

BOUNDARY VALUE PROBLEMS FOR BAGLEY-TORVIK FRACTIONAL DIFFERENTIAL EQUATIONS AT RESONANCE

SVATOSLAV STANĚK

Received 15 October, 2015

Abstract. We investigate the nonlocal fractional boundary value problem $u'' = A^c D^\alpha u + f(t, u, {}^c D^\mu u, u'), u'(0) = u'(T), \Lambda(u) = 0$, at resonance. Here, $\alpha \in (1, 2), \mu \in (0, 1), f$ and $\Lambda: C[0, T] \to \mathbb{R}$ are continuous. We introduce a "three-component" operator \mathscr{S} which first component is related to the fractional differential equation and remaining ones to the boundary conditions. Solutions of the problem are given by fixed points of \mathscr{S} . The existence of fixed points of \mathscr{S} is proved by the Leray–Schauder degree method.

2010 Mathematics Subject Classification: 34A08; 26A33; 34B15

Keywords: fractional differential equation, boundary value problem at resonance, Caputo fractional derivative, Leray–Schauder degree, maximum principle

1. INTRODUCTION

Let T > 0 be given and J = [0, T]. Denote by \mathcal{A} the set of (generally nonlinear) functionals $\Lambda: C(J) \to \mathbb{R}$ which are

(a) continuous, $\Lambda(0) = 0$,

(b) increasing, that is, $x, y \in C(J)$, x(t) < y(t) on $J \Rightarrow \Lambda(x) < \Lambda(y)$.

Remark 1. Let $\Lambda \in A$ be linear. Then it follows from property (b) of Λ that Λ takes bounded sets into bounded sets. Hence Λ is a linear bounded functional.

Example 1. Let $p \in C(J)$ be positive, $n \in \mathbb{N}$, $0 \le t_0 < t_1 < \cdots < t_n \le T$, and $a_k > 0, k = 0, 1, \dots, n$. Then the functionals

$$\Lambda_1(x) = \max\{x(t): t \in J\}, \quad \Lambda_2(x) = \min\{x(t): t \in J\},$$
$$\Lambda_3(x) = \int_0^T p(s)(x(s))^{2n-1} ds, \quad \Lambda_4(x) = \sum_{k=0}^n a_k x(t_k)$$

and their linear combinations with positive coefficients belong to the set \mathcal{A} .

© 2018 Miskolc University Press

Supported by the grant No. 14-06958S of the Grant Agency of the Czech Republic.

We discuss the fractional boundary value problem

$$u''(t) = A^{c}D^{\alpha}u(t) + f(t, u(t), {}^{c}D^{\mu}u(t), u'(t)),$$
(1.1)

$$u'(0) = u'(T), \ \Lambda(u) = 0, \ \Lambda \in \mathcal{A}.$$
 (1.2)

Here, ^{*c*}*D* denotes the Caputo fractional derivative, $A \in \mathbb{R}$, $\alpha \in (1,2)$, $\mu \in (0,1)$, and the function *f* satisfies the condition:

(*H*) there exists $\Delta > 0$ such that $f \in C(\mathcal{D} \times [-\Delta, \Delta])$, where

$$\mathcal{D} = J \times [-\Delta T, \Delta T] \times [-\Delta K, \Delta K]), \quad K = \frac{T^{1-\mu}}{\Gamma(2-\mu)},$$

and

$$f(t, x, y, -\Delta) \le 0, \quad f(t, x, y, \Delta) \ge 0 \quad \text{for } (t, x, y) \in \mathcal{D}.$$

Equation 1.1 is the fractional differential equation of the Bagley-Torvik type. Its special case is the equation $u'' = A^c D^{3/2} u + au + \varphi(t)$. This equation with $^c D^{3/2}$ replaced by the Riemann–Liouville fractional derivative $D^{3/2}$ is called the Bagley–Torvik equation. Torvik and Bagley [22] used this equation in modelling the motion of a rigid plate immersing in a Newtonian fluid. Analytical and numerical solutions of the problem

$$u'' = AD^{3/2}u + au + \varphi(t), \ u(0) = 0, \ u'(0) = 0,$$

are given in [13, 16, 18], while for the problem

$$u'' = A^c D^{\alpha} u + au + \varphi(t), \ u(0) = u_0, \ u'(0) = u_1,$$

in [5,6,8,11,23]. The existence results for solutions of the generalized Bagley–Torvik equation (1.1) satisfying the boundary conditions u'(0) = 0, u(T) + au'(T) = 0 are given in [20]. Here, f is a Carathéodory function.

Definition 1. We say that $u \in C^2(J)$ is a solution of problem (1.1), (1.2) if u satisfies the boundary conditions (1.2) and (1.1) holds for $t \in J$.

