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Abstract. In this paper we prove existence results for boundary value problems for higher-order
differential inclusion x.n/.t/ 2 F.t;x.t// with nonlocal boundary conditions, where F is a com-
pact convex L1-Carathéodory multifunction.
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1. INTRODUCTION

The aim of this paper is to establish the existence of solutions of the higher-order
boundary value problems8̂<̂

:
x.n/.t/ 2 F.t;x.t// a. e. on Œ0;1�;

x.i/.0/D 0; 0� i � n�2;

x.�/D x.1/

(1.1)

with n� 2, 8̂<̂
:
x.n/.t/ 2 F.t;x.t// a. e. on Œ0;1�;

x.0/D x0.�/;

x.1/D x.�/

(1.2)

with n� 2, 8̂̂̂̂
<̂
ˆ̂̂:
x.n/.t/ 2 F.t;x.t// a. e. on Œ0;1�;

x.i/.0/D x.iC1/.�/; 2� i � n�2;

x.0/D x0.�/;

x.1/D x.�/

(1.3)

with n� 4, and (
x.n/.t/ 2 F.t;x.t// a. e. on Œ0;1�;

x.i/.0/D x.iC1/.�/; 0� i � n�2
(1.4)
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with n � 2, where F W Œ0;1��R! 2R is a compact convex L1-Carathéodory multi-
valued map and .�;�/ 2 �0;1Œ2:

Three and four-point boundary value problems for second-order differential in-
clusions was initiated by Benchohra and Ntouyas [1, 2]. The authors proved the
existence of solutions on compact intervals for the problems (1.1) and (1.2) in the
particular case nD 2: In order to obtain solutions of (1.1) and (1.2), the authors re-
duce the existence of solutions to the search for fixed points of a suitable multi-valued
map on the Banach space C.Œ0;1�;R/: Indeed, they used the fixed point theorem for
condensing maps due to Martelli [5].

In this paper, we extend the results of Benchohra and Ntouyas [1,2] to the nth order
boundary value problems and prove the existence of solutions of (1.3) and (1.4). We
shall adopt the techniques used by Benchohra and Ntouyas in the previous papers.

2. PRELIMINARIES

Let .E;k � k/ be a Banach space. We denote by C.Œ0;1�;E/ the Banach space of
continuous functions from Œ0;1� to E equipped with the norm kxk1 WD supfkx.t/k W
t 2 Œ0;1�g. A multifunction is said to be measurable if its graph is measurable. For
more details on measurability theory, we refer the reader to the book of Castaing and
Valadier [3].

Definition 1. A multi-valued map F WŒ0;1��R! 2R is said to be an L1-Carathé-
odory if

(i) t 7! F.t;x/ is measurable for all x 2 R;
(ii) x 7! F.t;x/ is upper semi-continuous for almost all t 2 Œ0;1�;

(iii) For each k > 0, there exists hk 2 L1.Œ0;1�IRC/ such that

kF.t;x/k WD supfkyk W y 2 F.t;x/g � hk.t/

for all kxk � k and for almost all t 2 Œ0;1�.

Definition 2. Let E be a separable Banach space, X a nonempty subset of E, and
GWX ! 2E a multi-valued map. We say that:

(1) G is upper semi-continuous onX if for each x 2X the setG.x/ is a nonempty
closed subset of E and if, for each open set B of E containing G.x/, there
exists an open neighborhood V of x such that G.V /� B .

(2) G has a fixed point if there is x 2X such that x 2G.x/.
(3) G is said to be completely continuous ifG.B/ is relatively compact for every

B bounded set of X .
(4) If G is upper semi-continuous, it is said to be condensing map if, for any

subset B �X with ˛.B/¤ 0, we have

˛.G.B// < ˛.B/;

where ˛ denotes the Kuratowski measure of noncompactness.�

�Note that a completely continuous multivalued map is the easiest example of a condensing map.



HIGHER-ORDER BOUNDARY VALUE PROBLEMS 9

It is known that if the multi-valued mapG is completely continuous with nonempty
compact values, the G is upper semi-continuous if and only if G has a closed graph.

