14, 15] have shown that this conjecture
holds for any regular local ring containing a field. But both of this conjectures are
still open for the general case. Also, in some situations the second conjecture holds
even for every finitely generated R-module instead of the ring R. (For example, see
[1]).

The main purpose of this note is to prove the following:
Let .R;m/ be a Noetherian regular local ring containing a field and let I be an

ideal of R. Let ` � 0 be an integer such that dimSupp.H i
I .R// � 1, for each i � `.

Then for every finitely generated R-module M and for each integer i � `, the set
Supp.H i

I .M// is finite and the Bass numbers of the R-module H i
I .M/ are finite.

Throughout this paper, R will always be a commutative Noetherian ring with non-
zero identity and I will be an ideal of R. For any R-module M , the i th local co-
homology module of M with support in I is defined by

H i
I .M/D lim

�!
n�1

ExtiR.R=I
n;M/:

We refer the reader to [9] or [6] for the basic properties of local cohomology.
For any ideal a ofR, we denote fp2 SpecR W p� ag by V.a/. For any unexplained

notation and terminology we refer the reader to [6] and [17].
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2. FINITENESS OF BASS NUMBERS OF LOCAL COHOMOLOGY MODULES

The following well known lemmata are crucial for the proof of Theorem 1.

Lemma 1. Let .R;m/ be a Noetherian local ring and let I be an ideal of R with
dimR=I D 1. Assume that M is an R-module and n � 0 is an integer. Then the
following conditions are equivalent:

(1) �i .p;M/ is finite for all p 2 V.I / and for all 0� i � n;
(2) The R-module ExtiR.R=I;M/ is minimax, for all integers 0� i � n.

Proof. See [5, Theorem 2.3]. �

Recall that for an R-module M , the cohomological dimension of M with respect
to ideal I of R, is defined as

cd.I;M/ WDmaxfi 2Z W H i
I .M/¤ 0g:

Lemma 2. Let R be a Noetherian ring and letM be an R-module of finite dimen-
sion d . Then the followings are equivalent:

(1) For each p 2 Spec.R/ and any integer 0� i � d , the Bass numbers �i .p;M/

are finite;
(2) For each p 2 Spec.R/ and any integer i � 0, the Bass numbers �i .p;M/ are

finite.

Proof. (2))(1) Is clear.
(1))(2) Using localization we may assume .R;m;k/ is a local Noetherian ring

and p D m is the unique maximal ideal of R. As by [6, Corollary 10.2.8] the R-
module ER.k/, the injective hull of k, is Artinian it follows from the hypothesis and
from the definition of local cohomology modules that for any 0� i � d theR-module
H i

m.M/ is Artinian. But in view of [6, Theorem 6.1.2] we have H i
m.M/D 0 for all

integers i > d . Therefore for all integers i � 0 the R-modules H i
m.M/ are Artinian

and hence are m-cofinite. So the assertion follows from the [18, Proposition 3.9]. �

Lemma 3. Let R be a Noetherian ring and let C1
B.R/ denote the category of all

R-modules M with dimSupp.M/ � 1 such that all Bass numbers of M are finite.
Then C1

B.R/ forms an Abelian subcategory of the category of all R-modules.

Proof. Let M;N 2 C1
B.R/ and let f W M ! N be an R-homomorphism. It is

enough to prove that the R-modules ker.f / and coker.f / are in C1
B.R/.

Now, the exact sequence

0 �! ker.f / �!M �! im.f / �! 0;

implies that for each p 2 Spec.R/ and any 0� i � 1 the Bass numbers �i
R.p;ker.f //

are finite. So, by Lemma 2 it follows that ker.f / is in C1
B.R/. Now the reminder

section of the proof follows from the exact sequences

0 �! ker.f / �!M �! im.f / �! 0;



360 YAVAR IRANI

and
0 �! im.f / �!N �! coker.f / �! 0:

�

Now, we are ready to state and prove our first main result.

Theorem 1. Let .R;m/ be a Noetherian local ring and let I be an ideal of R with
dimR=I D 1. Let M .R;I /com denote the category of I -cominimax modules overR.
Then M .R;I /com forms an Abelian subcategory of the category of all R-modules.

Proof. The assertion follows from Lemma 1 and 3. �

The following lemma plays a key role in the proof of Proposition 1.