We recall that *the Riemann–Liouville fractional integral* I^{γ} of order $\gamma > 0$ of a function $x: J \to \mathbb{R}$ is defined as [10, 13, 16]

$$I^{\gamma}x(t) = \int_0^t \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} x(s) \,\mathrm{d}s,$$

and the Caputo fractional derivative ${}^{c}D^{\gamma}x$ of order $\gamma > 0, \gamma \notin \mathbb{N}$, of a function $x: J \to \mathbb{R}$ is given by the formula [10, 13]

$${}^{c}D^{\gamma}x(t) = \frac{\mathrm{d}^{n}}{\mathrm{d}t^{n}} \int_{0}^{t} \frac{(t-s)^{n-\gamma-1}}{\Gamma(n-\gamma)} \left(x(s) - \sum_{k=0}^{n-1} \frac{x^{(k)}(0)}{k!} s^{k} \right) \mathrm{d}s,$$

where $n = [\gamma] + 1$, $[\gamma]$ means the integral part of γ and Γ is the Euler gamma function. If $x \in C^n(J)$ and $n - 1 < \gamma < n$, then

$${}^{c}D^{\gamma}x(t) = \int_{0}^{t} \frac{(t-s)^{n-\gamma-1}}{\Gamma(n-\gamma)} x^{(n)}(s) \,\mathrm{d}s = I^{n-\gamma}x^{(n)}(t).$$

In particular, if $x \in C^2(J)$ and $\alpha \in (1,2)$, $\mu \in (0,1)$, then

$${}^{c}D^{\alpha}x(t) = \int_{0}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} x''(s) \, \mathrm{d}s, \ t \in J,$$

$${}^{c}D^{\alpha}x(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{0}^{t} \frac{(t-s)^{1-\alpha}}{\Gamma(2-\alpha)} (x'(s) - x'(0)) \, \mathrm{d}s = {}^{c}D^{\alpha-1}x'(t), \ t \in J,$$

$${}^{c}D^{\mu}x(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{0}^{t} \frac{(t-s)^{-\mu}}{\Gamma(1-\mu)} (x(s) - x(0)) \, \mathrm{d}s = I^{1-\mu}x'(t), \ t \in J.$$

It is well known [10, 13] that $I^{\gamma}: C(J) \to C(J)$ for $\gamma \in (0, 1)$. Therefore, if $x \in C^2(J)$, then ${}^cD^{\alpha}x, {}^cD^{\mu}x \in C(J)$ for $\alpha \in (1, 2)$ and $\mu \in (0, 1)$.

We will show that problem (1.1), (1.2) is at resonance. The linear function x(t) = at + b is a solution of the problem $u'' - A^c D^{\alpha} u = 0$, u'(0) = u'(T), for each $a, b \in \mathbb{R}$. Let us consider the set of all functions at + b which are solutions of the equation $\Lambda(at + b) = 0$, where Λ is from (1.2).

If Λ is linear, then $b = -\frac{a\Lambda(t)}{\Lambda(1)}$. Hence $\left\{a\left(t - \frac{\Lambda(t)}{\Lambda(1)}\right): a \in \mathbb{R}\right\}$ is the set of solutions to problem $u'' - A^c D^{\alpha} u = 0$, (1.2). This set is a one-dimensional linear subspace of $C^2(J)$.

Let Λ be nonlinear. If a = 0, then b = 0. Let $a \in \mathbb{R} \setminus \{0\}$. By our Lemma 1 (for $\lambda = 1$), there exists $\xi_a \in J$ such that $a\xi_a + b = 0$. Hence $b = -a\xi_a$ and the equality $\Lambda(a(t - \xi_a)) = 0$ is true. ξ_a is determined uniquely. If this is not true, then there exists $\rho_a \in J$, $\rho_a \neq \xi_a$, such that $\Lambda(a(t - \rho_a)) = 0$. Since $a(t - \xi_a) \neq a(t - \rho_a)$ for all $t \in J$, and therefore either $a(t - \xi_a) < a(t - \rho_a)$ or $a(t - \xi_a) > a(t - \rho_a)$ on J, it follows from property (b) of Λ that $\Lambda(a(t - \xi_a)) \neq \Lambda(a(t - \rho_a))$, which is impossible. Consequently, u = 0 and $\{a(t - \xi_a): a \in \mathbb{R} \setminus \{0\}\}$ is the set of solutions to the problem $u'' - A^c D^{\alpha} u = 0$, (1.2). In contrast to previous case, this set is not a one-dimensional linear subspace of $C^2(J)$.

In order to show the solvability of problem (1.1), (1.2), we have to overcome troubles that derivatives are of fractional order, the problem is at resonance and finally that Λ in the boundary conditions (1.2) is generally a nonlinear functional. To this end, an auxiliary "three-component" operator ϑ is introduced. Its first component is related to equation (1.1) and remaining ones to the boundary conditions (1.2). Solutions of (1.1), (1.2) are given by fixed points of ϑ . The existence of fixed points of ϑ is proved by means of the Leray-Schauder degree method [7].

In the literature, see [1–4, 12, 14, 19] and references therein, existence results for fractional boundary value problems at resonance are usually proved by using the the coincidence degree theory due to Mawhin [15].

Our main result is as follows.

Theorem 1. Let (H) hold and let A > 0. Then problem (1.1), (1.2) has at least one solution.

The paper is organized as follows. In Section 2 we state the results which are used in the next sections. Section 3 is devoted to auxiliary boundary value problems. To this end operators $Q, \mathcal{S}, \mathcal{K}_{\lambda}$ and \mathcal{H}_{λ} are introduced and their properties are given. In Section 4 Theorem 1 is proved. An example demonstrates our results.

Throughout the paper $\alpha \in (1,2), \mu \in (0,1), K = \frac{T^{1-\mu}}{\Gamma(2-\mu)}$ and $||x|| = \max\{|x(t)|: t \in \mathbb{R}\}$ J is the norm in C(J).

2. PRELIMINARIES

This section contains the results that we will need in the next sections.

Lemma 1. Let $\Lambda \in \mathcal{A}$ and let the equality

$$\Lambda(x) + (\lambda - 1)\Lambda(-x) = 0$$

hold for some $x \in C(J)$ and $\lambda \in [0, 1]$. Then there exists $\xi \in J$ such that $x(\xi) = 0$.

