

THIRD HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF *p*-VALENT ANALYTIC FUNCTIONS

D. VAMSHEE KRISHNA

This paper is dedicated to Professor T. RAMREDDY on his 72nd birthday.

Received 15 October, 2015

Abstract. The objective of this paper is to obtain an upper bound to the third Hankel determinant for certain subclass of *p*-valent functions, using Toeplitz determinants.

2010 Mathematics Subject Classification: 30C45; 30C50

Keywords: p-valent analytic function, upper bound, Hankel determinant, positive real function, Toeplitz determinants

1. INTRODUCTION

Let A_p denote the class of functions f of the form

$$f(z) = z^p + a_{p+1} z^{p+1} + \cdots,$$
(1.1)

in the open unit disc $E = \{z : |z| < 1\}$ with $p \in \mathbb{N} = \{1, 2, 3, ...\}$. Let *S* be the subclass of $A_1 = A$, consisting of univalent functions. In 1985, Louis de Branges de Bourcia proved the Bieberbach conjecture, i.e., for a univalent function its n^{th} - coefficient is bounded by *n* (see [3]). The bounds for the coefficients of these functions give information about their geometric properties. In particular, the growth and distortion properties of a normalized univalent function are determined by the bound of its second coefficient. The Hankel determinant of *f* for $q \ge 1$ and $n \ge 1$ (when p = 1) was defined by Pommerenke [10] as follows and has been extensively studied.

$$H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix}.$$
 (1.2)

One can easily observe that the Fekete-Szegő functional is $H_2(1) = a_3 - a_2^2$. Fekete and Szegő then further generalized the estimate $|a_3 - \mu a_2^2|$ with μ real and $f \in S$. Further, sharp upper bounds for the functional $H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2a_4 - a_3^2$, the Hankel determinant in the case of q = 2 and n = 2, known as the second Hankel determinant © 2021 Miskolc University Press

D. VAMSHEE KRISHNA

(functional), were obtained for various subclasses of univalent and multivalent analytic functions. Janteng et al. [6] have considered the functional $|a_2a_4 - a_3^2|$ and found a sharp upper bound for the function f in the subclass \mathcal{R} of S, consisting of functions whose derivative has a positive real part (also called bounded turning functions) studied by MacGregor [9] and have showed that $|H_2(2)| \le \frac{4}{9}$. For our discussion in this paper, we consider the Hankel determinant in the case of q = 3 and n = p, denoted by $H_3(p)$, given by

$$H_3(p) = \begin{vmatrix} a_p & a_{p+1} & a_{p+2} \\ a_{p+1} & a_{p+2} & a_{p+3} \\ a_{p+2} & a_{p+3} & a_{p+4} \end{vmatrix}.$$
 (1.3)

For $f \in A_p$, $a_p = 1$, so that, we have

$$H_3(p) = a_{p+2}(a_{p+1}a_{p+3} - a_{p+2}^2) - a_{p+3}(a_{p+3} - a_{p+1}a_{p+2}) + a_{p+4}(a_{p+2} - a_{p+1}^2)$$

and has combains the triangle inequality was obtain

and by applying the triangle inequality, we obtain

$$|H_{3}(p)| \leq |a_{p+2}||a_{p+1}a_{p+3} - a_{p+2}^{2}| + |a_{p+3}||a_{p+1}a_{p+2} - a_{p+3}| + |a_{p+4}||a_{p+2} - a_{p+1}^{2}| + |a_{p+3}||a_{p+3}| + |a_{p+3}||a_{p+3}||a_{p+3}| + |a_{p+3}||a_{p+3}||a_{p+3}| + |a_{p+3}||a_{p$$

Incidentally, all of the functionals on the right hand side of the inequality (1.4) have known (and sharp) upper bounds except $|a_{p+1}a_{p+2} - a_{p+3}|$. It was known that if $f \in \mathcal{R}_p$, the class of *p*-valent bounded turning functions, then $|a_k| \leq \frac{2p}{k}$, where $k \in \{p+1, p+2, ...\}$ and $|a_{p+2} - a_{p+1}^2| \leq \frac{2p}{p+2}$, with $p \in \mathbb{N}$. Motivated by the result obtained by Babalola [1] in finding the sharp upper bound

Motivated by the result obtained by Babalola [1] in finding the sharp upper bound to the Hankel determinant $|H_3(1)|$ for the class \mathcal{R} , in this paper we obtain an upper bound to the functional $|a_{p+1}a_{p+2} - a_{p+3}|$ and hence for $|H_3(p)|$, for the function fgiven in (1.1), belonging to certain subclass of p-valent analytic functions, as follows.

