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Abstract. In this paper we shall define the notion of quasi-semi-homomorphisms between Boolean
algebras, as a generalization of the quasi-modal operators introduced in [3], of the notion of
meet-homomorphism studied in [12] and [11], and the notion of precontact or proximity relation
defined in [8]. We will prove that the class of Boolean algebras with quasi-semi-homomorphism
is a category, denoted by BoQS. We shall prove that this category is equivalent to the category
StQB of Stone spaces where the morphisms are binary relations, called quasi-Boolean relations,
satisfying additional conditions. This duality extends the duality for meet-homomorphism given
by P. R. Halmos in [12] and the duality for quasi-modal operators proved in [3].
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1. INTRODUCTION

Recall that a modal algebra is a Boolean algebra A with an operator � W A! A

such that �1 D 1 , and �.a^b/ D �a^�b, for all a;b 2 A. It is well known
that the variety of modal algebras is the algebraic semantic of normal modal logics
[10, 16]. Modal algebras are dual objects of descriptive general frames, also called
modal spaces, i.e., Stone spaces with a relation verifying certain conditions (see
[10], and [16]). P. R. Halmos define in [12] the notion of meet-homomorphism (or
hemihomomorphism) between Boolean algebras. Recall that a meet-homomorphism
between two Boolean algebras A and B , is a function h W A! B such that h.1/D 1,
and h.a^ b/ D h.a/^h.b/, for all a;b 2 A. If A D B , then h is a modal operator
[10,16]. LetX and Y be the Stone spaces ofA andB , respectively. As it follows from
[12] and [11], a meet-homomorphism h W A! B is dually characterized by means
of a relation R � Y �X such that R.y/ is a closed subset of X , for each y 2 Y ,
and hR.U /D fy 2 Y WR.y/� U g is a clopen subset of Y , for each clopen U � X:
These relations are called Boolean relations in [12], or Boolean correspondences in
[11] (see also [16]).
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In [3], the notions of quasi-modal operator and quasi-modal algebra were intro-
duced as a generalization of the notion of modal operator and modal algebra, re-
spectively. A quasi-modal operator in a Boolean algebra A is a map � that sends
each element a 2 A to an ideal �a of A, and satisfies analogous conditions with the
modal operator � of modal algebras. A quasi-modal algebra is a pair hA;�i where
A is a Boolean algebra and � is a quasi-modal operator. We note that a quasi-modal
operator is not an operation, but has many similar properties to modal operators.

In this paper we shall introduce maps between a Boolean algebra A and the set
of all ideals of another Boolean algebra B satisfying analogous conditions with the
meet-homomorphism between Boolean algebras [12]. We call these maps quasi-
semi-homomorphisms. One of the main objectives of this paper is to study this class
of maps, and their topological representation.

As we will explain below, the quasi-modal operators are closely connected with the
proximity or precontact relations defined between Boolean algebras. We recall that a
proximity relation defined on a setX is a binary relation ı�P .X/�P .X/ satisfying
certains conditions (see Definition 2). If U;V 2 P .X/, then the intuitive meaning of
a proximity relation ı is that UıV holds, when U is close to V in some sense. A
proximity or precontact space, also called a nearness space, is a pair hX;ıi, where
X is a set and ı is a proximity relation. Since P .X/ is a Boolean algebra, we can
introduced an abstract definition of proximity relation in the class of Boolean algebras
(see [15] and [4]). In the literature, there exist many classes of Boolean algebras
endowed with some type of proximity relations. As examples, we can mention the
Boolean contact algebras defined in [9], or the Boolean connection algebras defined
in [17]. For other versions of Boolean algebras endowed relations see [5], [8], [7],
[19], and [18]. In [8] the notions of proximity relation on a Boolean algebra and the
proximity Boolean algebras were defined as an abstract version of proximity spaces
[15]. This class of structures is the most general class of Boolean algebras endowed
with a proximity relation. We note that the notion of proximity Boolean algebras is
equivalent to the notion of precontact algebras [8].

There exists a strong connection between proximity relations defined in a Boolean
algebra and quasi-modal operator. Given a proximity relation ı in a Boolean algebra
A, we can prove that the set�ıbDfa 2 A W .a;:b/ … ıg is an ideal ofA. So, we have
a map �ı that send elements to ideals of the algebra A. As we shall see, this map
is a quasi-modal operator. Conversely, if we have a quasi-modal operator � defined
in a Boolean algebra A, then the relation aı�b defined by a … �:b, is a proximity
relation on A (for the details see Theorem 1). Thus, we have that the notions of
proximity relation and quasi-modal operator are interdefinable. Moreover, since the
notion of quasi-semi-homomorphism is a generalization of the notion of quasi-modal
operator, and this last is equivalent to the notion of proximity relation, we will get
that it is possible to introduce a generalization of the notion of proximity relation.
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The paper is organized as follows. In Section 2 we start recalling some basic defin-
itions and results on Stone duality for Boolean algebras. In Section 3 we shall intro-
duce the notion of quasi-semi-homomorphism and the notion of generalized prox-
imity relation. Also, we shall prove that the notions of quasi-semi-homomorphism
and generalized proximity relation are equivalent, and as consequence of this fact,
we have that the notions of quasi-modal operator and proximity relation are equi-
valent. This fact has strong consequences, because it puts the proximity relations
very close to the modal operators. We shall see that the class of Boolean algebras
with the quasi-semi-homomorphism form a category denoted by BoQS. In Section
4, we shall introduce the notion of generalized quasi-Boolean relation between Stone
spaces, and we shall prove some propierties. We shall prove that the class of Stone
spaces with the generalized quasi-Boolean relations form a category, simbolized by
StQB. In Section 5 we shall prove that the categories StQB and BoQS are dually
equivalent. As an application of this duality we will prove a generalization of the
result that assert that the Boolean homomorphisms are the minimal elements in the
set of all join-homomorphisms between two Boolean algebras (see [11]). In this last
section we prove that the minimal elements in the set of all quasi-Boolean relations
defined between two Stone spaces is a Boolean relation.

2. PRELIMINARIES

We assume that the reader is familiar with basic concepts of Boolean algebras and
topological duality (see [1] or [13]).