Proof. Assume that the statement is not true. Then either x > 0 or x < 0 on J. If x > 0 on J, then $\Lambda(x) > 0$, $\Lambda(-x) < 0$, and therefore $\Lambda(x) + (\lambda - 1)\Lambda(-x) > 0$, which is impossible. Similarly, x < 0 on J leads to a contradiction.

The following maximal principle follows immediately from [17, Lemma 2.1] and [9, Lemma 2.7] and its proof.

Lemma 2 (Maximum principle). Let $t_0 \in (0,T]$, $x \in C^1[0,t_0]$, $x(t) \leq x(t_0)$ for $t \in [0, t_0], x(0) < x(t_0) \text{ and } x'(t_0) = 0.$ Let $\gamma \in (0, 1)$. Then

$$^{c}D^{\gamma}x(t)|_{t=t_{0}}>0.$$

Corollary 1. Let $t_0 \in (0, T]$, $x \in C^1[0, t_0]$, $x(t) \ge x(t_0)$ for $t \in [0, t_0]$, $x(0) > x(t_0)$ and $x'(t_0) = 0$. Let $\gamma \in (0, 1)$. Then

$$^{c}D^{\gamma}x(t)|_{t=t_{0}}<0.$$

Lemma 3 ([21]). Let $r \in C(J)$ and $\gamma \in (0, 1)$. Then the initial value problem

$$x'(t) = A^{c}D^{\gamma}x(t) + r(t), \ x(0) = a, \ A, a \in \mathbb{R},$$

has the unique solution

$$x(t) = a + \int_0^t r(s) \, \mathrm{d}s + A \int_0^t \left(\int_0^s (s-\xi)^{-\gamma} E_{1-\gamma,1-\gamma} \left(A(s-\xi)^{1-\gamma} \right) r(\xi) \, \mathrm{d}\xi \right) \mathrm{d}s,$$
where

where

$$E_{1-\gamma,1-\gamma}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma((k+1)(1-\gamma))}, \ z \in \mathbb{R},$$

is the classical Mittag-Leffler function.

Lemma 4 ([24, Lemma 2.2]). Let $\rho \in (0,1)$ and let $E_{\rho,\rho}$ be the Mittag-Leffler function. Then

$$E_{\rho,\rho}(z) > 0, \quad E'_{\rho,\rho}(z) > 0 \quad for \ z \in \mathbb{R}.$$

We also need the following result.

Lemma 5. Let $h \in C(J)$ and $A, c_1, c_2 \in \mathbb{R}$. Then the initial value problem

$$u''(t) = A^{c}D^{\alpha}u(t) + h(t), \ u(0) = c_{2}, \ u'(0) = c_{1},$$
(2.1)

has the unique solution

$$u(t) = c_1 t + c_2 + \int_0^t (t - s)h(s) ds + A \int_0^t (t - s) \left(\int_0^s (s - \xi)^{1 - \alpha} E_{2 - \alpha, 2 - \alpha} \left(A(s - \xi)^{2 - \alpha} \right) h(\xi) d\xi \right) ds.$$
(2.2)

Proof. Since ${}^{c}D^{\alpha}x(t) = {}^{c}D^{\alpha-1}x'(t)$ for $t \in J$ and $x \in C^{2}(J)$, the equation of (2.1) can be written as

$$u''(t) = A^{c} D^{\alpha - 1} u'(t) + h(t).$$
(2.3)

Hence, by Lemma 3 (for r = h and with x and γ replaced by u' and $\alpha - 1$),

$$u'(t) = c_1 + \int_0^t h(s) \, \mathrm{d}s + A \int_0^t \left(\int_0^s (s-\xi)^{1-\alpha} E_{2-\alpha,2-\alpha} \left(A(s-\xi)^{2-\alpha} \right) h(\xi) \, \mathrm{d}\xi \right) \mathrm{d}s,$$

where $u'(0) = c_1$. Consequently, $u(t) = c_2 + \int_0^t u'(s) ds$ is the unique solution of problem (2.1) and (2.2) follows.

3. Operators

In this section auxiliary operators are introduced and their properties are proved. The most important of these operators is an operator & by which the solvability of problem (1.1), (1.2) is proved in Section 4.

Let

$$\chi_1(x) = \begin{cases} \Delta T & \text{for } x > \Delta T, \\ x & \text{for } |x| \le \Delta T, \\ -\Delta T & \text{for } x < -\Delta T, \end{cases} \quad \chi_2(y) = \begin{cases} \Delta K & \text{for } y > \Delta K, \\ y & \text{for } |y| \le \Delta K, \\ -\Delta K & \text{for } y < -\Delta K, \end{cases}$$

where Δ and K are from (H). Let

$$\tilde{f}(t, x, y, z) = f(t, \chi_1(x), \chi_2(y), z)$$
 for $(t, x, y, z) \in J \times \mathbb{R}^2 \times [-\Delta, \Delta]$

and

$$f^{*}(t, x, y, z) = \begin{cases} \tilde{f}(t, x, y, \Delta) + \frac{z - \Delta}{z} & \text{if } z > \Delta, \\ \tilde{f}(t, x, y, z) & \text{if } |z| \le \Delta, \\ \tilde{f}(t, x, y, -\Delta) - \frac{z + \Delta}{z} & \text{if } z < -\Delta \end{cases}$$