Lemma 4. Let .R;m/ be a Noetherian local ring and let I be an ideal ofR. LetM
be a finitely generated R-module of dimension d . Let ` � 0 be an integer such that
cd.I;M/ � `. Assume that, for each i � `, the set Supp.H i

I .M// is finite and the
Bass numbers of theR-moduleH i

I .M/ are finite. Then, for each i � `, theR-module
H i

I .M/ is J -cominimax, where,

J WD
\

p2Supp.˚i�`H i
I .M//

p :

Proof. From the hypothesis cd.I;M/ � ` it follows that Supp.˚i�`H
i
I .M// ¤

¿. Also since by the hypothesis, for each ` � 0, the set Supp.H i
I .M// is finite

and by Grothendiek’s Vanishing Theorem, for every i > d , we have H i
I .M/D 0, it

follows that the set Supp.˚i�`H
i
I .M// is finite and hence dim.R=J / � 1. Now if

dim.R=J /D 0, then we have J Dm and so the assertion is clear. So, we may assume
dim.R=J /D 1. But in this situation the assertion follows immediately from Lemma
1. (Note that Supp.H i

I .M//� V.J /, for each i � `). �

The following lemma and its corollary is needed in the proof of Proposition 1.

Lemma 5. Let R be a Noetherian ring and let I be an ideal of R. Let M and
N be two finitely generated R-modules and let ` � 0 be an integer. If Supp.N / �
Supp.M/, then we have[

i�`

Supp.H i
I .N //�

[
i�`

Supp.H i
I .M//:

Proof. Let p 2 [i�` Supp.H i
I .N //. Then there exists an integer j � ` such that

.H
j
I .N //p ¤ 0, which implies that H j

IRp
.Np/ ¤ 0. Therefore, it follows from the

definition that cd.IRp;Np/ � j . Now as Supp.Np/ � Supp.Mp/ it follows from
[8, Theorem 2.2], that cd.IRp;Mp/ � cd.IRp;Np/ � j � `. So, if we have
cd.IRp;Mp/D t , then we haveH t

IRp
.Mp/¤ 0. Therefore, .H t

I .M//p¤ 0 and hence

p 2 [i�` Supp.H i
I .M//. �
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Corollary 1. Let R be a Noetherian ring and let I be an ideal of R. Let M a
finitely generated R-modules and `� 0 be an integer. Then[

i�`

Supp.H i
I .M//�

[
i�`

Supp.H i
I .R//:

Proof. Since Supp.M/� Spec.R/D Supp.R/, the assertion follows immediately
from Lemma 5. �

The following proposition is crucial for the proof of Theorem 2.

Proposition 1. Let .R;m/ be a Noetherian local ring and let I be an ideal of
R. Let ` � cd.I;R/ be an integer such that for each i � `, the set Supp.H i

I .R// is
finite and the Bass numbers of the R-module H i

I .R/ are finite. Then the following
statements hold:

(1) For every finitely generated R-module M with finite projective dimension
and each integer i � `, the R-module H i

I .M/ is J -cominimax, where,

J WD
\

p2Supp.˚i�`H i
I .R//

p :

(2) For every finitely generatedR-moduleM with finite projective dimension and
for each integer i � `, the set Supp.H i

I .M// is finite and the Bass numbers
of the R-module H i

I .M/ are finite.

Proof. (1) For every finitely generated R-module M , by the Grothendiek’s Van-
ishing Theorem we have H i

I .M/D 0, for each integer i > dim.R/ and so we have
`� dim.R/. Now, we argue by induction on t WD dim.R/�`. If t D 0, then for every
finitely generatedR-moduleM (even not necessary with finite projective dimension),
using Grothendiek’s Vanishing Theorem and [18, Proposition 5.1], it is straightfor-
ward to see that, the R-moduleH dim.R/

I .M/ is I -cofinite and hence is I -cominimax.
Now, if H dim.R/

I .M/¤ 0, then the assertion follows from Corollary 1 and [2, Corol-
lary 2.8]. (Note that in this situation we have fmg D Supp.H dim.R/

I .M//D V.J /�

V.I /). Now, let t > 0 and inductively, the assertion has been proved for all smal-
ler values of t for all finitely generated R-modules with finite projective dimension.
Then by inductive hypothesis, for every finitely generated R-module M with finite
projective dimension and each i � `C 1, the R-module H i

