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BOUNDARY VALUE PROBLEMS FOR BAGLEY–TORVIK
FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE
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Received 15 October, 2015

Abstract. We investigate the nonlocal fractional boundary value problem u00 D AcD˛uC

f .t;u;cD�u;u0/, u0.0/ D u0.T /, �.u/ D 0, at resonance. Here, ˛ 2 .1;2/, � 2 .0;1/, f and
�WC Œ0;T �! R are continuous. We introduce a ”three-component” operator S which first com-
ponent is related to the fractional differential equation and remaining ones to the boundary con-
ditions. Solutions of the problem are given by fixed points of S . The existence of fixed points of
S is proved by the Leray–Schauder degree method.
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1. INTRODUCTION

Let T > 0 be given and J D Œ0;T �. Denote by A the set of (generally nonlinear)
functionals �WC.J /! R which are

(a) continuous, �.0/D 0,
(b) increasing, that is, x;y 2 C.J /, x.t/ < y.t/ on J )�.x/ < �.y/.

Remark 1. Let � 2 A be linear. Then it follows from property (b) of � that �
takes bounded sets into bounded sets. Hence � is a linear bounded functional.

Example 1. Let p 2 C.J / be positive, n 2 N, 0 � t0 < t1 < � � � < tn � T , and
ak > 0, k D 0;1; : : : ;n. Then the functionals

�1.x/Dmaxfx.t/W t 2 J g; �2.x/Dminfx.t/W t 2 J g;

�3.x/D

Z T

0

p.s/.x.s//2n�1 ds; �4.x/D
nX
kD0

akx.tk/

and their linear combinations with positive coefficients belong to the set A.
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We discuss the fractional boundary value problem

u00.t/D AcD˛u.t/Cf .t;u.t/;cD�u.t/;u0.t//; (1.1)

u0.0/D u0.T /; �.u/D 0; � 2A: (1.2)

Here, cD denotes the Caputo fractional derivative, A 2 R, ˛ 2 .1;2/, � 2 .0;1/, and
the function f satisfies the condition:
.H/ there exists �> 0 such that f 2 C.D � Œ��;��/, where

D D J � Œ��T;�T �� Œ��K;�K�/; K D
T 1��

� .2��/
;

and

f .t;x;y;��/� 0; f .t;x;y;�/� 0 for .t;x;y/ 2D :

Equation 1.1 is the fractional differential equation of the Bagley-Torvik type. Its
special case is the equation u00 D AcD3=2uCauC'.t/. This equation with cD3=2

replaced by the Riemann–Liouville fractional derivative D3=2 is called the Bagley–
Torvik equation. Torvik and Bagley [22] used this equation in modelling the motion
of a rigid plate immersing in a Newtonian fluid. Analytical and numerical solutions
of the problem

u00 D AD3=2uCauC'.t/; u.0/D 0; u0.0/D 0;

are given in [13, 16, 18], while for the problem

u00 D AcD˛uCauC'.t/; u.0/D u0; u
0.0/D u1;

in [5,6,8,11,23]. The existence results for solutions of the generalized Bagley–Torvik
equation (1.1) satisfying the boundary conditions u0.0/D 0, u.T /Cau0.T /D 0 are
given in [20]. Here, f is a Carathéodory function.

Definition 1. We say that u 2 C 2.J / is a solution of problem (1.1), (1.2) if u
satisfies the boundary conditions (1.2) and (1.1) holds for t 2 J .