We recall that a subset of a topological space X is clopen if it is both closed
and open, and that X is zero-dimensional if the set of clopen subsets of X forms a
basis for the topology. We shall denote by O .X/ (C .X/) the set of all open subsets
(closed subsets) of X . The closure of a subset Z is denoted by cl.Z/. We shall
denote by Clo.X/ the set of all clopen subsets ofX . Clearly the notions of Hausdorff
and T0 coincide in the realm of zero-dimensional spaces. A Stone space X is zero-
dimensional, compact and Hausdorff topological space. We note that a Stone space
is totally disconnected, i.e., given distinct points x;y 2X , there is U 2 Clo.X/ of X
such that x 2 U and y … U . If X is a Stone space, then Clo.X/ is a Boolean algebra
under the set theoretical operations.

If A D hA;_;^;:;0;1i is a Boolean algebra, by Ul.A/ we shall denote the set
of all ultrafilters (or proper maximal filters) of A while by Id.A/ and Fi.A/ we shall
denote the families of all ideals and filters of A, respectively.

Let X be a Stone space. The map "X WX ! Ul.Clo.X// given by

"X .x/D fU 2 Clo.X/ W x 2 U g

is a bijective and continuous function. Let A be a Boolean algebra and let

ˇA W A!P .Ul.A//
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the Stone map defined by ˇA .a/D fP 2 Ul.A/ W a 2 P g. Sometimes we will write
ˇ instead of ˇA. With each Boolean algebra A we can associate a Stone space
hUl.A/;�Ai whose points are the elements of Ul.A/ and the topology �A is de-
termined by the clopen basis ˇ ŒA� D fˇA .a/ W a 2 Ag. If misunderstanding is ex-
luded, we write Ul.A/ instead of hUl.A/;�Ai. Thus, if X is a Stone space, then
X Š Ul.Clo.X//, and if A is a Boolean algebra, then AŠ Clo.Ul.A//.

If A is a Boolean algebra, then there exists a duality between ideals (filters) of
A and open (closed) sets of Ul.A/. More precisely, for I 2 Id.A/ and F 2 Fi.A/.
The value of the function 'A ŒI � D fP 2 Ul.A/ W I \P ¤¿g is an open of Ul.A/,
and thus 'A is an one-to-one mapping between Id.A/ and the set of O .Ul.A// of all
open subset of Ul.A/. The function  A defined by  A ŒF �D fP 2 Ul.A/ W F � P g,
is a one-to-one mapping between Fi.A/ and the set C .Ul.A// of all closed subset of
Ul.A/. We note that 'A ŒI �D

S
fˇ.a/ W a 2 I g. If we denote by Z and by Y the meet

and the join in the set Id.A/, respectively, then 'A ŒI1YI2�D 'A ŒI1�['A ŒI2�, and
'A ŒI1ZI2�D 'A ŒI1�\'A ŒI2� (see [13] and [16] for further information on Boolean
duality).

Let A be a Boolean algebra. The filter (ideal) generated by a subset Y � A is
denoted by F .Y / (I .Y /). If Y D fag, then we write F.a/D Œa/ (I.a/D .a�). The
set complement of a subset Y � A will be denoted by Y c or A�Y .

3. QUASI-SEMI-HOMOMORPHISMS

In this section we introduce the main notion of this paper. We define the notion of
quasi-semi-homomorphim as a generalization of the notion of quasi-modal operator
[2, 3] and the notion of semi-homomorphism between Boolean algebras [11, 12].

Definition 1. LetA andB be two Boolean algebras. A quasi-semi-homomorphism
is a function � W A! Id.B/ such that it verifies the following conditions for all
a;b 2 A W

Q1 �.a^b/D�a\�b,
Q2 �1D B .

In the followingQS ŒA;B� stands for the set of all quasi-semi-homomorphism defined
between A and B . If �1;�2 2QS ŒA;B� we define �1 � �2 by �1.a/ � �2.a/,
for all a 2 A. This gives an order relation in QS ŒA;B�. We note that when AD B ,
the elements of QS ŒA;A�DQS ŒA� are called quasi-modal operators in [3]. A pair
hA;�i, where � 2QS ŒA� is called a quasi-modal algebra.

If � 2QS ŒA;B�, then � is monotonic, because if a � b, then a D a^b, and so
�aD�.a^b/D�a\�b, i.e., �a ��b.

Example 1. Let A be a Boolean algebra. The map IA W A! Id.A/ given by
IA.a/D .a�, for each a 2 A, is clearly a quasi-semi-homomorphism.

Example 2. Let A and B two Boolean algebras. We recall first that a meet-
hemimorphisms or meet-homomorphism [11] [12], is a function h W A! B such that
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h.1/D 1, and h.a^b/D h.a/^h.b/, for all a;b 2 A. The function h can be exten-
ded to a map �h W A! Id.B/ of the following form. Put �h .a/D .h.a/�, for each
a 2 A. It is clear that �h verifies the equalities �h .a^b/ D �h .a/\�h .b/ and
�h .1/D B . Thus, �h is a quasi-semi-homomorphism. An element � 2QS ŒA;B�
is called a principal quasi-semi-homomorphisms if �a is principal ideal, for each
a 2 A. In other words, for each a 2 A, there exists b 2 B suh that �a D .b�. it is
clear that if� is principal, then the map h� WA!B defined by h.a/D b iff�aD .b�
is a meet-hemimorphisms. Thus, the class of principal quasi-semi-homomorphisms
is equivalent to the class of meet-homomorphisms.

Recall that when ADB and� WA!A is a meet-homomorphism, the pair hA;�i
is called a modal algebra [16]. So, the class of modal algebras can be identified with
the class of pairs hA;�i where A is a Boolean algebra and � is a principal quasi-
semi-homomorphism.

The following example is fundamental in the representation theory of quasi-semi-
homomorphisms.

Example 3. Let X and Y be two set. Let R be a relation between X and Y .
Define a function N�R WP .Y /! Id.P .X//; as N�R.U /D .�R.U /�, where�R.U /D
fx 2X WR.x/� U g, with U 2P .Y /. Then it is easy to see that
N�R 2QS ŒP .Y /;P .X/�.