Definition 3. A function xW Œ0;1�! R is said to be solution of (1.1) (resp., (1.2),
(1.3), (1.4)) if x is .n� 1/-times differentiable, x.n�1/ is absolutely continuous and
x satisfies the conditions of (1.1) (resp., (1.2), (1.3), (1.4)).

Let � 2 R and n 2 N n f0;1g: For the techniques reasoning, we will need, in the
sequel, the sequence of functions .'p/2�p�n defined by the following formulas.

For all t 2 Œ0;1�, we put

'2.t/D 1;

'3.t/D tC'2.�/;

'p.t/D
tp�2

.p�2/Š
C

p�1X
kD3

'k�1.�/
tp�k

.p�k/Š
C'p�1.�/:

Remark 1. The following assertions hold:

(a) For all t 2 Œ0;1� and k 2 f0; : : : ;n�2g, '.k/n .t/D 'n�k.t/;
(b) For all k 2 f0; : : : ;n�3g, 'n�k.0/D 'n�k�1.�/;
(c) For all k 2 f0; : : : ;n�2g, the function '.k/n is increasing.

3. MAIN RESULTS

Assume that the following hypotheses hold:

(H1) F W Œ0;1��R! 2R is an L1-Carathéodory set-valued map with nonempty
compact convex values;

(H2) There exists a function m 2 L1.Œ0;1�;RC/ such that

kF.t;x/k �m.t/

for almost all t 2 Œ0;1� and all x 2 R.

We shall prove the following main results.

Theorem 1. If assumptions (H1) and (H2) are satisfied, then problem (1.1) has
at least one solution on Œ0;1� .

Theorem 2. If assumptions (H1) and (H2) are satisfied, then problems (1.2) and
(1.3) have at least one solution on Œ0;1� .

Theorem 3. If assumptions (H1) and (H2) are satisfied, then problem (1.4) has
at least one solution on Œ0;1�.
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4. PROOF OF THE MAIN RESULTS

For y 2 C.Œ0;1�;R/, we set

SF .y/ WD
˚
g 2 L1.Œ0;1�;R/ W g.t/ 2 F.t;y.t// for a. e. t 2 Œ0;1�

	
:

In the sequel, we will use the following important lemmas. They will play a crucial
role in the proof of the main results.

Lemma 1 ([4]). If dim.E/ <1 and F W Œ0;1��E ! 2E is compact and convex
then SF .y/¤¿ for all y 2E.

Lemma 2 ([4]). If F satisfies (H1) and SF ¤ ¿ then, for any linear contin-
uous mapping � WL1.Œ0;1�;E/! C.Œ0;1�;E/, the convex compact multi-function
� ıSF WC.Œ0;1�;E/! 2C.Œ0;1�;E/ has a closed graph.

Lemma 3 ([5]). Let T WE ! 2E be a convex compact condensing multi-valued
mapping. If the set

˝ WD
˚
y 2E W �y 2 T .y/ for some � > 1

	
is bounded, then T has a fixed point.

Proof of Theorem 1. By Lemma 1, for y 2 C.Œ0;1�;R/, SF .y/ is nonempty. Let
us transform the problem into a fixed point problem. Consider the multi-valued map
T W C.Œ0;1�;R/! 2C.Œ0;1�;R/ defined as follows: for y 2 C.Œ0;1�;R/, T .y/ is the set
of all ´ 2 C.Œ0;1�;R/ such that

´.t/D

Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
g.s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
g.s/ds;

where g 2 SF .y/. We shall show that T satisfies the assumptions of Lemma 3. The
proof will be given in several steps:

