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Abstract. In this paper we have introduced the concept of geometric convergence of a sequence
and determined the necessary and sufficient condition under which convergence follows from
geometric convergence of a sequence in multiplicative sense. Corollaries allow this condition
to be replaced by multiplicative analogues of Schmidt type slow oscillation condition or Landau
type two-sided condition.
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1. INTRODUCTION AND PRELIMINARIES

During the 17th century many scholars, as Galileo, discussed the following prob-
lem:
“ Two estimates, 10 and 1000, are proposed as the value of a horse, which estimates,
if any, deviates more from the true value of 100?”

The scholars who maintained that deviations should be measured by differences
concluded that the estimate of 10 was closer to the true value. However, Galileo even-
tually maintained that the deviations should be measured by ratios, and he concluded
that two estimates deviated equally from the true value (see [8]).

In this situation, the question “If we measure by ratios, what kind of a calculus do
we have?” appears. The answer is the main idea of multiplicative calculus. Multiplic-
ative calculus is alternative to the classical calculus. It provides differentiation and
integration tools based on multiplication instead of addition. Every fact in classical
calculus has an analogue in multiplicative calculus.

In recent years, multiplicative calculus has attained noticeable importance and
popularity, due mainly to its applications in different areas such as biomedical im-
age analysis [7], physics [3], dynamical systems [2], numerical analysis [9], complex
analysis [10], sequence spaces [5] and economy [6].

Now, we give some basic properties of multiplicative calculus.
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Let x 2 RC: The multiplicative absolute value of x (see [4]) is defined as

jxj� D

(
x; if x � 1;
1
x
; if x < 1:

Using the above definition we have the following properties of the multiplicative
absolute value function.

For any x;y 2 RC, the followings are valid (see [1]):
i) jxj� � 1,

ii) j 1
x
j� D jxj�,

iii) jxj� � y if and only if 1
y
� x � y,

iv) jxyj� � jxj�jyj�.
By means of the multiplicative absolute value, Bashirov et al. [4] introduced the

multiplicative distance between positive real numbers x and y as

d�.x;y/D

ˇ̌̌̌
x

y

ˇ̌̌̌�
which satisfies the following properties:

i) d�.x;y/� 1 for all x;y 2 RC,
ii) d�.x;y/D 1 if and only if x D y,

iii) d�.x;y/D d�.y;x/ for all x;y 2 RC,
iv) d�.x;´/� d�.x;y/d�.y;´/ for all x;y;´ 2 RC.

As a consequence, RC is a multiplicative metric space and a sequence .xn/ in RC

converges to the limit L 2 RC in the multiplicative sense if for all � > 1, there exists
N 2N such that d�.xn;L/D

ˇ̌
xn
L

ˇ̌�
< � for all n > N; or equivalently,

d�.xn;L/
�
�! 1 as n!1:

It is well known that RC is not complete according to the Euclidean metric. To em-
phasize the importance of this work, we should first note that .RC; j:j�/ is a complete
multiplicative metric space [1].

Also, it should be noted that throughout this paper the concept of convergence of
a sequence is understood in multiplicative sense.

Let .xn/ be a sequence of positive real numbers. The n-th geometric mean gn of
.xn/ is defined by

gn WD

 
nY
kD0

xk

! 1
nC1

; nD 0;1;2; ::::

We say that .xn/ converges toL by the geometric mean method, briefly: G-convergent
to L 2 RC if

lim
n!1

gn D L (1.1)
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and we write xn
�
�! L .G/.

If the sequence .xn/ diverges, then we may assign a limit value to .xn/ by a dif-
ferent limitation method. In this case we still say that .xn/ diverges but, even so, we
are able to find a finite number that can be considered as its limit value.

We can replace limn!1xn, which possibly does not exist, by

lim
n!1

 
nY
kD0

xk

! 1
nC1

D L 2 RC

if this multiplicative limit exists and we use this value for the limit of the sequence
.xn/. This method is completely natural because it just takes geometric means and
settles for computing a kind of “mean” limit where an actual limit fails to exist.