Let A and B be two Boolean algebras. For each � 2 QS ŒA;B�, we define the
dual quasi-semi-homomorphism r W A! Fi.B/ by ra D :�:a, where :�x D
f:y W y 2�xg. We note that c 2 r .a_b/D:�:.a_b/D:�.:a^:b/ iff :c 2
�.:a^:b/D�:a\�:b iff :c 2�:a and :c 2�:b iff c 2 ra and c 2 rb iff
c 2 ra\rb. Thus the map r verifies the following conditions:

Q3 r .a_b/Dra\rb,
Q4 r0D B .

Now we introduce a notion that generalizes the notion of proximity relation (also
called precontact relation) defined in a Boolean algebra [8] [7] [14].

Definition 2. Let A and B be two Boolean algebras. A generalized precontact or
generalized proximity relation between A and B is a relation ı � A�B such that

P1 If aıb, then a¤ 0 and b ¤ 0.
P2 aı.b_ c/ iff aıb or aıc.
P3 .a_b/ıc iff aıc or bıc.

When AD B , a generalized precontact relation ı is called a proximity or precontact
relation, and the pair hA;ıi is called a proximity or precontact algebra [6–8]. An
important example of proximity relations are the proximity spaces. There are many
other notions of proximity, and we suggest the reader consults the fundamental text
by Naimpally and Warrack [15] for more examples, or the paper [18].
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Theorem 1. LetA andB be two Boolean algebras. There exists a bijective corres-
pondence between quasi-semi-homomorphisms betweenA andB and the generalized
proximity relations defined between A and B .

Proof. Let A and B be two Boolean algebras. If ı � A�B is a generalized prox-
imity relation, then we prove that the subset of A

�ıb D fa 2 A W .a;:b/ … ıg ;

is an ideal of A. Let b 2 B . As .0;:b/ … ı, we have that 0 2 �ıb. Let a1;a2 2
A. Suppose that a1 � a2 and a2 2 �ıb. Then .a2;:b/ … ı. As a2 D a1 _ a2, by
condition P3 of Definition 2 we have that .a2;:b/D .a1_a2;:b/… ı iff .a1;:b/… ı
and .a2;:b/ … ı. Thus, .a1;:b/ … ı, i.e., a1 2 �ıb. Suppose that a1 2 �ıb and
a2 2�ıb. Then, .a1;:b/ … ı and .a2;:b/ … ı. Again, by condition P3 of Definition
2 we have that .a1_a2;:b/ … ı, i.e., a1_a2 2 �ıb. Thus, �ıb 2 Id.A/, for each
b 2 B . Then the map �ı W B! Id.A/ is well defined.

Let b1;b2 2 B and a 2 A. Then by condition P2 of Definition 2 we have the
following equivalences:

a 2�ı.b1^b2/ iff .a;:.b1^b2//D .a;:b1_:b2/ … ı

iff .a;:b1/ … ı and .a;:b2/ … ı
iff a 2�ıb1\�ıb2:

By condition P1 of Definition 2 we have that .b;:1/D .b;0/… ı, for all b 2B . Thus,
1 2�ı.b/, for all b 2 B .

Conversely. Let � W A! Id.B/ be a quasi-semi-homomorphism. Define the rela-
tion

ı� D f.a;b/ 2 A�B W a …�:bg :

Let .a;b/ 2 ı�. If aD 0, then 0 …�:b, which is a contradiction because �:b is
an ideal. If b D 0, then a … �:0D �1D A, which is a contradiction. Thus, a ¤ 0
and b ¤ 0.

Let a;b 2 A, and c 2 B . Taking into account that �:c is and ideal of B , we get
the following equivalences: .a_b;c/ 2 ı� iff a_b …�:c iff a …�:c or b …�:c
iff .a;c/ 2 ı�or .b;c/ 2 ı�.

Let a 2 A and b;c 2 B . Then .a;b_ c/ 2 ı� iff

a …�:.b_ c/D�.:b^:c/D�:b\�:c

iff a … �:b or a … �:c iff .a;b/ 2 ı� or .a;c/ 2 ı�. Thus, ı�is a generalized
proximity relation between A and B . �

By Theorem 1 we have that the notions of proximity relations and quasi-modal
operators are interdefinable.

Definition 3. Let � 2QS ŒA;B�. For each C � A and for each D � B define

(1) �C D I.
S
c2C

�c/,
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(2) rC D F.
S
c2C rc/,

(3) ��1 .D/D fa 2 A W�a\D ¤¿g,
(4) r�1 .D/D fa 2 A W ra �Dg.
(5) If D D Œa/ ; we write ��1.a/ instead of ��1 .Œa//.

In the following lemma we summarize some properties well known in the theory of
Boolean algebras with proximity relations (see [8,14,19]). For completeness we will
give some proofs.

Lemma 1. Let � 2QSŒA;B�.

(1) Then��1 .F /D
S
a2F �

�1.a/ 2 Fi.A/ for each F 2 Fi.B/. Moreover, this
union is directed.

(2) If P 2 Ul.B/, then r�1 .P /c 2 Id.A/.
(3) �I D

S
a2I �a for each I 2 Id.A/. Moreover, this union is directed.

(4) �.I1\I2/D�.I1/\�.I2/ for all I1;I2 2 Id.A/.

Proof. (1) Let F 2 Fi.B/. It is easy to see ��1 .F / 2 Fi.A/. Let a 2 A. Then

�a\F ¤¿ iff 9b 2 F .b 2�a/
iff 9b 2 F .Œb/\�a¤¿/
iff 9b 2 F .a 2��1.Œb//D��1.b//
iff 9b 2 F .a 2

S
b2F �

�1.b//:

In order to see that this union is directed suppose that a;b 2 F . Then it is easy to
see that ��1.a/[��1.b/���1.a_b/, and as a_b 2 F , we get that this union is
directed.

(2) We prove that r�1 .P /c 2 Id.A/, when P 2 Ul.B/. Let a � b and a 2
r�1 .P /c . Then ra ª P , and as rb � ra, because r is anti-monotonic, we have
that b … r�1 .P /c . Thus r�1 .P /c is decreasing. Let a;b 2 r�1 .F /c . Then
ra ª P and rb ª P . Then there exist p1 2 ra � P and p2 2 rb � P . So,
p1_p2 2 ra_rb, and as P is prime, p1_p2 … P . Then, p1_p2 2 r�1 .P /c . It
is clear that 0 2 r�1 .P /c , because r0D B . Thus, r�1 .P /c is an ideal of A.