Definition 1 ([13]). A function $f \in A_p$ is said to be in the class $I_p(\beta)(\beta)$ is real), if it satisfies the condition

$$\operatorname{Re}\left\{(1-\beta)\frac{f(z)}{z^{p}} + \beta\frac{f'(z)}{pz^{p-1}}\right\} > 0, \quad z \in E.$$
(1.5)

(1) Choosing $\beta = 1$ and p = 1, we obtain $I_1(1) = \mathcal{R}$.

(2) Selecting $\beta = 1$, we get $I_p(1) = \mathcal{R}_p$.

2. PRELIMINARY RESULTS

In this section some preliminary lemmas are stated which are required for proving our results.

Let \mathcal{P} denote the class of functions consisting of p, such that

$$p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \dots = 1 + \sum_{n=1}^{\infty} c_n z^n,$$
(2.1)

which are analytic in the open unit disc *E* and satisfy $\operatorname{Re} p(z) > 0$ for any $z \in E$. Here p(z) is called Carathéodory function [4].

Lemma 1 ([11, 12]). *If* $p \in \mathcal{P}$, then $|c_k| \le 2$, for each $k \ge 1$ and the inequality is sharp for the function $p(z) = \frac{1+z}{1-z}$.

Lemma 2 ([5]). The power series for $p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$ given in (2.1) converges in the open unit disc *E* to a function in \mathcal{P} if and only if the Toeplitz determinants

$$D_n = \begin{vmatrix} 2 & c_1 & c_2 & \cdots & c_n \\ c_{-1} & 2 & c_1 & \cdots & c_{n-1} \\ c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2 \end{vmatrix}, n = 1, 2, 3 \dots$$

and $c_{-k} = \overline{c}_k$, are all non-negative. They are strictly positive except for $p(z) = \sum_{k=1}^{m} \rho_k p_0(e^{it_k}z)$, with $\sum_{k=1}^{m} \rho_k = 1$, t_k real and $t_k \neq t_j$, for $k \neq j$, where $p_0(z) = \frac{1+z}{1-z}$; in this case $D_n > 0$ for n < (m-1) and $D_n \doteq 0$ for $n \geq m$.

We may assume without restriction that $c_1 \ge 0$. Using Lemma 2, for n = 2 and n = 3, for some complex values x and z with $|x| \le 1$ and $|z| \le 1$ respectively, we have

$$2c_2 = c_1^2 + x(4 - c_1^2) \tag{2.2}$$

and
$$4c_3 = c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z.$$
 (2.3)

To obtain our results, we refer to the classical method devised by Libera and Zlotkiewicz [8], which is used by many authors in the literature.

3. MAIN RESULTS

Theorem 1. If $f \in I_p(\beta)$ $(0 < \beta \le 1)$ with $p \in \mathbb{N}$, then

$$|a_{p+1}a_{p+2} - a_{p+3}| \le \frac{2p}{p+3\beta}$$

Proof. For $f = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in I_p(\beta)$, by virtue of Definition 1, there exists an analytic function $p \in \mathcal{P}$ in the open unit disc *E* with p(0) = 1 and $\operatorname{Re} p(z) > 0$ such that

$$(1-\beta)\frac{f(z)}{z^{p}} + \beta \frac{f'(z)}{pz^{p-1}} = p(z) \Leftrightarrow (1-\beta)pf(z) + \beta f'(z) = pz^{p}p(z).$$
(3.1)

$$(1-\beta)p\left\{z^{p}+\sum_{n=p+1}^{\infty}a_{n}z^{n}\right\}+\beta\left\{pz^{p-1}+\sum_{n=p+1}^{\infty}na_{n}z^{n-1}\right\}=pz^{p}\left\{1+\sum_{n=1}^{\infty}c_{n}z^{n}\right\}.$$

