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1. INTRODUCTION

Let Ap denote the class of functions f of the form

f (z) = zp +ap+1zp+1 + · · · , (1.1)

in the open unit disc E = {z : |z|< 1} with p∈N= {1,2,3, ...}. Let S be the subclass
of A1 = A, consisting of univalent functions. In 1985, Louis de Branges de Bourcia
proved the Bieberbach conjecture, i.e., for a univalent function its nth- coefficient
is bounded by n (see [3]). The bounds for the coefficients of these functions give
information about their geometric properties. In particular, the growth and distortion
properties of a normalized univalent function are determined by the bound of its
second coefficient. The Hankel determinant of f for q ≥ 1 and n ≥ 1 (when p = 1)
was defined by Pommerenke [10] as follows and has been extensively studied.

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

. (1.2)

One can easily observe that the Fekete-Szegő functional is H2(1) = a3− a2
2. Fekete

and Szegő then further generalized the estimate |a3−µa2
2| with µ real and f ∈ S. Fur-

ther, sharp upper bounds for the functional H2(2) =
a2 a3
a3 a4

= a2a4−a2
3, the Hankel

determinant in the case of q = 2 and n = 2, known as the second Hankel determinant
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(functional), were obtained for various subclasses of univalent and multivalent ana-
lytic functions. Janteng et al. [6] have considered the functional |a2a4−a2

3| and found
a sharp upper bound for the function f in the subclass R of S, consisting of functions
whose derivative has a positive real part (also called bounded turning functions) stud-
ied by MacGregor [9] and have showed that |H2(2)| ≤ 4

9 . For our discussion in this
paper, we consider the Hankel determinant in the case of q = 3 and n = p, denoted
by H3(p), given by

H3(p) =
ap ap+1 ap+2

ap+1 ap+2 ap+3
ap+2 ap+3 ap+4

. (1.3)

For f ∈ Ap, ap = 1, so that, we have

H3(p) = ap+2(ap+1ap+3−a2
p+2)−ap+3(ap+3−ap+1ap+2)+ap+4(ap+2−a2

p+1)

and by applying the triangle inequality, we obtain

|H3(p)| ≤ |ap+2||ap+1ap+3−a2
p+2|+ |ap+3||ap+1ap+2−ap+3|+ |ap+4||ap+2−a2

p+1|.
(1.4)

Incidentally, all of the functionals on the right hand side of the inequality (1.4) have
known (and sharp) upper bounds except |ap+1ap+2− ap+3|. It was known that if
f ∈ Rp, the class of p-valent bounded turning functions, then |ak| ≤ 2p

k , where k ∈
{p+1, p+2, ...} and |ap+2−a2

p+1| ≤
2p

p+2 , with p ∈ N.
Motivated by the result obtained by Babalola [1] in finding the sharp upper bound

to the Hankel determinant |H3(1)| for the class R , in this paper we obtain an upper
bound to the functional |ap+1ap+2−ap+3| and hence for |H3(p)|, for the function f
given in (1.1), belonging to certain subclass of p-valent analytic functions, as follows.

Definition 1 ([13]). A function f ∈ Ap is said to be in the class Ip(β)(β is real), if
it satisfies the condition

Re
{
(1−β)

f (z)
zp +β

f ′(z)
pzp−1

}
> 0, z ∈ E. (1.5)

(1) Choosing β = 1 and p = 1, we obtain I1(1) = R .
(2) Selecting β = 1, we get Ip(1) = Rp.

2. PRELIMINARY RESULTS

In this section some preliminary lemmas are stated which are required for proving
our results.

Let P denote the class of functions consisting of p, such that

p(z) = 1+ c1z+ c2z2 + c3z3 + ...= 1+
∞

∑
n=1

cnzn, (2.1)

which are analytic in the open unit disc E and satisfy Rep(z)> 0 for any z ∈ E. Here
p(z) is called Carathéodory function [4].
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Lemma 1 ([11, 12]). If p ∈ P , then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function p(z) = 1+z

1−z .