We recall that the Riemann–Liouville fractional integral I 
 of order 
 > 0 of a
function xWJ ! R is defined as [10, 13, 16]

I 
x.t/D

Z t

0

.t � s/
�1

� .
/
x.s/ds;

and the Caputo fractional derivative cD
x of order 
 > 0, 
 62 N, of a function
xWJ ! R is given by the formula [10, 13]

cD
x.t/D
dn

dtn

Z t

0

.t � s/n�
�1

� .n�
/

 
x.s/�

n�1X
kD0

x.k/.0/

kŠ
sk

!
ds;
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where nD Œ
�C1, Œ
� means the integral part of 
 and � is the Euler gamma func-
tion. If x 2 C n.J / and n�1 < 
 < n, then

cD
x.t/D

Z t

0

.t � s/n�
�1

� .n�
/
x.n/.s/ds D In�
x.n/.t/:

In particular, if x 2 C 2.J / and ˛ 2 .1;2/, � 2 .0;1/, then

cD˛x.t/D

Z t

0

.t � s/1�˛

� .2�˛/
x00.s/ds; t 2 J;

cD˛x.t/D
d
dt

Z t

0

.t � s/1�˛

� .2�˛/
.x0.s/�x0.0//ds D cD˛�1x0.t/; t 2 J;

cD�x.t/D
d
dt

Z t

0

.t � s/��

� .1��/
.x.s/�x.0//ds D I 1��x0.t/; t 2 J:

It is well known [10, 13] that I 
 WC.J /! C.J / for 
 2 .0;1/. Therefore, if x 2
C 2.J /, then cD˛x;cD�x 2 C.J / for ˛ 2 .1;2/ and � 2 .0;1/.

We will show that problem (1.1), (1.2) is at resonance. The linear function x.t/D
atCb is a solution of the problem u00�AcD˛uD 0, u0.0/D u0.T /, for each a;b 2R.
Let us consider the set of all functions at C b which are solutions of the equation
�.atCb/D 0, where � is from (1.2).

If� is linear, then bD�a�.t/
�.1/

. Hence
n
a
�
t � �.t/

�.1/

�
Wa 2 R

o
is the set of solutions

to problem u00�AcD˛uD 0, (1.2). This set is a one-dimensional linear subspace of
C 2.J /.

Let � be nonlinear. If a D 0, then b D 0. Let a 2 Rn f0g. By our Lemma 1 (for
�D 1), there exists �a 2 J such that a�aCb D 0. Hence b D�a�a and the equality
�.a.t � �a// D 0 is true. �a is determined uniquely. If this is not true, then there
exists �a 2 J , �a 6D �a, such that �.a.t � �a// D 0. Since a.t � �a/ 6D a.t � �a/
for all t 2 J , and therefore either a.t � �a/ < a.t ��a/ or a.t � �a/ > a.t ��a/ on
J , it follows from property (b) of � that �.a.t � �a// 6D �.a.t � �a//, which is
impossible. Consequently, uD 0 and fa.t � �a/Wa 2 R n f0gg is the set of solutions
to the problem u00�AcD˛uD 0, (1.2). In contrast to previous case, this set is not a
one-dimensional linear subspace of C 2.J /.

In order to show the solvability of problem (1.1), (1.2), we have to overcome
troubles that derivatives are of fractional order, the problem is at resonance and fi-
nally that � in the boundary conditions (1.2) is generally a nonlinear functional. To
this end, an auxiliary ”three-component” operator S is introduced. Its first compon-
ent is related to equation (1.1) and remaining ones to the boundary conditions (1.2).
Solutions of (1.1), (1.2) are given by fixed points of S . The existence of fixed points
of S is proved by means of the Leray-Schauder degree method [7].

In the literature, see [1–4, 12, 14, 19] and references therein, existence results for
fractional boundary value problems at resonance are usually proved by using the the
coincidence degree theory due to Mawhin [15].
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Our main result is as follows.

Theorem 1. Let .H/ hold and let A > 0. Then problem .1:1/; .1:2/ has at least
one solution.

The paper is organized as follows. In Section 2 we state the results which are used
in the next sections. Section 3 is devoted to auxiliary boundary value problems. To
this end operators Q;S ;K� and H� are introduced and their properties are given. In
Section 4 Theorem 1 is proved. An example demonstrates our results.

Throughout the paper ˛ 2 .1;2/,�2 .0;1/,KD T 1��

� .2��/
and kxkDmaxfjx.t/jW t 2

J g is the norm in C.J /.

2. PRELIMINARIES

This section contains the results that we will need in the next sections.