Upon simplification, we obtain

$$(p+\beta)a_{p+1}z^{p+1} + (p+2\beta)a_{p+2}z^{p+2} + (p+3\beta)a_{p+3}z^{p+3} + (p+4\beta)a_{p+4}z^{p+4} + \dots$$
$$= pc_1z^{p+1} + pc_2z^{p+2} + pc_3z^{p+3} + pc_4z^{p+4} + \dots \quad (3.2)$$

D. VAMSHEE KRISHNA

Equating the coefficients of z^{p+1} , z^{p+2} , z^{p+3} and z^{p+4} respectively in 3.2, we have

$$a_{p+1} = \frac{pc_1}{p+\beta}; a_{p+2} = \frac{pc_2}{p+2\beta}; a_{p+3} = \frac{pc_3}{p+3\beta} \text{ and } a_{p+4} = \frac{pc_4}{p+4\beta}.$$
 (3.3)

Substituting the values of a_{p+1} , a_{p+2} and a_{p+3} from (3.3) in the functional $|a_{p+1}a_{p+2}-a_{p+3}|$, after simplifying, we get

$$|a_{p+1}a_{p+2} - a_{p+3}| = \frac{p}{(p+\beta)(p+2\beta)(p+3\beta)} |p(p+3\beta)c_1c_2 - (p+\beta)(p+2\beta)c_3|.$$

The above expression is equivalent to

$$|a_{p+1}a_{p+2} - a_{p+3}| = \frac{p}{(p+\beta)(p+2\beta)(p+3\beta)} |d_1c_1c_2 + d_2c_3|, \qquad (3.4)$$

where
$$d_1 = p(p+3\beta); \ d_2 = -(p+\beta)(p+2\beta).$$
 (3.5)

Substituting the values of c_2 and c_3 from (2.2) and (2.3) respectively from Lemma 2 on the right-hand side of (3.4), we have

$$\begin{aligned} |d_1c_1c_2 + d_2c_3| &= |d_1c_1 \times \frac{1}{2} \{c_1^2 + x(4 - c_1^2)\} + d_2 \\ &\times \frac{1}{4} \{c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)z\}|. \end{aligned}$$

Using the facts $|z| \le 1$ and $|xa + yb| \le |x||a| + |y||b|$, where *x*, *y*, *a* and *b* are real numbers, which simplifies to

$$4|d_1c_1c_2 + d_2c_3| \le [|(2d_1 + d_2)||c_1|^3 + 2|d_2||(4 - c_1^2)| + 2|(d_1 + d_2)||c_1||(4 - c_1^2)||x| + |d_2||(c_1 + 2)||(4 - c_1^2)||x|^2].$$
(3.6)

From (3.5), we can write

$$2d_1 + d_2 = p^2 + 3p\beta - 2\beta^2; \ d_1 + d_2 = -2\beta^2.$$
(3.7)

Substituting the calculated values from (3.7) along with (3.5) on the right-hand side of (3.6), we have

$$\begin{split} 4|d_1c_1c_2 + d_2c_3| &\leq [(p^2 + 3p\beta - 2\beta^2)c_1^3 + 2(p+\beta)(p+2\beta)(4-c_1^2) \\ &\quad + 4\beta^2c_1(4-c_1^2)|x| + (c_1+2)(p+\beta)(p+2\beta)(4-c_1^2)|x|^2]. \end{split}$$

Since $c_1 = c \in [0,2]$, noting that $c_1 - a \le c_1 + a$, where $a \ge 0$ and replacing |x| by μ on the right-hand side of the above inequality, we get

$$4|d_1c_1c_2 + d_2c_3| \le [(p^2 + 3p\beta - 2\beta^2)c^3 + 2(p+\beta)(p+2\beta)(4-c^2) + 4\beta^2c(4-c^2)\mu + (c-2)(p+\beta)(p+2\beta)(4-c^2)\mu^2] = F(c,\mu),$$
(3.8)

for $0 \le \mu = |x| \le 1$ and $0 \le c \le 2$, where

$$F(c,\mu) = (p^2 + 3p\beta - 2\beta^2)c^3 + 2(p+\beta)(p+2\beta)(4-c^2) + 4\beta^2c(4-c^2)\mu + (c-2)(p+\beta)(p+2\beta)(4-c^2)\mu^2.$$
(3.9)