Our concern while studying a new kind of convergence is to determine whether it
assigns the “correct” value to a sequence which is already convergent.
That is, does

xn
�
�! L H) xn

�
�! L .G/‹

Any method assigning a limit value to a sequence is said to be regular if this is the
case. In Lemma 1, we prove that if the limit

lim
n!1

xn D L (1.2)

exists, then the limit (1.1) also exists. That the converse of Lemma 1 is not true in
general is provided by the following example.

Example 1. The sequence .xn/D

 
nQ
kD0

e.�1/
k

!
is divergent, but it isG-convergent

to
p
e:

Here, we define the concept of slowly oscillation which is more general than the
convergence of a sequence in multiplicative calculus.

Definition 1. A sequence .xn/ of positive real numbers is said to be �-slowly
oscillating if

liminf
�!1C

limsup
n!1

max
n<m��n

ˇ̌̌̌
xm

xn

ˇ̌̌̌�
D 1; (1.3)

where by �n we denote the integral part of the product �n, in symbol �n WD Œ�n�, or
equivalently, if for every � > 0 there exists n0 D n0.�/ and �0 D �0.�/ > 1, as close
to 1 as we wish, such that ˇ̌̌̌

xm

xn

ˇ̌̌̌�
< � (1.4)

whenever n0 < n <m� �n.
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It is also easy to show that (1.3) is satisfied if and only if lim
ˇ̌̌
xm
xn

ˇ̌̌�
D 1 whenever

1 < m
n

�
�! 1, m;n!1.

Example 2. The sequence .xn/D .n/ is �-slowly oscillating, but not convergent.
In fact,

lim
ˇ̌̌̌
xm

xn

ˇ̌̌̌�
D lim

ˇ̌̌m
n

ˇ̌̌�
D 1;

whenever 1 < m
n

�
�! 1, m;n!1.

Our main goal in this paper is to obtain a necessary and sufficient condition under
which convergence of a sequence follows from convergence of its geometric means,
and vice versa.

2. MAIN RESULT

We prove the following theorem. In main theorem, some relations with conver-
gence andG-convergence of a sequence are given. Also, we present some corollaries
which include the multiplicative analogues of conditions of Schmidt type and Landau
type.

Theorem 1. Let .xn/ be a sequence of positive real numbers. If .xn/ is G-
convergent to a finite limit L, then .xn/ is convergent to L if and only if one of
the following two conditions hold:

liminf
�!1C

limsup
n!1

0@ˇ̌̌̌ˇ̌ �nY
iDnC1

xi

xn

ˇ̌̌̌
ˇ̌
�1A

1
�n�n

D 1; (2.1)

or

liminf
�!1�

limsup
n!1

0@ˇ̌̌̌ˇ̌ nY
iD�nC1

xn

xi

ˇ̌̌̌
ˇ̌
�1A

1
n��n

D 1; (2.2)

where by �n we denote the integral part of the product �n, in symbol �n WD Œ�n�.

The proof of Theorem 1 relies on the representations (3.4) and (3.5).
The next corollaries of Theorem 1 follows immediately.

Corollary 1. If the sequence .xn/ is G-convergent to L and �-slowly oscillating,
then it is convergent to L:

Corollary 2. If .xn/ is G-convergent to L and ..��xn/n/ is bounded, where

��xn D
xn

xn�1
for n� 1 and ��x0 D x0;

then .xn/ is convergent to L:
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Corollary 3. If .xn/ is G-convergent to L and

.��xn/
n �
�! 1; as n!1;

then .xn/ is convergent to L:

3. AUXILIARY RESULTS

We need following lemmas for the proof of our main theorem.