Under condition (*H*), $f^* \in C(J \times \mathbb{R}^3)$,

$$\begin{aligned} f^*(t, x, y, -\Delta) &\leq 0, \quad f^*(t, x, y, \Delta) \geq 0 \quad \text{for } (t, x, y) \in J \times \mathbb{R}^2, \\ f^*(t, x, y, z) &< 0 \quad \text{for } (t, x, y, z) \in J \times \mathbb{R}^2 \times (-\infty, -\Delta), \\ f^*(t, x, y, z) &> 0 \quad \text{for } (t, x, y, z) \in J \times \mathbb{R}^2 \times (\Delta, \infty), \end{aligned}$$

$$(3.1)$$

and

$$|f^*(t,x,y,z)| \le E \quad \text{for } (t,x,y,z) \in J \times \mathbb{R}^3, \tag{3.2}$$

where

$$E = 1 + \max\left\{ |f(t, x, y, z)| : (t, x, y) \in \mathcal{D}, z \in [-\Delta, \Delta] \right\}.$$

Consider the fractional differential equation

$$u''(t) = A^{c}D^{\alpha}u(t) + f^{*}(t, u(t), {}^{c}D^{\mu}u(t), u'(t))$$
(3.3)

associated to equation (1.1). Keeping in mind Lemma 5 define operators $\mathcal{Q}: C^1(J) \to C(J)$ and $\mathscr{S}: C^1(J) \times \mathbb{R}^2 \to C^1(J) \times \mathbb{R}^2$ by the formulae

$$(\mathfrak{Q}x)(t) = f^*(t, x(t), {}^{c}D^{\mu}x(t), x'(t)) + A \int_0^t (t-s)^{1-\alpha} E_{2-\alpha,2-\alpha} \left(A(t-s)^{2-\alpha} \right) f^*(s, x(s), {}^{c}D^{\mu}x(t), x'(s)) \, \mathrm{d}s, \mathscr{S}(x, c_1, c_2) = \left(c_1 t + c_2 + \int_0^t (t-s)(\mathfrak{Q}x)(s) \, \mathrm{d}s, c_1 + \int_0^T (\mathfrak{Q}x)(s) \, \mathrm{d}s, c_2 + A(x) \right), \text{where } A \text{ is from (1.2).}$$

Lemma 6. Let (H) hold. If (x, c_1, c_2) is a fixed point of the operator \mathscr{S} , then x is a solution of problem (3.3), (1.2) and $x'(0) = c_1$, $x(0) = c_2$.

Proof. Let (x,c_1,c_2) be a fixed point of the operator \mathscr{S} , that is, $\mathscr{S}(x,c_1,c_2) = (x,c_1,c_2)$. Then

$$x(t) = c_1 t + c_2 + \int_0^t (t - s)(\mathcal{Q}x)(s) \,\mathrm{d}s, \ t \in J,$$
(3.4)

$$\int_0^T (\mathcal{Q}x)(s) \,\mathrm{d}s = 0, \tag{3.5}$$

$$\Lambda(x) = 0. \tag{3.6}$$

It follows from (3.4) and Lemma 5 (for $h(t) = f^*(t, x(t), {}^cD^{\mu}x(t), x'(t))$) that $x(0) = c_2, x'(0) = c_1$ and x is a solution of (3.3).

Since (cf. (3.4))

$$x'(t) = c_1 + \int_0^t (\mathcal{Q}x)(s) \,\mathrm{d}s, \ t \in J,$$

we conclude from (3.5) that $x'(T) = c_1$. Hence x'(0) = x'(T). The last equality together with (3.6) give that x satisfies the boundary conditions (1.2). Consequently, x is a solution of problem (3.3), (1.2) and $x'(0) = c_1$, $x(0) = c_2$.

In order to prove that the operator \mathscr{S} admits a fixed point, for $\lambda \in [0, 1]$, we first introduce an operator $\mathscr{K}_{\lambda}: C^{1}(J) \times \mathbb{R}^{2} \to C^{1}(J) \times \mathbb{R}^{2}$,

$$\mathcal{K}_{\lambda}(x,c_1,c_2) = \left(c_1t + c_2,c_1 + (1-\lambda)x'(0) + \lambda \int_0^T (\mathcal{Q}x)(s) \,\mathrm{d}s, c_2 + \Lambda(x) + (\lambda - 1)\Lambda(-x)\right).$$

Let

$$\Omega = \left\{ (x, c_1, c_2) \in C^1(J) \times \mathbb{R}^2 \\
: \|x\| < \Delta T + 1, \|x'\| < \Delta + 1, |c_1| < \Delta + 1, |c_2| < \Delta T + 1 \right\},$$
(3.7)

where Δ is from (*H*).

Lemma 7. Let (H) hold and let A > 0. Then

$$\deg\left(\boldsymbol{J} - \boldsymbol{\mathcal{K}}_1, \boldsymbol{\Omega}, \boldsymbol{0}\right) \neq \boldsymbol{0},\tag{3.8}$$

where "deg" stands for the Leray-Schauder degree and \mathcal{J} is the identity operator on $C^1(J) \times \mathbb{R}^2$.

Proof. Let $M:[0,1] \times C^1(J) \times \mathbb{R} \to C^1(J) \times \mathbb{R}$, $M(\lambda, x, c_1, c_2) = \mathcal{K}_{\lambda}(x, c_1, c_2)$. Since $f^* \in C(J \times \mathbb{R}^3)$, we conclude from Lemma 4 that \mathcal{Q} is a continuous operator. As Λ is continuous and takes bounded sets into bounded sets, it is easy to prove that M is a completely continuous operator.