378

379

Next, we need to find the maximum value of the function $F(c,\mu)$ on the closed region $[0,2] \times [0,1]$. Differentiating $F(c,\mu)$ given in (3.9) partially with respect to μ and c respectively, we obtain

$$\frac{\partial F}{\partial \mu} = 4\beta^2 c(4-c^2) + 2(p+\beta)(p+2\beta)(4c-c^3-8+2c^2)\mu.$$
(3.10)

and

$$\frac{\partial F}{\partial c} = 3(p^2 + 3p\beta - 2\beta^2)c^2 - 4c(p+\beta)(p+2\beta) + 16\beta^2\mu - 12\beta^2c^2\mu + (p+\beta)(p+2\beta)(4-3c^2+4c)\mu^2.$$
(3.11)

For the extreme values of $F(c,\mu)$, consider

$$\frac{\partial F}{\partial \mu} = 0$$
 and $\frac{\partial F}{\partial c} = 0.$ (3.12)

In view of (3.12), on solving the equations in (3.10) and (3.11), we obtain the only critical point for the function $F(c,\mu)$ which lies in the closed region $[0,2] \times [0,1]$ is (0,0). At the critical point (0,0), we observe that

$$\begin{split} \frac{\partial^2 F}{\partial \mu^2} &= -4(p+\beta)(p+2\beta) < 0;\\ \frac{\partial^2 F}{\partial c^2} &= -16(p+\beta)(p+2\beta) < 0;\\ \frac{\partial^2 F}{\partial c\partial \mu} &= 16\beta^2;\\ \left(\frac{\partial^2 F}{\partial \mu^2}\right) \left(\frac{\partial^2 F}{\partial c^2}\right) - \left(\frac{\partial^2 F}{\partial c\partial \mu}\right)^2 \end{bmatrix} = 64[(p+\beta)^2(p+2\beta)^2 - 4\beta^4] > 0, \end{split}$$

with $p \in \mathbb{N}$ and $0 < \beta \leq 1$.

Therefore, the function $F(c,\mu)$ has maximum value at the point (0,0), from (3.9), it is given by

$$G_{max} = F(0,0) = 8(p+\beta)(p+2\beta).$$
(3.13)

Simplifying the expressions (3.4) and (3.8) together with (3.13), we obtain

$$|a_{p+1}a_{p+2} - a_{p+3}| \le \frac{2p}{p+3\beta}.$$
(3.14)

This completes the proof of our theorem.

Remark 1. Choosing p = 1 and $\beta = 1$ in (3.14), we obtain $|a_2a_3 - a_4| \le \frac{1}{2}$, this inequality is sharp and coincides with the result of Bansal et al. [2].

Theorem 2. If $f \in I_p(\beta)$ $(0 < \beta \le 1)$ with $p \in \mathbb{N}$ then

$$|a_{p+2} - a_{p+1}^2| \le \frac{2p}{p+2\beta}$$

and the inequality is sharp for the values $c_1 = c = 0$, $c_2 = 2$ and x = 1.

Proof. On substituting the values of a_{p+1} and a_{p+2} from (3.3) in the functional $|a_{p+2} - a_{p+1}^2|$, which simplifies to

$$|a_{p+2} - a_{p+1}^2| = \frac{p}{(p+\beta)^2(p+2\beta)} \left| (p+\beta)^2 c_2 - p(p+2\beta)c_1^2 \right|.$$
(3.15)

The above expression is equivalent to

$$|a_{p+2} - a_{p+1}^2| = \frac{p}{(p+\beta)^2(p+2\beta)} \left| d_1 c_2 + d_2 c_1^2 \right|, \qquad (3.16)$$

where
$$d_1 = (p + \beta)^2$$
 and $d_2 = -p(p + 2\beta)$. (3.17)