Lemma 1. Let � 2A and let the equality

�.x/C .��1/�.�x/D 0

hold for some x 2 C.J / and � 2 Œ0;1�. Then there exists � 2 J such that x.�/D 0.

Proof. Assume that the statement is not true. Then either x > 0 or x < 0 on J . If
x > 0 on J , then �.x/ > 0, �.�x/ < 0, and therefore �.x/C .�� 1/�.�x/ > 0,
which is impossible. Similarly, x < 0 on J leads to a contradiction. �

The following maximal principle follows immediately from [17, Lemma 2.1] and
[9, Lemma 2.7] and its proof.

Lemma 2 (Maximum principle). Let t0 2 .0;T �, x 2 C 1Œ0; t0�, x.t/ � x.t0/ for
t 2 Œ0; t0�, x.0/ < x.t0/ and x0.t0/D 0. Let 
 2 .0;1/. Then

cD
x.t/jtDt0 > 0:

Corollary 1. Let t0 2 .0;T �, x 2C 1Œ0; t0�, x.t/� x.t0/ for t 2 Œ0; t0�, x.0/> x.t0/
and x0.t0/D 0. Let 
 2 .0;1/. Then

cD
x.t/jtDt0 < 0:

Lemma 3 ([21]). Let r 2 C.J / and 
 2 .0;1/. Then the initial value problem

x0.t/D AcD
x.t/C r.t/; x.0/D a; A;a 2 R;

has the unique solution

x.t/D aC

Z t

0

r.s/dsCA
Z t

0

�Z s

0

.s� �/�
E1�
;1�

�
A.s� �/1�


�
r.�/d�

�
ds;

where

E1�
;1�
 .´/D

1X
kD0

´k

� ..kC1/.1�
//
; ´ 2 R;

is the classical Mittag-Leffler function.
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Lemma 4 ([24, Lemma 2.2]). Let � 2 .0;1/ and let E�;� be the Mittag-Leffler
function. Then

E�;�.´/ > 0; E
0
�;�.´/ > 0 for ´ 2 R:

We also need the following result.

Lemma 5. Let h 2 C.J / and A;c1; c2 2 R. Then the initial value problem

u00.t/D AcD˛u.t/Ch.t/; u.0/D c2; u
0.0/D c1; (2.1)

has the unique solution

u.t/D c1tC c2C

Z t

0

.t � s/h.s/ds

CA

Z t

0

.t � s/

�Z s

0

.s� �/1�˛E2�˛;2�˛
�
A.s� �/2�˛

�
h.�/d�

�
ds:

(2.2)

Proof. Since cD˛x.t/ D cD˛�1x0.t/ for t 2 J and x 2 C 2.J /, the equation of
(2.1) can be written as

u00.t/D AcD˛�1u0.t/Ch.t/: (2.3)

Hence, by Lemma 3 (for r D h and with x and 
 replaced by u0 and ˛�1),

u0.t/D c1C

Z t

0

h.s/ds

CA

Z t

0

�Z s

0

.s� �/1�˛E2�˛;2�˛
�
A.s� �/2�˛

�
h.�/d�

�
ds;

where u0.0/ D c1. Consequently, u.t/ D c2C
R t
0 u
0.s/ds is the unique solution of

problem (2.1) and (2.2) follows. �

3. OPERATORS

In this section auxiliary operators are introduced and their properties are proved.
The most important of these operators is an operator S by which the solvability of
problem (1.1), (1.2) is proved in Section 4.