Due to

$$\mathcal{K}_0(-x, -c_1, -c_2) = -\mathcal{K}_0(x, c_1, c_2) \text{ for } (x, c_1, c_2) \in C^1(J) \times \mathbb{R}^2,$$

 \mathcal{K}_0 is an odd operator.

Assume that $M(\lambda_0, x, c_1, c_2) = (x, c_1, c_2)$ for some $(x, c_1, c_2) \in C^1(J) \times \mathbb{R}^2$ and $\lambda_0 \in [0, 1]$. Then

$$x(t) = c_1 t + c_2, \ t \in J,$$
(3.9)

$$(1 - \lambda_0)x'(0) + \lambda_0 \int_0^1 (\mathcal{Q}x)(s) \,\mathrm{d}s = 0, \qquad (3.10)$$

$$\Lambda(x) + (\lambda_0 - 1)\Lambda(-x) = 0.$$
 (3.11)

Lemma 1 together with (3.11) give $x(\xi) = 0$ for some $\xi \in J$. Hence (cf. (3.9)) $c_1\xi + c_2 = 0$, and therefore $x(t) = c_1(t - \xi)$ on J.

We now prove that

$$|c_1| \le \Delta. \tag{3.12}$$

Let $c_1 > \Delta$. Then $x' = c_1 > \Delta$ on J, and therefore $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) > 0$ for $t \in J$ by (3.1). This fact together with A > 0 and Lemma 4 imply $(\mathcal{Q}x)(t) > 0$ on J. Hence $(1-\lambda_0)c_1 + \lambda_0 \int_0^T (\mathcal{Q}x)(s) ds > 0$, which contradicts (3.10). Therefore $c_1 \leq \Delta$. Similarly, if $c_1 < -\Delta$, then we have $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) < 0$ and $(\mathcal{Q}x)(t) < 0$ for $t \in J$, which again contradicts (3.10). Hence (3.12) is true.

Consequently, $|x(t)| = |c_1(t - \xi)| \le \Delta T$, $|x'(t)| = |c_1| \le \Delta$, $|^c D^{\mu} x(t)| = |I^{1-\mu} x'(t)| \le \Delta K$ on J and $|c_2| = |x(0)| \le \Delta T$. As a result,

$$M(\lambda, x, c_1, c_2) \neq (x, c_1, c_2)$$
 for $(x, c_1, c_2) \in \partial \Omega$ and $\lambda \in [0, 1]$.

Hence, by the Borsuk antipodal theorem and the homotopy property, the relations

$$\deg \left(\mathcal{J} - \mathcal{K}_{0}, \Omega, 0 \right) \neq 0,$$
$$\deg \left(\mathcal{J} - \mathcal{K}_{0}, \Omega, 0 \right) = \deg \left(\mathcal{J} - \mathcal{K}_{1}, \Omega, 0 \right)$$

hold. Combining these relations we obtain (3.8).

Finally, let for $\lambda \in [0,1]$ an operator $\mathcal{H}_{\lambda}: C^1(J) \times \mathbb{R}^2 \to C^1(J) \times \mathbb{R}^2$ be defined as

$$\mathcal{H}_{\lambda}(x,c_1,c_2) = \left(c_1t + c_2 + \lambda \int_0^t (t-s)(\mathcal{Q}x)(s) \,\mathrm{d}s, c_1 + \int_0^T (\mathcal{Q}x)(s) \,\mathrm{d}s, c_2 + \Lambda(x)\right).$$

Then, for $(x, c_1, c_2) \in C^1(J) \times \mathbb{R}^2$,

$$\mathcal{H}_0(x, c_1, c_2) = \mathcal{K}_1(x, c_1, c_2), \tag{3.13}$$

$$\mathcal{H}_1(x, c_1, c_2) = \mathscr{S}(x, c_1, c_2). \tag{3.14}$$

Lemma 8. Let (H) hold. Let $V:[0,1] \times C^1(J) \times \mathbb{R} \to C^1(J) \times \mathbb{R}$ and $V(\lambda, x, c_1, c_2) = \mathcal{H}_{\lambda}(x, c_1, c_2)$. Then V is a completely continuous operator.

Proof. We first prove that V is continuous. To this end let $\{x_n\} \subset C^1(J), \{c_{n,i}\} \subset \mathbb{R}, i = 1, 2, \{\lambda_n\} \subset [0, 1]$ be convergent sequences and let $\lim_{n\to\infty} x_n = x$ in $C^1(J)$, $\lim_{n\to\infty} c_{n,i} = c_i, \lim_{n\to\infty} \lambda_n = \lambda$ in \mathbb{R} , where $x \in C^1(J), c_i, \lambda \in \mathbb{R}, i = 1, 2$. Then $\lim_{n\to\infty} f^*(t, x_n(t), {}^cD^{\mu}x_n(t), x'_n(t)) = f^*(t, x(t), {}^cD^{\mu}x(t), x'(t))$ uniformly on J. This together with Lemma 4 imply that $\lim_{n\to\infty} (\mathcal{Q}x_n)(t) = (\mathcal{Q}x)(t)$ uniformly on J. Hence

$$\lim_{n \to \infty} \left(c_{n,1}t + c_{n,2} + \lambda_n \int_0^t (t - s)(\mathcal{Q}x_n)(s) \, \mathrm{d}s \right) = c_1 t + c_2 + \lambda \int_0^t (t - s)(\mathcal{Q}x)(s) \, \mathrm{d}s$$
$$\lim_{n \to \infty} \left(c_{n,1} + \lambda_n \int_0^t (\mathcal{Q}x_n)(s) \, \mathrm{d}s \right) = c_1 + \lambda \int_0^t (\mathcal{Q}x)(s) \, \mathrm{d}s$$

uniformly on J. Besides,

$$\lim_{n \to \infty} \left(c_{n,1} + \int_0^T (\mathcal{Q}x_n)(s) \, \mathrm{d}s \right) = c_1 + \int_0^T (\mathcal{Q}x)(s) \, \mathrm{d}s,$$
$$\lim_{n \to \infty} \left(c_{n,2} + \Lambda(x_n) \right) = c_2 + \Lambda(x).$$

Consequently, V is a continuous operator.