Lemma 1. If the sequence .xn/ is convergent to L, then the sequence .gn/ of its
geometric means is convergent to L:

Proof. Let limn!1xn D L: Then for all � > 1; there exists N0 2 N such thatˇ̌
xn
L

ˇ̌�
< �1=2 whenever n > N0; and

ˇ̌
xn
L

ˇ̌�
<M whenever n�N0: So, we have

ˇ̌̌gn
L

ˇ̌̌�
D

ˇ̌̌̌
ˇ̌
 

nY
kD0

xk

! 1
nC1

, 
nY
kD0

L

! 1
nC1

ˇ̌̌̌
ˇ̌
�

D

ˇ̌̌̌
ˇ̌
 

nY
kD0

xk

L

! 1
nC1

ˇ̌̌̌
ˇ̌
�

�

 
nY
kD0

ˇ̌̌xk
L

ˇ̌̌�! 1
nC1

D

0@ N0Y
kD0

ˇ̌̌xk
L

ˇ̌̌�1A 1
nC1

0@ nY
kDN0C1

ˇ̌̌xk
L

ˇ̌̌�1A 1
nC1

�M
N0C1

nC1 .�1=2/
n�N0
nC1

�M
N0C1

nC1 �1=2

Since limn!1M
N0C1

nC1 D 1; there existsN1 2N such that
ˇ̌̌̌
M

N0C1

nC1

ˇ̌̌̌�
<�1=2 whenever

n >N1. Therefore, there existsN DmaxfN0;N1g such that
ˇ̌
gn
L

ˇ̌�
< � for all n >N:

This completes the proof. �

Next, we prove that if a sequence is G-convergent to a finite limit L, then the
so-called moving geometric means converge to the same limit. More precisely, the
following lemma is valid.
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Lemma 2. If the sequence .xn/ is G-convergent to a finite limit L, then for each
� > 1

�>n;�n.x/ WD

0@ �nY
mDnC1

xm

1A 1
�n�n

�
�! L; (3.1)

and for each 0 < � < 1

�<n;�n.x/ WD

0@ nY
mD�nC1

xm

1A 1
n��n

�
�! L; (3.2)

where by �n we denote the integral part of the product �n, in symbol �n WD Œ�n�.

Proof. If � > 1 and n is large enough in the sense that �n > n, then0@ �nY
mDnC1

xm

1A 1
�n�n

D

0@ �nY
mD0

xm

,
nY

mD0

xm

1A 1
�n�n

D

26664
0BB@
0@ �nY
mD0

xm

1A
1

�nC1

1CCA
�nC1
�n�n,0B@ nY

mD0

xm

! 1

nC1

1CA
nC1
�n�n

37775
D

��
g�n

��nC1
�n�n

�
.gn/

nC1
�n�n

�
D gn

�
g�n
gn

��nC1
�n�n

Since ˇ̌̌̌
ˇ�
>
n;�n

.x/

L

ˇ̌̌̌
ˇ
�

D

ˇ̌̌gn
L

ˇ̌̌��ˇ̌̌g�n
L

ˇ̌̌���nC1�n�n
�ˇ̌̌gn
L

ˇ̌̌���nC1�n�n

; (3.3)

(3.1) follows from (1.1). The proof of (3.2) can be similarly obtained. �

The following two representations of the ratio
xn

gn
will be used in the proof of the

main theorem.

Lemma 3. (i) For all � > 1 and large enough n, that is, when �n > n,

xn

gn
D

�
g�n
gn

��nC1
�n�n

264
0@ �nY
iDnC1

xi

xn

1A 1
�n�n

375
�1

: (3.4)
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(ii) For all 0 < � < 1 and large enough n, that is, when n > �n,

xn

gn
D

�
gn

g�n

��nC1
n��n

264
0@ nY
iD�nC1

xn

xi

1A 1
n��n

375
�1

: (3.5)

Proof. By definition, for every � > 1, we have

g�n
gn
D

�Q�n
iD0xi

� 1
�nC1

�Qn
iD0xi

� 1
nC1

D

 
nY
iD0

xi

! n��n
.nC1/.�nC1/

0@ �nY
iDnC1

xi

1A 1
�nC1

Hence,

g�n
gn
D gn

n��n
�nC1

0@ �nY
iDnC1

xi

xn
xn

1A 1
�nC1

D gn
n��n
�nC1

0@ �nY
iDnC1

xi

xn

1A 1
�nC1

xn
�n�n
�nC1

and �
g�n
gn

��nC1
�n�n

D
xn

gn

0@ �nY
iDnC1

xi

xn

1A 1
�n�n

;

which is equivalent to (3.4).
(ii) The proof of (3.5) is similar. �

4. PROOF

Proof of Theorem 1. Necessity. Assume that (1.1) holds. Since .xn/ converges to
L, we have

lim
n!1

ˇ̌̌̌
xn

gn

ˇ̌̌̌�
D 1: (4.1)