Lemma 2 ([5]). The power series for p(z)= 1+∑
∞
n=1 cnzn given in (2.1) converges

in the open unit disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1
c−2 c−1 2 · · · cn−2

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1,2,3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =
∑

m
k=1 ρk p0(eitk z), with ∑

m
k=1 ρk = 1, tk real and tk 6= t j, for k 6= j, where p0(z) = 1+z

1−z ;
in this case Dn > 0 for n < (m−1) and Dn

.
= 0 for n≥ m.

We may assume without restriction that c1 ≥ 0. Using Lemma 2, for n = 2 and
n = 3, for some complex values x and z with |x| ≤ 1 and |z| ≤ 1 respectively, we have

2c2 = c2
1 + x(4− c2

1) (2.2)

and 4c3 = c3
1 +2c1(4− c2

1)x− c1(4− c2
1)x

2 +2(4− c2
1)(1−|x|2)z. (2.3)

To obtain our results, we refer to the classical method devised by Libera and Zlotkiewicz
[8], which is used by many authors in the literature.

3. MAIN RESULTS

Theorem 1. If f ∈ Ip(β) (0 < β≤ 1) with p ∈ N, then

|ap+1ap+2−ap+3| ≤
2p

p+3β
.

Proof. For f = zp +∑
∞
n=p+1 anzn ∈ Ip(β), by virtue of Definition 1, there exists an

analytic function p ∈ P in the open unit disc E with p(0) = 1 and Rep(z) > 0 such
that

(1 − β)
f (z)
zp + β

f ′(z)
pzp−1 = p(z) ⇔ (1 − β)p f (z) + β f ′(z) = pzp p(z). (3.1)

(1−β)p

{
zp +

∞

∑
n=p+1

anzn

}
+β

{
pzp−1 +

∞

∑
n=p+1

nanzn−1

}
= pzp

{
1+

∞

∑
n=1

cnzn

}
.

Upon simplification, we obtain

(p+β)ap+1zp+1+(p+2β)ap+2zp+2+(p+3β)ap+3zp+3+(p+4β)ap+4zp+4+ ...

= pc1zp+1 + pc2zp+2 + pc3zp+3 + pc4zp+4 + .... (3.2)
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Equating the coefficients of zp+1, zp+2, zp+3 and zp+4 respectively in 3.2, we have

ap+1 =
pc1

p+β
; ap+2 =

pc2

p+2β
; ap+3 =

pc3

p+3β
and ap+4 =

pc4

p+4β
. (3.3)

Substituting the values of ap+1, ap+2 and ap+3 from (3.3) in the functional
|ap+1ap+2−ap+3|, after simplifying, we get

|ap+1ap+2−ap+3|=
p

(p+β)(p+2β)(p+3β)
|p(p+3β)c1c2− (p+β)(p+2β)c3| .

The above expression is equivalent to

|ap+1ap+2−ap+3|=
p

(p+β)(p+2β)(p+3β)
|d1c1c2 +d2c3| , (3.4)

where d1 = p(p+3β); d2 =−(p+β)(p+2β). (3.5)
Substituting the values of c2 and c3 from (2.2) and (2.3) respectively from Lemma 2
on the right-hand side of (3.4), we have

|d1c1c2 +d2c3|= |d1c1×
1
2
{c2

1 + x(4− c2
1)}+d2

× 1
4
{c3

1 +2c1(4− c2
1)x− c1(4− c2

1)x
2 +2(4− c2

1)(1−|x|2)z}|.

Using the facts |z| ≤ 1 and |xa + yb| ≤ |x||a|+ |y||b|, where x,y,a and b are real
numbers, which simplifies to

4 |d1c1c2 +d2c3| ≤ [|(2d1 +d2)||c1|3 +2|d2||(4− c2
1)|+2|(d1 +d2)||c1||(4− c2

1)||x|
+ |d2||(c1 +2)||(4− c2

1)||x|2]. (3.6)

From (3.5), we can write

2d1 +d2 = p2 +3pβ−2β
2; d1 +d2 =−2β

2. (3.7)

Substituting the calculated values from (3.7) along with (3.5) on the right-hand side
of (3.6), we have

4|d1c1c2 +d2c3| ≤ [(p2 +3pβ−2β
2)c3

1 +2(p+β)(p+2β)(4− c2
1)

+4β
2c1(4− c2

1)|x|+(c1 +2)(p+β)(p+2β)(4− c2
1)|x|2].