Let $\Phi \subset C^1(J) \times \mathbb{R}^2$ be bounded and let $||x|| \leq L$, $||x'|| \leq L$, $|c_1| \leq L$, $|c_2| \leq L$ for $(x, c_1, c_2) \in \Phi$, where *L* is a positive constant. Let $W = E_{2-\alpha, 2-\alpha}(|A|T^{2-\alpha})$. Then, by (3.2) and Lemma 4, the relation

$$|(Qx)(t)| \le E + |A|E \int_0^t (t-s)^{1-\alpha} E_{2-\alpha,2-\alpha} \left(A(t-s)^{2-\alpha} \right) ds$$

$$\le E + |A|EW \int_0^t (t-s)^{1-\alpha} ds \le E + |A|EW \frac{T^{2-\alpha}}{2-\alpha} = H$$

holds for $t \in J$ and $(x, c_1, c_2) \in \Phi$. Hence

$$\begin{vmatrix} c_1 t + c_2 + \lambda \int_0^t (t - s)(\mathcal{Q}x)(s) \, \mathrm{d}s \end{vmatrix} \le L(T + 1) + \frac{HT^2}{2}, \\ \begin{vmatrix} c_1 + \lambda \int_0^T (\mathcal{Q}x)(s) \, \mathrm{d}s \end{vmatrix} \le L + HT, \\ |c_2 + \Lambda(x)| \le L + \max\{|\Lambda(-L)|, \Lambda(L)\} \end{vmatrix}$$

for $t \in J$, $(x, c_1, c_2) \in \Phi$ and $\lambda \in [0, 1]$, and therefore the set $V([0, 1] \times \Phi) = \{V(\lambda, x, c_1, c_2) : \lambda \in [0, 1], (x, c_1, c_2) \in \Phi\}$ is bounded in $C^1(J) \times \mathbb{R}^2$. In view of $||Qx|| \le H$ we see that the set $\{c_1 + \lambda \int_0^t (Qx)(s) \, ds : (x, c_1, c_2) \in \Phi, \lambda \in [0, 1]\}$ is equicontinuous on J.

Hence the Arzelà-Ascoli theorem and the Bolzano–Weierstrass compactness theorem in \mathbb{R} guarantee that the set $V([0,1] \times \Phi)$ is relatively compact in $C^1(J) \times \mathbb{R}^2$. Consequently, V is completely continuous.

4. The proof of Theorem 1 and an example

Proof. Suppose that $(x,c_1,c_2) \in C^1(J) \times \mathbb{R}^2$ is a fixed point of \mathcal{H}_{λ} for some $\lambda \in [0,1]$, that is, $\mathcal{H}_{\lambda}(x,c_1,c_2) = (x,c_1,c_2)$. If $\lambda = 0$, then it follows from the proof of Lemma 7 (cf. (3.13)) that $(x,c_1,c_2) \in \Omega$, where Ω is given in (3.7). Let $\lambda \in (0,1]$. Then

$$x(t) = c_1 t + c_2 + \lambda \int_0^t (t - s)(Qx)(s) \, \mathrm{d}s, \ t \in J,$$
(4.1)

$$\int_{0}^{1} (\mathcal{Q}x)(s) \, \mathrm{d}s = 0, \tag{4.2}$$

$$\Lambda(x) = 0. \tag{4.3}$$

Hence

$$x'(t) = c_1 + \lambda \int_0^t (Qx)(s) \, \mathrm{d}s, \ t \in J,$$
 (4.4)

so $x'(0) = c_1$, and, by (4.2), $x'(T) = c_1 + \lambda \int_0^T (Qx)(s) ds = c_1$. Consequently,

$$x'(0) = x'(T). (4.5)$$

Suppose that $c_1 > \Delta$, where Δ is from (*H*). Then $f^*(0, x(0), 0, c_1) > 0$ by (3.1), and therefore $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) > 0$ on a right neighbourhood of t = 0. If there is some $\xi \in (0, T]$ such that $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) > 0$ on $[0, \xi]$ and $f^*(\xi, x(\xi), {}^cD^{\mu}x(t)|_{t=\xi}, x'(\xi)) = 0$, then $(\mathcal{Q}x)(t) > 0$ on $[0, \xi]$ because A > 0, which gives $x'(t) > c_1$ for $t \in (0, \xi]$. Hence $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) > 0$ on $[0, \xi]$, contrary to $f^*(\xi, x(\xi), {}^cD^{\mu}x(t)|_{t=\xi}, x'(\xi)) = 0$. Consequently,

$$f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) > 0, \quad (Qx)(t) > 0, \quad t \in J.$$

Thus $x'(T) > c_1 = x'(0)$, which contradicts (4.5). Hence $c_1 \le \Delta$. Similarly, we can prove that $c_1 \ge -\Delta$. To summarize, $|c_1| \le \Delta$.