I .M/ is J1-cominimax,
where,

J1 WD

\
p2Supp.˚i�`C1H i

I .R//

p :

Then as by the hypothesis the set Supp.H `
I .R// is finite, it follows that dim.R=q/� 1

for every q 2 Supp.H `
I .R// and so using Lemma 1, it follows that, for every finitely
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generated R-module M with finite projective dimension and each i � `C 1, the R-
module H i

I .M/ is J -cominimax, where,

J WD
\

p2Supp.˚i�`H i
I .R//

p :

(Note that dim.R=J /� 1). Next, letM be an arbitrary non-zero finitely generatedR-
module with finite projective dimension. Then, we argue on s WD projdimR.M/ that,
theR-moduleH `

I .M/ is J -cominimax. For sD 0, the assertion follows from Lemma
4. Now let s > 0 and the result has been proved for all finitely generated R-modules
with finite projective dimension smaller than s. Let M be a finitely generated R-
module with projdimR.M/D s. Then there is an exact sequence

0!K! F !M ! 0; (2.1)

for some finitely generated freeR-modulesF and some finitely generatedR-modules
K with projdimR.K/D s�1. Then by inductive hypothesis of the second inductive
argument, the R-modules H `

I .K/ and H `
I .F / are J -cominimax. Moreover, by the

inductive hypothesis of the first inductive argument, the R-modules H `C1
I .K/ and

H `C1
I .F / are J -cominimax. On the other hand, the exact sequence 2.1 induces the

following exact sequence

H `
I .K/

f
!H `

I .F /!H `
I .M/!H `C1

I .K/
g
!H `C1

I .F /: (2.2)

Now the exact sequence 2.2 yields the exact sequence

0! Coker.f /!H `
I .M/! Ker.g/! 0: (2.3)

On the other hand, the exact sequence 2.3 induces the exact sequence

0! HomR.R=J;Coker.f //! HomR.R=J;H
`
I .M//! HomR.R=J;Ker.g//

! Ext1R.R=J;Coker.f //! Ext1R.R=J;H
`
I .M//! Ext1R.R=J;Ker.g//! �� � ;

which using [3, Lemma 2.1] and Theorem 1, implies that the R-module H `
I .M/ is

J -cominimax. This completes the second inductive step. Now the inductive step of
the first inductive argument is complete, too.

(2) The assertion follows immediately from (i), using Lemma 1 and Corollary
1. �

Now we are ready to state and prove our second main result.

Theorem 2. Let .R;m/ be a Noetherian local regular ring containing a field and
let I be an ideal ofR. Let 0� `� cd.I;R/ be an integer such that dimSupp.H i

I .R//�

1, for each i � `. Then the following statements hold:
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(1) For every finitely generated R-module M and each integer i � `, the R-
module H i

I .M/ is J -cominimax, where,

J WD
\

p2Supp.˚i�`H i
I .R//

p :

(2) For every finitely generated R-module M and for each integer i � `, the set
Supp.H i

I .M// is finite and the Bass numbers of the R-module H i
I .M/ are

finite.

Proof. In view of [12] and [14,15], the Bass numbers of the R-moduleH i
I .R/ are

finite, for all i . Moreover, in view of [12] and [14,16], the set AssR.H
i
I .R// is finite,

for all i . In particular, if dimSupp.H i
I .R// � 1 then the set Supp.H i

I .R// is finite.
Now, as .R;m/ is a regular ring, it follows that any finitely generated R-module has
finite projective dimension. Now, we can conclude the assertion immediately from
Proposition 1. �

Corollary 2. Let .R;m/ be a Noetherian regular local ring of dimension d � 1,
containing a field. Then for any finitely generated R-module M , the Bass numbers
of the local cohomology module H i

I .M/ are finite, for all integers i � d �1.

Proof. In view of the main results of [12], [14] and [15], the set AssR.H
i
I .R//

is finite, for all integers i � d � 1. Also, in view of Grothendiek’s Vanishing The-
orem we have dimSupp.H i

I .R// � 1, for all integers i � d � 1. Now, it is clear
that dimSupp.H i

I .R// � 1, for each i � d �1 and hence the assertion follows from
Theorem 2. �
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