Substituting the value of c_2 from (2.2) of Lemma 2, applying the triangle inequality on the right-hand side of (3.16), after simplifying, we get

$$2\left|d_{1}c_{2}+d_{2}c_{1}^{2}\right| \leq \left[\left|(d_{1}+2d_{2})\right||c_{1}|^{2}+|d_{1}||\left(4-c_{1}^{2}\right)||x|\right].$$
(3.18)

From (3.17), we can write

$$d_1 + 2d_2 = -(p^2 + 2p\beta - \beta^2); \ d_1 = (p + \beta)^2.$$
(3.19)

Substituting the calculated values from (3.19), taking $c_1 = c \in [0, 2]$, replacing |x| by μ on the right-hand side of (3.18), we obtain

$$2 |d_1 c_2 + d_2 c_1^2| \le \left[(p^2 + 2p\beta - \beta^2)c^2 + (p+\beta)^2 (4-c^2)\mu \right]$$

= $F(c,\mu)$, $0 \le \mu = |x| \le 1$ and $0 \le c \le 2$, (3.20)

where
$$F(c,\mu) = (p^2 + 2p\beta - \beta^2)c^2 + (p+\beta)^2 (4-c^2)\mu.$$
 (3.21)

Now, we maximize the function $F(c,\mu)$ on the closed region $[0,2] \times [0,1]$. Let us suppose that there exists a maximum value for $F(c,\mu)$ at any point in the interior of the closed region $[0,2] \times [0,1]$. Differentiating $F(c,\mu)$ given in (3.21) partially with respect to μ , we obtain

$$\frac{\partial F}{\partial \mu} = (p+\beta)^2 \left(4-c^2\right) \tag{3.22}$$

For $0 < \beta \le 1$, for fixed values of *c* with 0 < c < 2 and $p \in \mathbb{N}$, from (3.22), we observe that $\frac{\partial F}{\partial \mu} > 0$. Therefore, $F(c,\mu)$ which is independent of μ becomes an increasing function of μ and hence it cannot have a maximum value at any point in the interior of the closed region $[0,2] \times [0,1]$. The maximum value of $F(c,\mu)$ occurs only on the boundary i.e., when $\mu = 1$. Therefore, for fixed $c \in [0,2]$, we have

$$\max_{0 \le \mu \le 1} F(c,\mu) = F(c,1) = G(c).$$
(3.23)

380

In view of (3.23), replacing μ by 1 in (3.21), it simplifies to

$$G(c) = -2\beta^2 c^2 + 4(p+\beta)^2, \qquad (3.24)$$

$$G'(c) = -4\beta^2 c.$$
 (3.25)

From the expression (3.25), we observe that $G'(c) \le 0$ for each $c \in [0,2]$ and for every β with $0 < \beta \le 1$. Therefore, G(c) becomes a decreasing function of c, whose maximum value occurs at c = 0 only and from (3.24), it is given by

$$G_{max} = G(0) = 4(p+\beta)^2.$$
 (3.26)

Simplifying the expressions (3.16), (3.20) along with (3.26), we obtain

$$|a_{p+2} - a_{p+1}^2| \le \frac{2p}{p+2\beta}.$$
(3.27)

This completes the proof of our theorem.

Remark 2. If p = 1 and $\beta = 1$ in (3.27) then $|a_3 - a_2^2| \le \frac{2}{3}$, this result coincides with that of Babalola [1].

Theorem 3. If $f \in I_p(\beta)$ $(0 < \beta \le 1)$ then

$$|a_{p+k}| \le \frac{2p}{p+k\beta}, \text{ for } p, \ k \in \mathbb{N}.$$
(3.28)

Proof. Using the fact that $|c_n| \le 2$, for $n \in \mathbb{N}$, with the help of c_2 and c_3 values given in (2.2) and (2.3) respectively, together with the values obtained in (3.3), we get $|a_{p+k}| \le \frac{2p}{p+k\beta}$, with $p, k \in \mathbb{N}$. This completes the proof of our theorem.