Let

�1.x/D

8̂<̂
:
�T for x > �T ;
x for jxj ��T ;
��T for x < ��T ;

�2.y/D

8̂<̂
:
�K for y > �K;
y for jyj ��K;
��K for y < ��K;

where � and K are from .H/. Let

Qf .t;x;y;´/D f .t;�1.x/;�2.y/;´/ for .t;x;y;´/ 2 J �R2� Œ��;��
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and

f �.t;x;y;´/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Qf .t;x;y;�/C
´��

´
if ´ > �;

Qf .t;x;y;´/ if j´j ��;

Qf .t;x;y;��/�
´C�

´
if ´ < ��:

Under condition .H/, f � 2 C.J �R3/,

f �.t;x;y;��/� 0; f �.t;x;y;�/� 0 for .t;x;y/ 2 J �R2;

f �.t;x;y;´/ < 0 for .t;x;y;´/ 2 J �R2� .�1;��/;

f �.t;x;y;´/ > 0 for .t;x;y;´/ 2 J �R2� .�;1/;

)
(3.1)

and
jf �.t;x;y;´/j �E for .t;x;y;´/ 2 J �R3; (3.2)

where
E D 1Cmax

n
jf .t;x;y;´/jW.t;x;y/ 2D ; ´ 2 Œ��;��

o
:

Consider the fractional differential equation

u00.t/D AcD˛u.t/Cf �.t;u.t/;cD�u.t/;u0.t// (3.3)

associated to equation (1.1). Keeping in mind Lemma 5 define operators QWC 1.J /!

C.J / and S WC 1.J /�R2! C 1.J /�R2 by the formulae

.Qx/.t/D f �.t;x.t/;cD�x.t/;x0.t//

CA

Z t

0

.t � s/1�˛E2�˛;2�˛
�
A.t � s/2�˛

�
f �.s;x.s/;cD�x.t/;x0.s//ds;

S.x;c1; c2/D

 
c1tC c2C

Z t

0

.t � s/.Qx/.s/ds; c1C
Z T

0

.Qx/.s/ds; c2C�.x/

!
;

where � is from (1.2).

Lemma 6. Let .H/ hold. If .x;c1; c2/ is a fixed point of the operator S , then x is
a solution of problem .3:3/; .1:2/ and x0.0/D c1, x.0/D c2.

Proof. Let .x;c1; c2/ be a fixed point of the operator S , that is, S.x;c1; c2/ D

.x;c1; c2/. Then

x.t/D c1tC c2C

Z t

0

.t � s/.Qx/.s/ds; t 2 J; (3.4)Z T

0

.Qx/.s/ds D 0; (3.5)

�.x/D 0: (3.6)
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It follows from (3.4) and Lemma 5 (for h.t/ D f �.t;x.t/;cD�x.t/;x0.t//) that
x.0/D c2, x0.0/D c1 and x is a solution of (3.3).

Since (cf. (3.4))

x0.t/D c1C

Z t

0

.Qx/.s/ds; t 2 J;

we conclude from (3.5) that x0.T / D c1. Hence x0.0/ D x0.T /. The last equality
together with (3.6) give that x satisfies the boundary conditions (1.2). Consequently,
x is a solution of problem (3.3), (1.2) and x0.0/D c1, x.0/D c2. �

In order to prove that the operator S admits a fixed point, for � 2 Œ0;1�, we first
introduce an operator K�WC

1.J /�R2! C 1.J /�R2,

K�.x;c1; c2/

D

 
c1tC c2; c1C .1��/x

0.0/C�

Z T

0

.Qx/.s/ds;c2C�.x/C .��1/�.�x/

!
:

Let

˝ D
n
.x;c1; c2/ 2 C

1.J /�R2

Wkxk<�T C1;kx0k<�C1; jc1j<�C1; jc2j<�T C1
o
;

(3.7)

where � is from .H/.

Lemma 7. Let .H/ hold and let A > 0. Then

deg
�
I�K1;˝;0

�
6D 0; (3.8)

where ”deg” stands for the Leray-Schauder degree and I is the identity operator on
C 1.J /�R2.

Proof. Let M W Œ0;1��C 1.J /�R! C 1.J /�R, M.�;x;c1; c2/DK�.x;c1; c2/.
Since f � 2 C.J �R3/, we conclude from Lemma 4 that Q is a continuous operator.
As � is continuous and takes bounded sets into bounded sets, it is easy to prove that
M is a completely continuous operator.