(3) Let I 2 Id.A/. We prove that I.
S
c2C

�c/D
S
a2I �a. It is clear that

S
a2I �a�

I.
S
c2C

�c/. Let c 2 I.
S
c2C

�c/. Then there exists ai 2 I , and there exists xi 2�ai ,

with 1� i � n, such that c � x1_ : : :_xn: Since�ai ��.a1 : : :_an/, for 1� i � n,
then x1_ : : :_xn 2�.a1_ : : :_an). As a1_ : : :_an 2 I , and c 2�.a1_ : : :_an/,
we get that c 2

S
a2I �a. Thus the union is directed.

(4). Let I1;I2 2 Id.A/. As � is monotonic, �.I1\ I2/ � �.I1/\�.I2/. Let
c 2 �.I1/\�.I2/. Then by item (3), there exist a 2 I1 and b 2 I2 such that c 2
�a\�b D�.a^b/. As a^b 2 I1\I2, we get that c 2�.I1\I2/. �

Let A;B and C be Boolean algebras. Let �1 2 QS ŒA;B� and �2 2 QS ŒB;C �.
We define the composition of �2 with �1. Recall that for each subset D of B ,
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we can consider an ideal �2.D/ D
W
f�2b W b 2Dg. Then, as for each a 2 A, we

consider the ideal �2 Œ�1.a/� 2 Id.C /. Then, define the composition of �2 with �1,
in symbols �2 ı�1, as

.�2 ı�1/.a/D�2 Œ�1.a/� ;

for each a 2 A. We need to prove that �2 ı�1 2QS ŒA;C �. In the following result
we use the quasi-semi-homomorphism defined in Example 1.

Lemma 2. Let A, B and C be Boolean algebras. Let �1 2QS ŒA;B� and �2 2
QS ŒB;C �. Then:

(1) �2 ı�1 2QS ŒA;C �.
(2) �1 ıIA D�1 and IB ı�2 D�2.

Proof. (1) By (4) of Lemma 1 we get that

.�2 ı�1/.a^b/ D �2 Œ�1.a^b/� D �2 Œ�1.a/\�1.b/�

D �2 Œ�1a�\�2 Œ�1b� D .�2 ı�1/.a/\ .�2 ı�1/.b/:

Moreover, .�2 ı�1/.1/D�2 Œ�11�D �2 ŒB�D A. Thus, �2 ı�1 is a quasi-semi-
homomorphism.

(2) Let a 2 A. Then .�1 ıIA/.a/D�1 ŒIAa�D�1 Œ.a��D�1a. The proof of the
identity IB ı�2 D�2 is similar. �

Thus we can conclude that we have a category, denoted by BoQS, whose objects
are Boolean algebras and whose morphism are quasi-semi-homomorphisms. In the
next section we will prove that the category BoQS is dually equivalent to a category
whose objects are Stone spaces, and whose morphism are a particular class of binary
relations between Stone spaces.

In the following result we will characterize the isomorphisms (or iso-arrow) in the
category BoQS. This result will be needed later.

Lemma 3. Let A and B be Boolean algebras and � 2QS ŒA;B�. Then the fol-
lowing conditions are equivalent:

(1) � is an iso-arrow in the category BoQS.
(2) There exists an one to one and onto function h W A! B such that �a D

.h.a/�, for each a 2 A.

Proof. .1/) .2/ Since � is an iso-arrow in the category BoQS, there exists ˘ 2
QS ŒB;A� such that � ı˘ D IB and ˘ ı�D IA , where IA and IB are the quasi-
semi-homomorphisms defined in Example 1. Let a 2A. Then .˘ ı�/.a/D IA.a/D
.a�. As .˘ ı�/.a/ D ˘ Œ�a� D

S
f˘b W b 2�ag, there exists b 2 �a such that

˘b D .a�. We prove that b is unique. Suppose that there are b1;b2 2 B such that
˘b1 D˘b2. As �ı˘ D IB , we get

.b1�D .�ı˘/.b1/D�Œ˘b1�D�Œ˘b2�D .�ı˘/.b2/D .b2� :
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So, b1 D b2. Then for each a 2 A there exists a unique b 2 B such that ˘b D .a�.
So, we can consider the function h W A! B defined by:

h.a/D b iff ˘b D .a� ;

for each a 2 A. We note that
˘.h.a//D .a� : (3.1)

Similarly we can prove that there exists a function k W B! A such that

k.b/D a iff �aD .b� ;

for each b 2 B . Also, we note that

�.k.b//D .b� : (3.2)

We prove that k ıhD IdA and hık D IdB . Let a 2 A. Then as ˘ ı�D IA we get
that:

..k ıh/.a/�D˘ Œ�.k.h.a/�D˘ Œ�.k ıh/.a/�
.3:2/
D ˘ .h.a/�

D˘h.a/
.3:1/
D .a�

.2/) .1/Assume that there exists an one to one and onto function h WA!B such
that �a D .h.a/�, for each a 2 A. So, there exists an one to one and onto function
g W B ! A such that .g ıh/.a/D a for all a 2 A, and .h ıg/.b/D b for all b 2 B .
Consider the quasi-semi-homomorphism ˘ W B ! Id.A/ defined by˘.b/D .g.b/�.
Then we prove that �ı˘ D IB and ˘ ı�D IA. We prove that .� ı˘/.b/D .b�.
Let b;d 2 B such that d 2 .�ı˘/.b/D�Œ˘b�D

S
f�c W c 2˘b D .g.b/�g. So,

there exists c 2A and d 2B such that c � g.b/ and d 2�c D .h.c/�. So, d � h.c/,
and thus d � h.c/ � h.g.b// D b, i.e., c 2 .b�. So, .� ı˘/.b/ � .b�. The other
inclusion it is left to the reader. Thus, � ı˘ D IB . Similarly we can prove that
˘ ı�D IA. Therefore, � is an iso-arrow in the category BoQS. �

4. GENERALIZED QUASI-BOOLEAN RELATIONS

LetX and Y be two topological spaces. LetR�X �Y be a relation. We shall say
that R is upper-semi-continuous (u.s.c) if �R.O/D fx 2X WR.x/�Og is an open
subset ofX for every open subsetO of Y . We note that�R.O/ is open for each open
O of Y iff rR.C /D fx 2X WR.x/\C ¤¿g is an closed ofX for each closed C of
Y . We shall say that R is point-compact (point-closed) if R.x/ is a compact (closed)
subset of Y , for each x 2 X . Clearly, if Y is a compact space, a relation R � X �Y
is point-compact iff it is point-closed.