Suppose that $\max\{x'(t): t \in J\} = x'(\xi) > \Delta$. Then $\xi \in (0, T)$ and $x'(\xi) - x'(0) > 0$. By (4.4), $x \in C^2(J)$ and $x'' = \lambda \mathcal{Q}x$. Hence $x''(\xi) = 0$ and by Lemma 5 and (2.3) (for $h(t) = \lambda f^*(t, x(t), {^cD}^{\mu}x(t), x'(t))$) the equality

$$x''(t) = A^{c}D^{\alpha-1}x'(t) + \lambda f^{*}(t, x(t), {}^{c}D^{\mu}x(t), x'(t)), \ t \in J,$$

holds. Lemma 2 (for $t_0 = \xi$, $\gamma = \alpha - 1$ and x replaced by x') shows that ${}^{c}D^{\alpha-1}x'(t)|_{t=\xi} > 0$. Hence

$$x''(\xi) = A^c D^{\alpha - 1} x'(t)|_{t = \xi} + \lambda f^*(\xi, x(\xi), {^c}D^{\mu}x(t)|_{t = \xi}, x'(\xi)) > 0,$$

which is impossible. Hence $x'(t) \le \Delta$ for $t \in J$. Similarly, by Corollary 1, we can prove that $x' \ge -\Delta$ on J. Consequently,

$$|x'(t)| \le \Delta, \ t \in J.$$

Next, it follows from (4.3) and Lemma 1 that $x(\tau) = 0$ for some $\tau \in J$. Therefore $|x(t)| = \left| \int_{\tau}^{t} x'(s) ds \right| \le \Delta |t - \tau| \le \Delta T$, $|{}^{c}D^{\mu}x(t)| = |I^{1-\mu}x'(t)| \le \Delta K$. As $c_1 = x'(0)$ and $c_2 = x(0)$, we have proved

$$||x|| \le \Delta T, ||^c D^{\mu} x|| \le \Delta K, ||x'|| \le \Delta, |c_1| \le \Delta T, |c_2| \le \Delta,$$
 (4.6)

which implies $V(\lambda, x, c_1, c_2) \neq (x, c_1, c_2)$ for $(x, c_1, c_2) \in \partial \Omega$ and $\lambda \in [0, 1]$, where *V* is from Lemma 8. Combining Lemma 8 with the homotopy property we have

$$\deg \Big(\mathcal{J} - \mathcal{H}_0, \Omega, 0 \Big) = \deg \Big(\mathcal{J} - \mathcal{H}_1, \Omega, 0 \Big).$$

This equality together with (3.8) and (3.13) give

$$\deg\left(\mathcal{J}-\mathcal{H}_{1},\Omega,0\right)\neq0.$$

Hence there exists a fixed point (x, c_1, c_2) of \mathcal{H}_1 . Lemma 6 and (3.14) guarantee that x is a fixed point of problem (3.3), (1.2) and $c_1 = x'(0)$, $c_2 = x(0)$. Due to (4.6), $f^*(t, x(t), {}^cD^{\mu}x(t), x'(t)) = f(t, x(t), {}^cD^{\mu}x(t), x'(t))$ for $t \in J$, and therefore x is a solution of problem (1.1), (1.2).

Example 2. Let $p \in C(J \times \mathbb{R}^3)$ be bounded, $a, b, c \in C(J)$, c > 0 on J, and $n \in \mathbb{N}$, $\beta, \gamma \in (0, 2n - 1)$. Then the function

$$f(t, x, y, z) = p(t, x, y, z) + a(t)|x|^{\beta - 1}x + b(t)|y|^{\gamma} + c(t)z^{2n - 1}$$

satisfies condition (*H*). Really, let $|p(t, x, y, z)| \le L$ for $(t, x, y, z) \in J \times \mathbb{R}^3$ and $c_* = \min\{c(t): t \in J\}$. Since

$$\lim_{v \to \infty} \left(Lv^{1-2n} + \|a\| T^{\beta} v^{\beta+1-2n} + \|b\| K^{\gamma} v^{\gamma+1-2n} \right) = 0, \quad K = \frac{T^{1-\mu}}{\Gamma(2-\mu)},$$

there exists $\Delta > 0$ such that

$$L\Delta^{1-2n} + ||a||T^{\beta}\Delta^{\beta+1-2n} + ||b||K^{\gamma}\Delta^{\gamma+1-2n} \le c_*.$$

Hence $L + ||a|| (\Delta T)^{\beta} + ||b|| (\Delta K)^{\gamma} \le c_* \Delta^{2n-1}$, and therefore for $(t, x, y) \in \mathcal{D}$, where \mathcal{D} is from (H), the inequalities

$$f(t, x, y, \Delta) \ge -L - ||a||(\Delta T)^{\beta} - ||b||(\Delta K)^{\gamma} + c_* \Delta^{2n-1} \ge 0$$

$$f(t, x, y, -\Delta) \le L + ||a||(\Delta T)^{\beta} + ||b||(\Delta K)^{\gamma} - c_* \Delta^{2n-1} \le 0$$

hold. Theorem 1 gives that the equation

$$u'' = A^{c}D^{\alpha}u + p(t, u, {}^{c}D^{\mu}u, u') + a(t)|u|^{\beta-1}u + b(t)|^{c}D^{\mu}u|^{\gamma} + c(t)(u')^{2n-1}, \quad A > 0,$$
(4.7)

has at least one solution u satisfying the boundary conditions (1.2) and $||u|| \le \Delta T$, $||^c D^{\mu} u|| \le \Delta K$, $||u'|| \le \Delta$.