Due to

K0.�x;�c1;�c2/D�K0.x;c1; c2/ for .x;c1; c2/ 2 C 1.J /�R2;

K0 is an odd operator.
Assume that M.�0;x;c1; c2/D .x;c1; c2/ for some .x;c1; c2/ 2 C 1.J /�R2 and

�0 2 Œ0;1�. Then
x.t/D c1tC c2; t 2 J; (3.9)

.1��0/x
0.0/C�0

Z T

0

.Qx/.s/ds D 0; (3.10)

�.x/C .�0�1/�.�x/D 0: (3.11)
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Lemma 1 together with (3.11) give x.�/ D 0 for some � 2 J . Hence (cf. (3.9))
c1�C c2 D 0, and therefore x.t/D c1.t � �/ on J .

We now prove that
jc1j ��: (3.12)

Let c1 > �. Then x0 D c1 > � on J , and therefore f �.t;x.t/;cD�x.t/;x0.t// > 0
for t 2 J by (3.1). This fact together with A > 0 and Lemma 4 imply .Qx/.t/ > 0
on J . Hence .1��0/c1C�0

R T
0 .Qx/.s/ds > 0, which contradicts (3.10). Therefore

c1 � �. Similarly, if c1 < ��, then we have f �.t;x.t/;cD�x.t/;x0.t// < 0 and
.Qx/.t/ < 0 for t 2 J , which again contradicts (3.10). Hence (3.12) is true.

Consequently, jx.t/j D jc1.t � �/j � �T , jx0.t/j D jc1j � �, jcD�x.t/j D
jI 1��x0.t/j ��K on J and jc2j D jx.0/j ��T . As a result,

M.�;x;c1; c2/ 6D .x;c1; c2/ for .x;c1; c2/ 2 @˝ and � 2 Œ0;1�:

Hence, by the Borsuk antipodal theorem and the homotopy property, the relations

deg
�
I�K0;˝;0

�
6D 0;

deg
�
I�K0;˝;0

�
D deg

�
I�K1;˝;0

�
hold. Combining these relations we obtain (3.8). �

Finally, let for � 2 Œ0;1� an operator H�WC
1.J /�R2! C 1.J /�R2 be defined

as

H�.x;c1; c2/D

 
c1tCc2C�

Z t

0

.t�s/.Qx/.s/ds; c1C
Z T

0

.Qx/.s/ds; c2C�.x/

!
:

Then, for .x;c1; c2/ 2 C 1.J /�R2,

H0.x;c1; c2/DK1.x;c1; c2/; (3.13)

H1.x;c1; c2/D S.x;c1; c2/: (3.14)

Lemma 8. Let .H/ hold. Let V W Œ0;1� � C 1.J / � R ! C 1.J / � R and
V.�;x;c1; c2/DH�.x;c1; c2/. Then V is a completely continuous operator.

Proof. We first prove that V is continuous. To this end let fxng �C 1.J /, fcn;ig �
R, i D 1;2, f�ng � Œ0;1� be convergent sequences and let limn!1xn D x in C 1.J /,
limn!1 cn;i D ci , limn!1�nD � in R, where x 2C 1.J /, ci ;� 2 R, i D 1;2. Then
limn!1f �.t;xn.t/;cD�xn.t/;x0n.t// D f �.t;x.t/;cD�x.t/;x0.t// uniformly on
J . This together with Lemma 4 imply that limn!1.Qxn/.t/D .Qx/.t/ uniformly
on J . Hence

lim
n!1

�
cn;1tC cn;2C�n

Z t

0

.t � s/.Qxn/.s/ds
�
D c1tCc2C�

Z t

0

.t�s/.Qx/.s/ds;

lim
n!1

�
cn;1C�n

Z t

0

.Qxn/.s/ds
�
D c1C�

Z t

0

.Qx/.s/ds
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uniformly on J . Besides,

lim
n!1

 
cn;1C

Z T

0

.Qxn/.s/ds

!
D c1C

Z T

0

.Qx/.s/ds;

lim
n!1

�
cn;2C�.xn/

�
D c2C�.x/:

Consequently, V is a continuous operator.
Let ˚ � C 1.J /�R2 be bounded and let kxk � L, kx0k � L, jc1j � L, jc2j � L

for .x;c1; c2/ 2 ˚ , where L is a positive constant. Let W D E2�˛;2�˛
�
jAjT 2�˛

�
.