Lemma 4. Let X and Y be two topological space. Suppose that Y is zero-
dimensional space. LetR be a point-compact relation. Then the following conditions
are equivalent:

(1) R is upper-semi-continuous,
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(2) �R.U / 2O.X/; for each U 2 Clo.Y /.

Proof. IfR is upper-semi-continuous, then�R.U /2Clo.X/; for eachU 2Clo.Y /,
because Clo.Y /�O.Y /.

Conversely. Assume that �R.U / 2 O.X/; for each U 2 Clo.Y /. Let O 2 O.Y /.
As Y is zero-dimensional, Clo.Y / is a basis, so O D

S
fUi 2 Clo.Y / W Ui �Og.

Since �R is monotonic,[
f�R.Ui / W Ui �Og ��R.

[
fUi 2 Clo.Y / W Ui �Og/D�R.O/:

We prove the other inclusion. Let x 2�R.
S
fUi 2 Clo.Y / W Ui �Og/, i.e., R.x/�S

fUi 2 Clo.Y / W Ui �Og/. As R.x/ is a compact subset of Y , there exists a finite
family fUi �O W 1� i � ng such that R.x/ � U1 [ : : :[Un D U � O , i.e., x 2
�R.U /. Thus,

S
f�R.Ui / W Ui �Og D �R.O/. Consequently �R.O/ is an open

subset of X , because�R.Ui / 2 Clo.X/, for each U 2 Clo.Y /. �

Remark 1. By the previous Lemma, when X and Y are Stone spaces, and R �
X �Y , we have that the following conditions are equivalent:

(1) R is a point-compact relation and �R.O/ 2O.X/; for each U 2O.Y /.
(2) R is a point-closed relation and �R.U / 2O.X/; for each U 2 Clo.Y /.

Definition 4. LetX and Y be two Stone spaces. We shall say that a binary relation
R �X �Y is a quasi-Boolean relation if

(1) R is a point-closed relation,
(2) �R.U / 2O.X/, for each U 2 Clo.Y /:

If �R.U / 2 Clo.X/, for each U 2 Clo.Y /, then R is called a Boolean relation [12],
also called a Boolean correspondence in [11]. It is clear that every Boolean relation
is a quasi-Boolean relation.

Remark 2. Let X be a Stone space. A pair hX;Ri, where R is a quasi-Boolean
relation defined in X is called a quasi-modal space. The quasi-modal spaces are the
dual objects of the quasi-modal algebras (see [3] and [2]). If R is a Boolean relation,
then the pair hX;Ri is called a modal space or descriptive general frame [10, 16].
The modal spaces are the dual of the modal algebras, i.e., pairs hA;�i, where A is a
Boolean algebra and� is a modal operator.

Given a Stone space X , the map "X WX ! Ul.Clo.X// defined by

"X .x/D fU 2 Clo.X/ W x 2 U g

, is a bijective and continuous function. Thus, for each P 2 Ul.Clo.X// there exists
a unique x 2X such that "X .x/D P .

Let X and Y be two Stone spaces. Let R � X �Y be a relation. For each x 2 X
we can consider the set

��1R ."X .x//D fU 2 Clo.X2/ W x 2�R.U /g D fU 2 Clo.X2/ WR.x/� U g :
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We define the relation R�R � Ul.Clo.X//�Ul.Clo.Y //; as follows:

."X .x/;"Y .y// 2R�R iff ��1R ."X .x//� "Y .y//:

In the following Lemma we shall give an equivalent condition to the condition (1)
of Definition 4.

Lemma 5. Let X1 and X2 be two Stone spaces. Let R � X1�X2 be a relation.
Suppose that �R.U / is an open subset of X1, for each U 2 Clo.X2/. Then the
following conditions are equivalent

(1) R.x/ is a closed subset of X2, for each x 2X1 ,
(2) .x;y/ 2R iff ."1.x/;"2.y// 2R�R .

Proof. (1) implies (2). Let x;y 2X1. It is clear that if .x;y/ 2R then
."1.x/;"2.y// 2 R�R . Suppose that y … R.x/. As R.x/ is a closed subset of X2,
there exists U 2 Clo.X2/ such that y … U and R.x/ � U . So, x 2 �R.U /. Then
U 2��1R ."1.x// and U … "2.y/ , i.e., ."1.x/;"2.y// …R�R .

(2) implies (1). We prove that cl.R.x// D R.x/. Suppose that there exists y 2
cl.R.x// but y … R.x/. Then ."1.x/;"2.y// … R�R , i.e., there exists U 2 Clo.X2/
such that U 2��1R ."1.x// and U … "2.y/. Then x 2�R.U / and y …U , i.e., R.x/�
U and y … U . So, y … cl.R.x//, which is a contradiction. Thus, cl.R.x// � R.x/,
and consequently R.x/ is a closed subset of X2. �

Let X and Y be two Stone spaces. By Lemma 5 we have that a relation R�X1�X2
is a quasi-Boolean relation iff R satisfies the following conditions:

(1) .x;y/ 2R iff ."1.x/;"2.y// 2R�R ,
(2) �R.U / 2O.X/, for each U 2 Clo.Y /:

We denote by QB ŒX;Y � the set of all quasi-Boolean relations between two Stone
spaces X and Y .

Lemma 6. Let X and Y be Stone spaces. Let R 2QB ŒX;Y �. Then RŒC � is a
closed subset of Y for each closed subset C of X .