In particular, there exists a solution of (4.7) satisfying the boundary conditions

$$\min\{u(t): t \in J\} = 0, \ u'(0) = u'(T),$$

that is, *u* is a nonnegative solution of the problem.

REFERENCES

- [1] C. Bai, "Existence result for boundary value problem of nonlinear impulsive fractional differential equation at resonance," *J. Appl. Math. Comput.*, vol. 39, pp. 421–443, 2012.
- Z. Bai, "On solutions of some fractional *m*-point boundary value problems at resonance," *Electron. J. Qual. The. Differ. Equ.*, vol. 37, pp. 1–15, 2010.
- [3] Z. Bai, "Solvability for a class of fractional *m*-point boundary value problem at resonance," *Comput. Math. Appl.*, vol. 62, pp. 1192–1302, 2011.
- [4] T. Chen, W. Liu, and Z. Hu, "A boundary value problem for fractional differential equation with *p*-laplacian operator at resonance," *Nonlinear Anal.*, vol. 75, pp. 3210–3217, 2012.
- [5] V. Daftardar-Gejji and H. Jafari, "Adomian decomposition: a tool for solving a system of fractional differential equations," J. Math. Anal. Appl., vol. 301, pp. 508–518, 2005.

- [6] Y. Cenesiz, Y. Keskin, and A. Kurnaz, "The solution of the bagley-torvik equation with the generalized taylor collocation method," *J. Franklin Institute*, vol. 347, pp. 452–466, 2010.
- [7] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin, 1985.
- [8] K. Deimling and N. J. Ford, "Numerical solution of the bagley-torvik equation," *BIT*, vol. 42, no. 3, pp. 490–507, 2002.
- [9] Z. Denton and A. S. Vatsala, "Nonotone iterative technique for finite systems of nonlinear riemann–liouville fractional differential equations," *Opuscula Math.*, vol. 31, no. 3, pp. 327–339, 2011.
- [10] K. Diethelm, *The Analysis of Fractional Differential Equations*, ser. Lectures Notes in Mathematics. Springer, Berlin–Heidelberg, 2010.
- [11] J. T. Edwards, N. J. Ford, and A. C. Simpson, "The numerical solution of linear multi-term fractional differential equations: systems of equations," *J. Comput. Appl. Math.*, vol. 148, pp. 401– 418, 2002.
- [12] Z. Hu, W. Liu, and T. Chen, "Two-point boundary value problems for fractional differential equations at resonace," *Bull. Malays. Math. Sci. Soc.*, vol. 36, no. 3, pp. 747–755, 2013.
- [13] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differen*tial Equations. Elsevier B.V., Amsterdam, 2006.
- [14] N. Kosmatov, "A boundary value problem of fractional order at resonance," *Electron. J. Differ. Equ.*, vol. 2010, no. 135, pp. 1–10, 2010.
- [15] J. Mawhin, Topological Degree Method in Nonlinear Boundary Value Problems, ser. CBMS. Amer. Math. Soc., Providence, R. I., 1979, vol. 40.
- [16] I. Podlubny, *Fractional Differential Equations*, ser. Mathematics in Science and Engineering. Academic Press, San Diego, 1999, vol. 198.
- [17] J. D. Ramirez and A. S. Vatsala, "Generalized monotone iterative technique for caputo fractional differential equation with periodic boundary condition via initial value problem," *International J. Diff. Equ.*, vol. 2012, no. ID 842813, pp. 1–17, 2012, doi: 10.1155/2012/842813.
- [18] S. Saha Ray and R. K. Bera, "Analytical solution of the bagley torvik equation by adomian decomposition method," *Appl. Math. Comp.*, vol. 168, pp. 398–410, 2005.
- [19] T. Shen, W. Liu, T. Chen, and X. Shen, "Solvability of fractional multi-point boundary-value problems with *p*-laplacian operator at resonance," *Electron. J. Differ. Equ.*, vol. 2014, no. 58, pp. 1–10, 2014.
- [20] S. Staněk, "Two-point boundary value problems for the generalized bagley-torvik fractional differential equation," *Cent. Eur. J. Math.*, vol. 11, no. 3, pp. 574–593, 2013.
- [21] S. Staněk, "Periodic problem for the generalized basset fractional differential equation," *Fract. Calc. Appl. Anal.*, vol. 18, no. 5, pp. 1277–1290, 2015, doi: 10.1515/fca-2015-0073.
- [22] P. J. Torvik and R. L. Bagley, "On the appearance of the fractional derivative in the behavior of real materials," ASME J. Appl. Mech., vol. 51, pp. 294–298, 1984.
- [23] Z. H. Wang and X. Wang, "General solution of the bagley-torvik equation with fractional-order derivative," *Commun. Nonlinear Sci. Numer. Simul.*, vol. 15, pp. 1279–1285, 2010.
- [24] Z. Wei, Q. Li, and J. Che, "Initial boundary value problems for fractional differential equations involving a riemann–liouville sequential fractional derivative," J. Math. Anal. Appl., vol. 367, pp. 260–272, 2010.

Author's address

Svatoslav Staněk

Department of Mathematical Analysis, Faculty of Science *Current address*: Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic *E-mail address*: svatoslav.stanek@upol.cz