Then, by (3.2) and Lemma 4, the relation

j.Qx/.t/j �ECjAjE

Z t

0

.t � s/1�˛E2�˛;2�˛
�
A.t � s/2�˛

�
ds

�ECjAjEW

Z t

0

.t � s/1�˛ ds �ECjAjEW
T 2�˛

2�˛
DH

holds for t 2 J and .x;c1; c2/ 2 ˚ . Henceˇ̌̌̌
c1tC c2C�

Z t

0

.t � s/.Qx/.s/ds
ˇ̌̌̌
� L.T C1/C

HT 2

2
;ˇ̌̌̌

ˇc1C�
Z T

0

.Qx/.s/ds

ˇ̌̌̌
ˇ� LCHT;

jc2C�.x/j � LCmaxfj�.�L/j;�.L/g
for t 2J , .x;c1; c2/2˚ and �2 Œ0;1�, and therefore the set V.Œ0;1��˚/DfV.�;x;c1; c2/W�2
Œ0;1�; .x;c1; c2/ 2 ˚g is bounded in C 1.J /�R2. In view of kQxk �H we see that
the set

n
c1C�

R t
0 .Qx/.s/dsW.x;c1; c2/ 2 ˚; � 2 Œ0;1�

o
is equicontinuous on J .

Hence the Arzelà-Ascoli theorem and the Bolzano–Weierstrass compactness the-
orem in R guarantee that the set V.Œ0;1��˚/ is relatively compact in C 1.J /�R2.
Consequently, V is completely continuous. �

4. THE PROOF OF THEOREM 1 AND AN EXAMPLE

Proof. Suppose that .x;c1; c2/ 2 C 1.J /�R2 is a fixed point of H� for some
� 2 Œ0;1�, that is, H�.x;c1; c2/D .x;c1; c2/. If �D 0, then it follows from the proof
of Lemma 7 (cf. (3.13)) that .x;c1; c2/ 2˝, where˝ is given in (3.7). Let � 2 .0;1�.
Then

x.t/D c1tC c2C�

Z t

0

.t � s/.Qx/.s/ds; t 2 J; (4.1)Z T

0

.Qx/.s/ds D 0; (4.2)

�.x/D 0: (4.3)
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Hence

x0.t/D c1C�

Z t

0

.Qx/.s/ds; t 2 J; (4.4)

so x0.0/D c1, and, by (4.2), x0.T /D c1C�
R T
0 .Qx/.s/ds D c1. Consequently,

x0.0/D x0.T /: (4.5)

Suppose that c1 >�, where � is from .H/. Then f �.0;x.0/;0;c1/ > 0 by (3.1),
and therefore f �.t;x.t/;cD�x.t/;x0.t// > 0 on a right neighbourhood of t D 0.
If there is some � 2 .0;T � such that f �.t;x.t/;cD�x.t/;x0.t// > 0 on Œ0;�/ and
f �.�;x.�/;cD�x.t/jtD� ;x

0.�// D 0, then .Qx/.t/ > 0 on Œ0;�� because A > 0,
which gives x0.t/ > c1 for t 2 .0;��. Hence f �.t;x.t/;cD�x.t/;x0.t// > 0 on Œ0;��,
contrary to f �.�;x.�/;cD�x.t/jtD� ;x0.�//D 0. Consequently,

f �.t;x.t/;cD�x.t/;x0.t// > 0; .Qx/.t/ > 0; t 2 J:

Thus x0.T / > c1 D x0.0/, which contradicts (4.5). Hence c1 ��. Similarly, we can
prove that c1 � ��. To summarize, jc1j ��.