Proof. Let C be a closed subset of X . We note that RŒC �D
S
fR.x/ W x 2 C g. It

suffices to prove that for any y …RŒC � there exists U 2 Clo.Y / such that RŒC �� U
and y … U . Take y … RŒC �. Then y … R.x/ for each x 2 C . As R is point-closed,
for each x 2 C there exists Ux 2 Clo.Y / such that R.x/ � Ux and y … Ux . So,
x 2�R.Ux/, for each x 2C . Thus, C �

S
f�R.Ux/ W x 2Xg, and as C is compact,

there exists x1; : : :xn 2 C such that

C ��R.Ux1/[ : : :[�R.Uxn/��R.Ux1 [ : : :[Uxn/D�R.U /;

i.e., RŒC � � U . Therefore there exists U 2 Clo.Y / such that y … U and RŒC � �
U . �

Lemma 7. If R 2QB ŒX;Y �, then N�R 2QS ŒClo.Y /;Clo.X/�.
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Proof. If R 2 QB ŒX;Y �, then by Example 3 it is clear that N�R W Clo.Y / !
Id.Clo.X// is generalized quasi-semi-homomorphism.
Thus, N�R 2QS ŒClo.Y /;Clo.X/� . �

Let X;Y and Z be Stone spaces. Let R 2 QB ŒX;Y �, and S 2 QB ŒY;Z�. The
composition of R with S is the relation

R ıS D f.x;´/ 2X �Z W 9y 2 Y Œ.x;y/ 2R and .y;´/ 2H�g :

We note that .R ıS/.x/D S ŒR.x/�D
S
fS.y/ W y 2R.x/g.

Lemma 8. The composition of quasi-Boolean relations is a quasi-Boolean rela-
tion.

Proof. Let X;Y and Z be Stone spaces. Let R 2QB ŒX;Y � and S 2QB ŒY;Z�.
We prove that R ıS �X �Z is point-closed. Let x 2X . As R.x/ is a closed subset
of Y , by Lemma 6, we get that S ŒR.x/�D .S ıR/.x/ is a closed subset of Z.

We prove that .�R ı�S /.U /D�RıS .U /, for each U 2 Clo.Z/. Let x 2 .�R ı
�S /.U / D �R.�S .U /), i.e., R.x/ � �S .U /. Let ´ 2 .R ı S/.x/ D S ŒR.x/� DS
fS.y/ W y 2R.x/g. Then there exists y 2 R.x/ such that ´ 2 S.y/. As R.x/ �

�S .U /, y 2�S .U /, i.e., S.y/� U . So, ´ 2 U . Thus, .�R ı�S /.U /��RıS .U /.
Let x 2�RıS .U /. Then .RıS/.x/D S ŒR.x/�D

S
fS.y/ W y 2R.x/g �U , i.e.,

S.y/� U , for all y 2 R.x/. So, y 2�S .U / for all y 2 R.x/, i.e., R.x/��S .U /.
Then x 2�R.�S .U //D .�R ı�S /.U /. Thus, �RıS .U /� .�R ı�S /.U /. �

Let f W X ! Y be a function between two Stone Spaces. Consider the relation
f � �X �Y defined by

f � D f.x;y/ 2X �Y W f .x/D yg :

Lemma 9. Let X and Y be two Stone spaces. If f W X ! Y is a function such
that f �1.U / is an open subset of X for each U 2 Clo.Y /, then f � 2QB ŒX;Y �.

Proof. It is clear that�f �.U /Dfx W f �.x/� U gD
˚
x W x � f �1.U /

	
Df �1.U /.

Thus, �f �.U / is an open subset of X for each U 2 Clo.Y /. Also, as Y is a Stone
Space, we have f �.x/ is a closed subset of Y , for each x 2X . Thus, f � 2QB ŒX;Y �.

�

Using the previous lemma we obtain the following result.

Corollary 1. Let X be a Stone space. Consider the "X WX ! Ul.Clo.X//. Then
the relation "�X � X �Ul.Clo.X// given by .x;P / 2 "�X iff "X .x/D P is a general-
ized quasi-Boolean relation.

By Lemma 8 we conclude that the Stone spaces with generalized quasi-Boolean
relations is a category, denoted by StQB where the identity morphism is the identity
map IdX , where X is a Stone space. The careful reader may have realized that the
notation of composition of relations reverses the order of the actual composition in
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the category. We have decided to preserve this usual notation, instead of giving a new
one, in order to make the paper more readable.

In the following result we characterized the isomorphisms (or iso-arrow) in the
category StQB.

Lemma 10. LetX and Y be Stone spaces andR 2QB ŒX;Y �. Then the following
conditions are equivalent:

(1) R is an iso-arrow in the category StQB.
(2) There exists an one-to-one and onto function f WX ! Y such that RD f �,

satisfying the condition f �1.U / is an open set for each U 2 Clo.Y /. i.e., f
is a continuous function between the Stone spaces X and Y .

Proof. .1/) .2/ Let S 2 QB ŒY;X� such that R ıS D Id�X and R ıS D Id�Y ,
where Id�Y and Id�X are quasi-Boolean relations corresponding to the functions IdX
and IdY , respectively (see Lemma 9). Then for every x2X , .RıS/.x/DS.R.x//D
Id�X .x/D fxg. Using the fact that S ı Id�X D S , and x 2 S.R.x//, then there exists
y 2 R.x/ such that S.y/D fxg. We prove that y is unique. Suppose that there are
y1;y2 2 Y such that S.y1/D S.y2/. As S ıRD Id�Y , we get

fy1g D .S ıR/.y1/DR.S.y1//DR.S.y2//D .S ıR/.y2/D fy2g :

Thus, y1 D y2. So we conclude that for each x 2X there exists a unique y2 Y such
that S.y/D fxg. Let us denote by f WX ! Y the function defined by

f .x/D y iff S.y/D fxg ;

for each x 2 X . Similarly we can prove that there exists a function g W Y ! X

such that R.g.y// D fyg, for each y 2 Y . As Id�Y ı S D S , we get that .Id�Y ı
S/.y/ D S.Id�Y .y// D S.fyg/ D S.y/, for each y 2 Y . Then for every x 2 X we
have that fg.f .x//g D .R ıS/.g.f .x///D S.R.g.f .x///D S.ff .x/g/D fxg. So,
g.f .x//D x, for each x 2X , i.e., g ıf is the identity function on X .

Changing the roles of f and g, we obtain that f ıg is the identity function on Y .
We conclude that f is a one to one map from X onto Y and g is its inverse. Observe
that R.x/DR.g.f .x///D ff .x/g. Then RD f �. Similarly, we have that S D g�.