Since c1 = c ∈ [0,2], noting that c1−a≤ c1 +a, where a≥ 0 and replacing |x| by
µ on the right-hand side of the above inequality, we get

4|d1c1c2 +d2c3| ≤ [(p2 +3pβ−2β
2)c3 +2(p+β)(p+2β)(4− c2)+4β

2c(4− c2)µ

+(c−2)(p+β)(p+2β)(4− c2)µ2] = F(c,µ), (3.8)

for 0≤ µ = |x| ≤ 1 and 0≤ c≤ 2, where

F(c,µ) = (p2 +3pβ−2β
2)c3 +2(p+β)(p+2β)(4− c2)+4β

2c(4− c2)µ

+(c−2)(p+β)(p+2β)(4− c2)µ2. (3.9)
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Next, we need to find the maximum value of the function F(c,µ) on the closed region
[0,2]× [0,1]. Differentiating F(c,µ) given in (3.9) partially with respect to µ and c
respectively, we obtain

∂F
∂µ

= 4β
2c(4− c2)+2(p+β)(p+2β)(4c− c3−8+2c2)µ. (3.10)

and

∂F
∂c

= 3(p2 +3pβ−2β
2)c2−4c(p+β)(p+2β)+16β

2µ−12β
2c2µ

+(p+β)(p+2β)(4−3c2 +4c)µ2. (3.11)

For the extreme values of F(c,µ), consider

∂F
∂µ

= 0 and
∂F
∂c

= 0. (3.12)

In view of (3.12), on solving the equations in (3.10) and (3.11), we obtain the only
critical point for the function F(c,µ) which lies in the closed region [0,2]× [0,1] is
(0,0). At the critical point (0,0), we observe that

∂2F
∂µ2 =−4(p+β)(p+2β)< 0;

∂2F
∂c2 =−16(p+β)(p+2β)< 0;

∂2F
∂c∂µ

= 16β
2;[(

∂2F
∂µ2

)(
∂2F
∂c2

)
−
(

∂2F
∂c∂µ

)2
]
= 64[(p+β)2(p+2β)2−4β

4]> 0,

with p ∈ N and 0 < β≤ 1.
Therefore, the function F(c,µ) has maximum value at the point (0,0), from (3.9),

it is given by

Gmax = F(0,0) = 8(p+β)(p+2β). (3.13)

Simplifying the expressions (3.4) and (3.8) together with (3.13), we obtain

|ap+1ap+2−ap+3| ≤
2p

p+3β
. (3.14)

This completes the proof of our theorem. �

Remark 1. Choosing p = 1 and β = 1 in (3.14), we obtain |a2a3− a4| ≤ 1
2 , this

inequality is sharp and coincides with the result of Bansal et al. [2].
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Theorem 2. If f ∈ Ip(β) (0 < β≤ 1) with p ∈ N then

|ap+2−a2
p+1| ≤

2p
p+2β

and the inequality is sharp for the values c1 = c = 0, c2 = 2 and x = 1.