Suppose that maxfx0.t/W t 2 J g D x0.�/ > �. Then � 2 .0;T / and x0.�/�x0.0/ >
0. By (4.4), x 2 C 2.J / and x00 D �Qx. Hence x00.�/D 0 and by Lemma 5 and (2.3)
(for h.t/D �f �.t;x.t/;cD�x.t/;x0.t//) the equality

x00.t/D AcD˛�1x0.t/C�f �.t;x.t/;cD�x.t/;x0.t//; t 2 J;

holds. Lemma 2 (for t0 D �, 
 D ˛ � 1 and x replaced by x0) shows that
cD˛�1x0.t/jtD� > 0. Hence

x00.�/D AcD˛�1x0.t/jtD�C�f
�.�;x.�/;cD�x.t/jtD� ;x

0.�// > 0;

which is impossible. Hence x0.t/ � � for t 2 J . Similarly, by Corollary 1, we can
prove that x0 � �� on J . Consequently,

jx0.t/j ��; t 2 J:

Next, it follows from (4.3) and Lemma 1 that x.�/D 0 for some � 2 J . Therefore
jx.t/j D

ˇ̌̌R t
� x
0.s/ds

ˇ̌̌
� �jt � � j � �T , jcD�x.t/j D jI 1��x0.t/j � �K. As c1 D

x0.0/ and c2 D x.0/, we have proved

kxk ��T; kcD�xk ��K; kx0k ��; jc1j ��T; jc2j ��; (4.6)

which implies V.�;x;c1; c2/ 6D .x;c1; c2/ for .x;c1; c2/ 2 @˝ and � 2 Œ0;1�, where
V is from Lemma 8. Combinig Lemma 8 with the homotopy property we have

deg
�
I�H0;˝;0

�
D deg

�
I�H1;˝;0

�
:

This equality together with (3.8) and (3.13) give

deg
�
I�H1;˝;0

�
6D 0:
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Hence there exists a fixed point .x;c1; c2/ of H1. Lemma 6 and (3.14) guarantee that
x is a fixed point of problem (3.3), (1.2) and c1 D x0.0/, c2 D x.0/. Due to (4.6),
f �.t;x.t/;cD�x.t/;x0.t//D f .t;x.t/;cD�x.t/;x0.t// for t 2 J , and therefore x is
a solution of problem (1.1), (1.2). �

Example 2. Let p 2C.J �R3/ be bounded, a;b;c 2C.J /, c > 0 on J , and n2N,
ˇ;
 2 .0;2n�1/. Then the function

f .t;x;y;´/D p.t;x;y;´/Ca.t/jxjˇ�1xCb.t/jyj
 C c.t/´2n�1

satisfies condition .H/. Really, let jp.t;x;y;´/j � L for .t;x;y;´/ 2 J �R3 and
c� Dminfc.t/W t 2 J g. Since

lim
v!1

�
Lv1�2nCkakT ˇvˇC1�2nCkbkK
v
C1�2n

�
D 0; K D

T 1��

� .2��/
;

there exists �> 0 such that

L�1�2nCkakT ˇ�ˇC1�2nCkbkK
�
C1�2n � c�:

Hence LCkak.�T /ˇ Ckbk.�K/
 � c��2n�1, and therefore for .t;x;y/ 2 D ,
where D is from .H/, the inequalities

f .t;x;y;�/� �L�kak.�T /ˇ �kbk.�K/
 C c��
2n�1

� 0;

f .t;x;y;��/� LCkak.�T /ˇ Ckbk.�K/
 � c��
2n�1

� 0

hold. Theorem 1 gives that the equation

u00 D AcD˛uCp.t;u;cD�u;u0/

Ca.t/jujˇ�1uCb.t/jcD�uj
 C c.t/.u0/2n�1; A > 0;
(4.7)

has at least one solution u satisfying the boundary conditions (1.2) and kuk � �T ,
kcD�uk ��K, ku0k ��.

In particular, there exists a solution of (4.7) satisfying the boundary conditions

minfu.t/W t 2 J g D 0; u0.0/D u0.T /;

that is, u is a nonnegative solution of the problem.
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