STEP 1: T .y/ is convex for each y 2 C.Œ0;1�;R/. Let h1;h2 2 T .y/, then

hi .t/D

Z t

0

.t � s/n�1

.n�1/Š
gi .s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
gi .s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
gi .s/ds;

where gi 2 SF .y/ and i D 1;2: Let 0� ˛ � 1. For all t 2 Œ0;1� we have

.˛h1C .1�˛/h2/.t/D

Z t

0

.t � s/n�1

.n�1/Š
.˛g1.s/C .1�˛/g2.s//ds

C
tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
.˛g1.s/C .1�˛/g2.s//ds
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�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
.˛g1.s/C .1�˛/g2.s//ds:

The set SF .y/ is convex because F is convex. Hence ˛h1C .1�˛/h2 2 T .y/.
STEP 2: T is bounded on bounded sets of C.Œ0;1�;R/. Indeed, it is sufficient to

show that T .Br/ is bounded for all r � 0, where Br D fy 2C.Œ0;1�;R/ W kyk1 � rg.
Let h 2 T .Br/. For all t 2 Œ0;1� we have

h.t/D

Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
g.s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
g.s/ds;

where y 2 Br and g 2 SF .y/. Thus, by (H2),

jh.t/j �

Z t

0

.t � s/n�1

.n�1/Š
m.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
m.s/ds

C
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
m.s/ds:

Then

khk1 �

Z 1

0

.1� s/n�1

.n�1/Š
m.s/dsC

1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
m.s/ds

C
1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
m.s/ds:

Hence T .Br/� Bı , where ı is the right-hand term in the above inequality.

STEP 3: T sends bounded sets of C.Œ0;1�;R/ into equicontinuous sets. Indeed, let
h 2 T .Br/: For all t 2 Œ0;1�, we have

h.t/D

Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
g.s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
g.s/ds;

where y 2 Br and g 2 SF .y/. Let t; s 2 Œ0;1� be such that t < s. We have

jh.s/�h.t/j

�

Z s

t

.s� �/n�1

.n�1/Š
jg.�/jd�C

Z t

0

.s� �/n�1� .t � �/n�1

.n�1/Š
jg.�/jd�

C
sn�1� tn�1

1��n�1

�Z �

0

.�� �/n�1

.n�1/Š
jg.�/jd�C

Z 1

0

.1� �/n�1

.n�1/Š
jg.�/jd�

�



12 M. AITALIOUBRAHIM AND S. SAJID

�

Z s

t

.1� �/n�1

.n�1/Š
m.�/d�C

Z 1

0

.s� �/n�1� .t � �/n�1

.n�1/Š
m.�/d�

C
sn�1� tn�1

1��n�1

�Z �

0

.�� �/n�1

.n�1/Š
m.�/d�C

Z 1

0

.1� �/n�1

.n�1/Š
m.�/d�

�
:

The right-hand side of the above inequality converges to 0 as s tends to t . Now, by
Steps 1, 2, and 3 combined with the Arzelà–Ascoli theorem, we conclude that T is
completely continuous.

STEP 4: T has a closed graph. Let .yp/p a sequence converging to y and consider
a sequence .hp/p such that hp 2 T .yp/ and .hp/p converges to h. We shall prove that
h 2 T .y/. We have

hp.t/D

Z t

0

.t � s/n�1

.n�1/Š
gp.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
gp.s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
gp.s/ds;

where gp 2 SF .yp/.
Now, we consider the linear continuous operator � WL1.Œ0;1�;R/! C.Œ0;1�;R/

defined by

� .g/.t/D

Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
g.s/ds

�
tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
g.s/ds:

We have hp 2 � ıSF .yp/. From Lemma 2, � ıSF has a closed graph, then h 2
� ıSF .y/. Thus, there exists a g 2 SF .y/ such that

h.t/D � .g/.t/; t 2 Œ0;1�;

which implies that h 2 T .y/. Consequently, T is upper semi-continuous.