Proof. On substituting the values of ap+1 and ap+2 from (3.3) in the functional
|ap+2−a2

p+1|, which simplifies to

|ap+2−a2
p+1|=

p
(p+β)2(p+2β)

∣∣(p+β)2c2− p(p+2β)c2
1
∣∣ . (3.15)

The above expression is equivalent to

|ap+2−a2
p+1|=

p
(p+β)2(p+2β)

∣∣d1c2 +d2c2
1
∣∣ , (3.16)

where d1 = (p+β)2 and d2 =−p(p+2β). (3.17)
Substituting the value of c2 from (2.2) of Lemma 2, applying the triangle inequality
on the right-hand side of (3.16), after simplifying, we get

2
∣∣d1c2 +d2c2

1
∣∣≤ [|(d1 +2d2)||c1|2 + |d1||

(
4− c2

1
)
||x|
]
. (3.18)

From (3.17), we can write

d1 +2d2 =−(p2 +2pβ−β
2); d1 = (p+β)2. (3.19)

Substituting the calculated values from (3.19), taking c1 = c ∈ [0,2], replacing |x| by
µ on the right-hand side of (3.18), we obtain

2
∣∣d1c2 +d2c2

1
∣∣≤ [(p2 +2pβ−β

2)c2 +(p+β)2 (4− c2)µ
]

= F(c,µ) , 0≤ µ = |x| ≤ 1 and 0≤ c≤ 2, (3.20)

where F(c,µ) = (p2 +2pβ−β
2)c2 +(p+β)2 (4− c2)µ. (3.21)

Now, we maximize the function F(c,µ) on the closed region [0,2]× [0,1]. Let us
suppose that there exists a maximum value for F(c,µ) at any point in the interior of
the closed region [0,2]× [0,1]. Differentiating F(c,µ) given in (3.21) partially with
respect to µ, we obtain

∂F
∂µ

= (p+β)2 (4− c2) (3.22)

For 0< β≤ 1, for fixed values of c with 0< c< 2 and p∈N, from (3.22), we observe
that ∂F

∂µ > 0. Therefore, F(c,µ) which is independent of µ becomes an increasing
function of µ and hence it cannot have a maximum value at any point in the interior
of the closed region [0,2]× [0,1]. The maximum value of F(c,µ) occurs only on the
boundary i.e., when µ = 1. Therefore, for fixed c ∈ [0,2], we have

max
0≤µ≤1

F(c,µ) = F(c,1) = G(c). (3.23)
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In view of (3.23), replacing µ by 1 in (3.21), it simplifies to

G(c) =−2β
2c2 +4(p+β)2, (3.24)

G′(c) =−4β
2c. (3.25)

From the expression (3.25), we observe that G′(c) ≤ 0 for each c ∈ [0,2] and for
every β with 0 < β≤ 1. Therefore, G(c) becomes a decreasing function of c, whose
maximum value occurs at c = 0 only and from (3.24), it is given by

Gmax = G(0) = 4(p+β)2. (3.26)

Simplifying the expressions (3.16), (3.20) along with (3.26), we obtain

|ap+2−a2
p+1| ≤

2p
p+2β

. (3.27)

This completes the proof of our theorem. �

Remark 2. If p = 1 and β = 1 in (3.27) then |a3− a2
2| ≤ 2

3 , this result coincides
with that of Babalola [1].

Theorem 3. If f ∈ Ip(β) (0 < β≤ 1) then

|ap+k| ≤
2p

p+ kβ
, for p, k ∈ N. (3.28)

Proof. Using the fact that |cn| ≤ 2, for n ∈ N, with the help of c2 and c3 values
given in (2.2) and (2.3) respectively, together with the values obtained in (3.3), we
get |ap+k| ≤ 2p

p+kβ
, with p ,k ∈ N. This completes the proof of our theorem. �

Substituting the results of Theorems 1, 2, 3 together with the known inequality

|ap+1ap+3−a2
p+2| ≤

[
2p

p+2β

]2
(see [7]) in the inequality given in (1.4), we obtain the

following Corollary.

Corollary 1. If f ∈ Ip(β) (0 < β≤ 1) with p ∈ N then

|H3(p)| ≤ 4p2
[

2p
(p+2β)3 +

1
(p+3β)2 +

1
(p+2β)(p+4β)

]
. (3.29)

Remark 3. In particular for the values p = 1 and β = 1 in (3.29), which simplifies
to |H3(1)| ≤ 439

540 . This result coincides with that of Bansal et al. [2].
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