Substituting the results of Theorems 1, 2, 3 together with the known inequality $|a_{p+1}a_{p+3} - a_{p+2}^2| \le \left[\frac{2p}{p+2\beta}\right]^2$ (see [7]) in the inequality given in (1.4), we obtain the following Corollary.

Corollary 1. If $f \in I_p(\beta)$ $(0 < \beta \le 1)$ with $p \in \mathbb{N}$ then

$$|H_3(p)| \le 4p^2 \left[\frac{2p}{(p+2\beta)^3} + \frac{1}{(p+3\beta)^2} + \frac{1}{(p+2\beta)(p+4\beta)} \right].$$
 (3.29)

Remark 3. In particular for the values p = 1 and $\beta = 1$ in (3.29), which simplifies to $|H_3(1)| \le \frac{439}{540}$. This result coincides with that of Bansal et al. [2].

ACKNOWLEDGEMENT

The author is extremely grateful to the esteemed reviewers for a careful reading of the manuscript and making valuable suggestions leading to a better presentation of the paper.

D. VAMSHEE KRISHNA

REFERENCES

- K. O. Babalola, "On H3(1) Hankel determinant for some classes of univalent functions," *Inequal. Theory Appl. (In: Dragomir, S.S., Cho, J.Y. (eds.))*, vol. 6, no. 1, pp. 1–7, 2010, doi: 10.1155/2008/153280.
- [2] D. Bansal, S. Maharana, and J. K. Prajapat, "Third Hankel determinant for certain univalent functions," *J. Korean Math. Soc.*, vol. 52, no. 6, pp. 1139–1148, 2015, doi: 10.4134/JKMS.2015.52.6.1139.
- [3] L. D. Branges, "A proof of Bieberbach conjecture," Acta Mathematica, vol. 154, no. 1, pp. 137– 152, 1985, doi: 10.1007/BF02392821.
- [4] P. L. Duren, Univalent Functions. USA: Springer-Verlag New York Inc., 1983, vol. 259, no. 1.
- [5] U. Grenander and G. Szegő, *Toeplitz Forms and Their Applications; 2nd Edition*. New York: AMS Chelsea Publishing Company, 1984.
- [6] A. Janteng, S. A. Halim, and M. Darus, "Coefficient inequality for a function whose derivative has a positive real part," *J. Inequal. and Appl.*, vol. 7, no. 2, pp. 1–5, 2006.
- [7] D. V. Krishna and T. RamReddy, "Coefficient inequality for certain subclass of p-valent functions," *Palestine J. Math.*, vol. 4, no. 1, pp. 223–228, 2015.
- [8] R. J. Libera and E. J. Zlotkiewicz, "Coefficient bounds for the inverse of a function with derivative in *P*," *Proc. Am. Math. Sc.*, vol. 87, no. 2, pp. 251–257, 1983.
- [9] T. H. MacGregor, "Functions whose derivative has a positive real part," *Trans. Am. Math. Sc.*, vol. 104, no. 3, pp. 532–537, 1962, doi: 10.1090/S0002-9947-1962-0140674-7.
- [10] C. Pommerenke, "On the coefficients and Hankel determinants of univalent functions," J. Lond. Math. Sc., vol. 41, no. 1, pp. 111–122, 1966, doi: 10.1112/jlms/s1-41.1.111.
- [11] C. Pommerenke, Univalent Functions with a Chapter on Quadratic Differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher. Band XXV.Vandenhoeck and Ruprecht GmbH and Co KG; 1st edition (December 1974), 1975.
- [12] B. Simon, Orthogonal polynomials on the unit circle. Part 1. American Mathematical Society Colloquium Publications, Vol. 54, American Mathematical Society, Providence, RI, 2005. Classical theory: American mathematical society colloquium publications., 2005.
- [13] Öznur Ozkan Kilic, "Sufficient conditions for subordination of multivalent functions," J. Inequa. Math. Sc., vol. 2008, no. 3, pp. 1–8, 2008, doi: 10.1155/2008/374356.

Author's address

D. Vamshee Krishna

Department of Mathematics, Gitam Institute of Science, GITAM University, Visakhapatnam, 530 045, A.P., India

E-mail address: vamsheekrishna1972@gmail.com