Consider now U 2 Clo.Y /. Since R is a quasi-Boolean relation, we have that

�R.U /D fx 2X WR.x/� U g D
˚
x 2X W f �.x/� U

	
D fx 2X W ff .x/g � U gDfx 2X W f .x/ 2 U g

D f �1.U /: D

So, f �1.U / is an open subset of X .
The direction .2/) .1/ follows straightforward from Lemma 9 and the definition

of iso-arrow. �
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5. CATEGORICAL DUALITY

In this section we prove that there exists a category, whose object are Boolean
algebras, and whose morphism are quasi-Boolean relations. In order to complete the
duality we need to see how to define quasi-Boolean relation from each quasi-semi-
homomorphism between two Boolean algebras.

Let � 2QS ŒA;B�. We define a relation R� � Ul.B/�Ul.A/ by

.P;Q/ 2R� , 8a 2 A W�a\P ¤¿ then a 2Q
, ��1 .P /�Q:

We note that when ADB , the relation R� is the relation used in [3] in the repres-
entation of quasi-modal algebras.

We give now a equivalent characterization for the relation R�. We recall that,
given � 2 QS ŒA;B�, the generalized proximity relation ı� � B �A is defined as
.b;a/ 2 ı� iff b …�:a.

Lemma 11. Let A and B be two Boolean algebras. Let � 2 QS ŒA;B�. Let
.P;Q/ 2 Ul.B/�Ul.A/. Then the following conditions are equivalent:

(1) .Q;P / 2R�,
(2) Q�P � ı�

Proof. Let .P;Q/ 2Ul.B/�Ul.A/. Assume that .Q;P / 2R�. Let .q;p/ 2Q�
P . If .q;p/ … ı�, then q 2�:p\Q, i.e., :p 2��1.Q/�P . So, :p^pD 0 2P ,
which is a contradiction. Thus, Q�P � ı�.

Assume that Q�P � ı�. Let �a\Q¤¿. Then there exist q 2�a and q 2Q.
Suppose that a …P . Then :a 2P . So, .q;:a/ 2Q�P � ı�, i.e., q …�::aD�a
, which is a contradiction. Thus, .Q;P / 2R�: �

Remark 3. When ADB , the relation given in (2) is the definition used in [14] for
the topological representation of some extensions of proximity Boolean algebras.

Lemma 12. Let � 2QS ŒA;B�. Let P 2 Ul.B/ and I 2 Id.A/. Then

�I \P D¿,9Q 2 Ul.A/
�
��1 .P /�Q and I \QD¿

�
:

Proof. LetP 2Ul.B/ and I 2 Id.A/. We note that�I \P D¿ iff I \��1.P /D
¿. Indeed. Suppose that �I \P D¿ and suppose that there exists a2 I \��1.P /.
Then �a\P ¤ ¿, i.e., there exist p 2 P and p 2 �a. As a 2 I , we get that
p 2 �I \P , which is a contradiction. Thus I \��1.P /D ¿. The other direction
is similar and left to the reader.

Assume that I \��1.P /D¿. Consider the family

F D
˚
H 2 Fi.A/ W I \H D¿ and ��1 .P /�H

	
:

As ��1.P / is a filter of A and ��1.P / 2 F ; then F ¤¿: By Zorn’s Lemma, we
can take a maximal Q 2 F . It remains to show that Q is an ultrafilter of A. Let
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a 2 A. Take the filters Fa D F.Q[fag/ and F:a D F.Q[f:ag/. If a;:a …Q,
then Fa;F:a … F : So, Fa\ I ¤¿ and F:a\ I ¤¿. Then there exists q1;q2 2Q
such that q1^a 2 I and q2^:a 2 I . Take q D q1^ q2. As I is an ideal of A, we
have that .q^a/_.q^:a/D q^.a_:a/D q^1D q 2 I;which is a contradiction.
Thus, Q 2 Ul.A/. So, ��1 .P / �Q and Q\ I D ¿. The other direction it is easy
and left to the reader. �

Theorem 2. Let � 2QS ŒA;B�. Let a 2 A and P 2 Ul.B/ : Then

(1) a 2��1 .P /,8Q 2 Ul.A/ W��1 .P /�Q then a 2Q,
(2) a 2 r�1 .P /,9Q 2 Ul.A/ WQ �r�1 .P / and a 2Q.

Proof. We prove (1). The proof of (2) follows by duality. Assume that a …
��1 .P /, i.e., �a\P D ¿. By Lemma 12 we get that there exists Q 2 Ul.A/
such that ��1 .P /�Q and a …Q. The other direction is immediate. �

Recall that if I is an ideal of a Boolean algebra B , then

'B ŒI �D fP 2 Ul.B/ W I \P ¤¿g
is an open subset of the Stone space of B .

Theorem 3. Let A and B two Boolean algebras. Let � 2QS ŒA;B�. Then

(1) 'B Œ�a�D�R�.ˇA.a//; for all a 2 A:
(2) R� 2 QB ŒUl.B/;Ul.A/�.

Proof. (1) Let a 2 A. Let P 2 �R�.ˇA.a//. Then R�.P / � ˇA.a/. If P …
'B Œ�a�, then �a\P D ¿. So, there exists Q 2 R�.P / such that a … Q. Then,
R�.P / ª ˇA.a/, which is a contradiction. Thus, P 2 'B Œ�a�. The other inclusion
is easy and left to the reader. Thus, �R�.ˇA.a// is an open subset.

(2) By Theorem 2 we deduce thatR�.P /D
T
fˇA.a/ W�a\P ¤¿g. Therefore,

R�.P / is a closed subset for each P 2 Ul.A/, i.e., R�is point-closed. �

We recall that if�1 2QS ŒA;B� and�2 2QS ŒB;C �, then�2 ı�1 2QS ŒA;C �.
Thus, R�2ı�1 � Ul.C /�Ul.A/.

Lemma 13. Let A;B and C be Boolean algebras. Let �1 2QSŒA;B� and �2 2
QS ŒB;C �. Then R�2ı�1 DR�2 ıR�1 .