STEP 5: The following set is bounded:

˝ D
˚
y 2 C.Œ0;1�;R/ W �y 2 T .y/ for some � > 1

	
:

Indeed, let y 2˝. Then

y.t/D ��1
Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

��1tn�1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
g.s/ds

�
��1tn�1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
g.s/ds:

where g 2 SF .y/. So, we conclude that
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kyk1 � �
�1

Z 1

0

.1� s/n�1

.n�1/Š
m.s/dsC

��1

1��n�1

Z �

0

.�� s/n�1

.n�1/Š
m.s/ds

C
��1

1��n�1

Z 1

0

.1� s/n�1

.n�1/Š
m.s/ds:

This shows that ˝ is bounded. Thus, T satisfies all the conditions of Lemma 3.
Therefore, T has a fixed point which is a solution of (1.1). �

Proof of Theorem 2. Transform the problem into a fixed point problem. Set for all
t 2 Œ0;1�

 gn .t/D

Z t

0

.t � s/n�1

.n�1/Š
g.s/dsC

n�2X
kD0

'.k/n .t/

Z �

0

.�� s/k

kŠ
g.s/ds;

where g 2 SF .y/. Consider the multi-valued map T W C.Œ0;1�;R/! 2C.Œ0;1�;R/ de-
fined as follows: for y 2 C.Œ0;1�;R/, one puts

T .y/ WD

�
´ 2 C.Œ0;1�;R/ W ´.t/D  gn .t/C

1C t

1� �

�
 gn .�/� 

g
n .1/

�
for t 2 Œ0;1�

�
:

Following the steps of the proof of Theorem 1, we can easily show that T has a fixed
point y.

Now we shall show that y is a solution of (1.2) and (1.3). We have

y.t/D  gn .t/C
1C t

1� �

�
 gn .�/� 

g
n .1/

�
;

where g 2 SF .y/. Then y.1/ D y.�/. On the other hand, for 0 � i � n� 2 and
t 2 Œ0;1�, we have

Œ gn �
.i/.t/D

Z t

0

.t � s/n�i�1

.n� i �1/Š
g.s/dsC

n�2X
kD0

'.kCi/n .t/

Z �

0

.�� s/k

kŠ
g.s/ds

D

Z t

0

.t � s/n�i�1

.n� i �1/Š
g.s/dsC

nCi�2X
lDi

'.l/n .t/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds

D

Z t

0

.t � s/n�i�1

.n� i �1/Š
g.s/dsC

n�2X
lDi

'.l/n .t/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds:

Then, by Remark 1(a) and (b),

Œ gn �
.i/.0/D

Z �

0

.�� s/n�i�2

.n� i �2/Š
g.s/dsC

n�3X
lDi

'.l/n .0/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds

D

Z �

0

.�� s/n�i�2

.n� i �2/Š
g.s/dsC

n�3X
lDi

'n�l�1.�/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds;
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and, by Remark 1(a),

Œ gn �
.iC1/.�/D

Z �

0

.�� s/n�i�2

.n� i �2/Š
g.s/dsC

n�3X
lDi

'.lC1/n .�/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds

D

Z �

0

.�� s/n�i�2

.n� i �2/Š
g.s/dsC

n�3X
lDi

'n�l�1.�/

Z �

0

.�� s/l�i

.l � i/Š
g.s/ds:

Consequently,
Œ gn �

.iC1/.�/D Œ gn �
.i/.0/; (4.1)

which implies that y.0/D y0.�/ and

y.i/.0/D y.iC1/.�/; 2� i � n�2; (4.2)

whenever n� 4. Finally, it is clear that

y.n/.t/D g.t/; t 2 Œ0;1�; (4.3)

and, hence,
y.n/.t/ 2 F.t;y.t//; t 2 Œ0;1�; (4.4)

as required. �

Proof of Theorem 3. Consider the multi-valued map T W C.Œ0;1�;R/! 2C.Œ0;1�;R/

defined as follows: for y 2 C.Œ0;1�;R/, one sets

T .y/ WD f´ 2 C.Œ0;1�;R/ W ´.t/D  gn .t/ for t 2 Œ0;1�g :

Following the steps of the proof of Theorem 1, we show that T has a fixed point y.
Let us show that y is a solution of (1.4). Indeed, by (4.1), we have (4.2). In view of
(4.3), it follows that (4.4) also holds. �
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