It follows by (1.1) that for all � > 1,

lim
n!1

�ˇ̌̌̌
g�n
gn

ˇ̌̌̌���nC1�n�n

D 1: (4.2)



798 İ. ÇANAK, Ü. TOTUR, AND S. A. SEZER

Since 0@ˇ̌̌̌ˇ̌ �nY
iDnC1

xi

xn

ˇ̌̌̌
ˇ̌
�1A

1
�n�n

�

ˇ̌̌̌
xn

gn

ˇ̌̌̌��ˇ̌̌̌g�n
gn

ˇ̌̌̌���nC1�n�n

; (4.3)

(2.1) follows from (3.4), (4.1), (4.2), and (4.3).
It follows by (1.1) that for all 0 < � < 1,

lim
n!1

�ˇ̌̌̌
gn

g�n

ˇ̌̌̌���nC1n��n

D 1: (4.4)

Since 0@ˇ̌̌̌ˇ̌ nY
iD�nC1

xn

xi

ˇ̌̌̌
ˇ̌
�1A

1
n��n

�

ˇ̌̌̌
xn

gn

ˇ̌̌̌��ˇ̌̌̌
gn

g�n

ˇ̌̌̌���nC1n��n

; (4.5)

(2.2) follows from (3.5), (4.1), (4.4), and (4.5).
Sufficiency. Assume the fulfilment of (1.1) and (2.1). It follows from (2.1) that

there exists a decreasing sequence .�j / converging to 1 such that

lim
j!1

limsup
n!1

0@ˇ̌̌̌ˇ̌ �jnY
iDnC1

xi

xn

ˇ̌̌̌
ˇ̌
�1A

1
�jn�n

D 1; (4.6)

where �jn D Œ�jn�.
By (3.4), we have

limsup
n!1

ˇ̌̌̌
xn

gn

ˇ̌̌̌�
� lim
j!1

limsup
n!1

�ˇ̌̌̌
g�jn

gn

ˇ̌̌̌���jnC1�jn�n

lim
j!1

limsup
n!1

0@ˇ̌̌̌ˇ̌ �jnY
iDnC1

xi

xn

ˇ̌̌̌
ˇ̌
�1A

1
�jn�n

(4.7)
Taking (1.1) and (4.6) into account, we obtain

lim
n!1

ˇ̌̌̌
xn

gn

ˇ̌̌̌�
D 1 (4.8)

Assume the fulfilment of (1.1) and (2.2). It follows from (2.2) that there exists an
increasing sequence .�j / converging to 1 such that

lim
j!1

limsup
n!1

0@ˇ̌̌̌ˇ̌ nY
iD�jnC1

xn

xi

ˇ̌̌̌
ˇ̌
�1A

1
n��jn

D 1; (4.9)

where �jn D Œ�jn�.
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By (3.5), we have

limsup
n!1

ˇ̌̌̌
xn

gn

ˇ̌̌̌�
� lim
j!1

limsup
n!1

 ˇ̌̌̌
ˇ gng�jn

ˇ̌̌̌
ˇ
�!�jnC1n��jn

lim
j!1

limsup
n!1

0@ˇ̌̌̌ˇ̌ nY
iD�jnC1

xn

xi

ˇ̌̌̌
ˇ̌
�1A

1
n��jn

(4.10)
Taking (1.1) and (4.9) into account, we obtain

lim
n!1

ˇ̌̌̌
xn

gn

ˇ̌̌̌�
D 1 (4.11)

Combining (1.1) and (4.8) or (4.11), in either case we conclude that .xn/ converges
to L. �

Since �-slow oscillation implies both (2.1) and (2.2), the proof of Corollary 1
follows from Theorem 1. However, the proof of Corollary 1 seems to be fundamental,
we prove it.
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