Proof. Let .P;Q/ 2 Ul.C /�Ul.B/ such that .P;Q/ 2 R�2ı�1 . Then .�2 ı
�1/
�1.P / � Q, i.e., for all a 2 A such that .�2 ı�1/.a/\P ¤ ¿, then a 2 Q.

We note that as Qc D A�Q is an ideal, we have that �1.Qc/ is an ideal. We prove
that

��12 .P /\�1.Q
c/D¿:

Otherwise there exists a …Q and b 2 B such that �2b\P ¤ ¿ and b 2 �1a. So,
there exists c 2 �2b\P . Then, c 2 .�2 ı�1/.a/\P , i.e., a 2 .�2 ı�1/�1.P /.
Thus, a 2 Q, which is a contradiction. Thus, there exists D 2 Ul.B/ such that
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��12 .P / �D and ��11 .D/ �Q , i.e, .P;D/ 2 R�2and .D;Q/ 2 R�1 : Therefore,
.P;Q/ 2R�2 ıR�1 .

To prove the other inclusion, let .P;Q/ 2 R�2 ıR�1 . Then there exists D 2
Ul.B/ such that��12 .P /�D and��11 .D/�Q. Let a 2A such that .�2ı�1/.a/\
P D�2 Œ�1.a/�\P ¤¿. Then there exists b 2 B and there exists c 2 C such that
b 2 �1a and c 2 �2b\P . So, b 2 ��12 .P /. So, b 2 �1a\D, and consequently
a 2Q. Thus, .�2 ı�1/�1.P /�Q, i.e., .P;Q/ 2R�2ı�1 . �

Define a contravariant functor ˛ W BoQS! StQB by

˛.A/D hUl.A/;�Ai if A is a Boolean algebra

˛.�/DR� if � 2QS ŒA;B� :

Define a contravariant functor � W StQB! BoQS as

�.X/D Clo.X/ if X is a Boolean space

�.R/D�R if R 2QB ŒX;Y �.

Since for each Boolean algebra A the map ˇA W A! Clo.Ul.A// is an isomorphism
in BoQS, we get that Theorem 3 means that the composite functor �ı˛ is naturally
equivalent to the identity functor, the natural equivalence being given by the iso-
morphisms ˇA. On the other hand, since for each Stone space X , the map "X is a
homeomorphism from X onto X.Clo.X//, it follows that the relation "�X defined by

.x;P / 2 "�X iff "X .x/D P

is a quasi-Boolean relation, and by Lemma 5 we have that "�X is an isomorphism in
StQB. It is easy to see "�X is a natural equivalence from the composite functor �ı˛
to the identity functor from in StQB, i.e., R�R ı "

�
X D R ı "

�
Y for R 2 QS ŒX;Y � :

Similarly, it is easy to see that ˇA is a natural equivalence between the identity functor
in BoQS and ˛ ı�. Thus, we have the following result.

Theorem 4. The contravariant functors � and ˛ and the natural equivalences
" and ˇ define a dual equivalence between the category of Boolean algebras with
quasi-semi-homomorphisms and the category of Stone spaces with quasi-Boolean
relations.

As an application of the above duality we prove a generalization of the result that
asserts that the Boolean homomorphisms are the minimal elements in the set of all
join-homomorphisms between two Boolean algebras (see [11]). Now we prove that
the minimal elements in the set of all quasi-Boolean relations defined between two
Stone spaces is a Boolean relation.

Let A and B be two Boolean algebras. Let X and Y be the Stone spaces of A and
B , respectively. LetQS ŒX;Y � the set of all quasi-Boolean relations defined between
X and Y endowed with the order given by the inclusion between relations. Let �1
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and�2 2QS ŒA;B� and letR�1 andR�2 2QS ŒX;Y � the associated quasi-Boolean
relations. It is clear that �1 ��2 if and only if R�1 �R�2 :

Theorem 5. Let X and Y be two Stone spaces. An element of QS ŒX;Y � it is
minimal if and only if is a Boolean relation .

Proof. Let R � X � Y be a minimal element QS ŒX;Y �. We prove that R is a
Boolean relation. As R is point-closed, we have to see that�R.U / is a closed subset
of X , for each U 2 Clo.Y /. Let x 2 cl.�R.U //. Suppose that x … �R.U / . Then
R.x/ª U . So there exists y 2R.x/ such that y … U . Define the relation RU as:

RU .´/DR.´/\U
c ;

for each ´ 2 X . It is clear that RU .´/ is a closed subset for each ´ 2 X . Thus RU is
point-closed. Moreover, for V 2 Clo.Y / we have that

�RU .V /D f´ 2X WRU .´/� V g D f´ 2X WR.´/\U
c
� V g

D f´ 2X WR.´/� U [V g D f´ 2X W ´ 2�R.U [V /g

D�R.U [V /:

Since R is a quasi-Boolean relation,�R.U [V / is an open subset of X . Then RU is
a quasi-Boolean relation. It is clear that RU � R. Thus R is not minimal element in
QS ŒX;Y �, which is a contradiction. Therefore, cl.�R.U //D �R.U /, i.e., �R.U /
is a closed subset of X . Consequently, R is a Boolean relation. �

FINAL REMARKS

In this paper we have proved a generalization of the Halmos’s duality [12] [11],
and the duality given in [3] for quasi-modal algebras.

There are several possibilities to extend the results given in this work. One pos-
sibility is to consider local Boolean algebras with a special class of morphisms. We
recall that a local Boolean algebra is a pair of the form hA;I i, where A is a Boolean
algebra and I is an ideal of A, such that ŒI /D A. A local homomorphism between
two local algebras hA;I i and hB;J i is a Boolean homomorphism h W A! B satis-
fying the following condition:

(LH): For each b 2 J there exists a 2 I such that b � h.a/, i.e., J � .hŒI ��.

A meaningful extension of the Stone duality is given by Geogi Dimov in [6]. In this
paper it is shown that the category of local Boolean algebras with local homomorph-
ism is dually equivalent to the category of Boolean spaces (= zero-dimensional locally
compact Hausdorff spaces) with continuous maps. In a future work we shall study
local Boolean algebras with meet-homomorphisms satisfying the condition (LH),
and the representation theory by means of Stone spaces with a relation satisfaying
certain conditions.
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