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1. Introduction

It is widely known that the stable limit cycles of the ordinary differential equations
play an exclusive role in the analysis of mathematical models of various oscillatory
systems with lumped parameters (in physics, biology, economics, engineering etc.).
However, it is useful to remember that the concept of a limit cycle was introduced
by the great scientist, A. Poincaré, purely theoretically, in the early 80s of the 19th
century. And only in the late 1920s did the outstanding Soviet physicist, A. A. An-
dronov, discovere that a stable limit cycle gives an adequate mathematical description
of a steady periodic regime.

There are models where the matter of principle is the existence of unique stable
limit cycle. In other models, however, it is interesting to discover the multiplicity
of such cycles. Everything depends on the properties of concrete applied problem
under consideration. Moreover, it is clear that, generally speaking, there exist various
number of stable limit cycles, depending on the values of parameters in the system
of differential equations. (These parameters describe actual properties of the object
under investigation.)

It is possible to give examples of systems of ordinary differential equations, where,
with appropriate choice of parameter values, one can guarantee the existence of an
arbitrary, beforehand prescribed finite number of stable limit cycles. For example, let
us consider the following second order system (in polar coordinates)

r=rsin(l/ar),p =1,

where a,0 < a < 1/, is a parameter. For any natural number N it is easy to indicate
the value of parameter «, positive and close to zero, providing exactly IV stable limit
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cycles, which are located in the area r > 1 of phase plane.

As it was mentioned above, the mathematical models of oscillatory systems with
lumped parameters are usually described by ordinary differential equations. However,
nowadays in physics, chemistry, biology, new engineering and modern technologies
the so-called oscillatory systems with distributed parameters or, more shortly, the
distributed oscillatory systems are widely spread. These are objects, the state of
which depends on both time and space variables; and the state of each point of space
changes periodically with time. Thus, periodic auto-oscillations are generated, or
auto-wave processes, following the term introduced by R. V. Khokhlov.

The dynamics of these objects is simulated, as a rule, by the partial differential
equations (with boundary and initial conditions). Each actual auto-oscillatory regime
corresponds to a stable cycle (it is a solution of the appropriate equation, periodic on
time and satisfying the boundary conditions). The partial differential equation, being
an adequate mathematical model of an oscillatory system with distributed parameters,
can have one or several stable cycles. It is natural that the number of such cycles,
generally speaking, may be different depending on the values of parameters in the
equation.

It is said that the bufferness phenomenon takes place in the distributed oscilla-
tory system if the system possesses the following property. The partial differential
equation, which is the mathematical model of the system, possesses, under the ap-
propriate values of parameters, an arbitrary, beforehand prescribed, finite number of
different stable cycles. Theoretically speaking, for any natural number N one can
choose physical characteristics of the system so that it will have N auto-oscillatory
regimes.

The typical example of a distributed oscillatory system is the classical autogen-
erator containing a long line. The problem of investigation of its periodic (with
time) regimes was initially formulated by A. A. Witt [1, 2]. It is appropriate here to
say more about this scientist, because his name is hardly known to mathematicians.
Alexander A. Witt was one of the bright scientists representing the remarkable Soviet
school of the oscillation theory (L. I. Mandelstam, N. D. Papalexi, A. A. Andronov,
V. V. Migulin etc.). He carried out a number of interesting and perspective theoret-
ical research. In particular, he was one of the co-authors of a classical book ”The
Oscillation Theory” [3]. However, as A. A. Witt was innocently convicted (and was
killed in 1937), his name did not appear in the book [3] and was rehabilitated only
after many years had passed [4, 5].

Let’s point out that A. A. Witt proposed, in his work [2], the following hypoth-
esis. There is a principal possibility that the oscillator with long line may possess
several stable cycles simultaneously. (However, the bufferness phenomenon was not
formulated yet). The fact that the number of auto-oscillating regimes may increase
under the variation of the parameter values of the object was first observed dur-
ing the physical experiment carried out by the research group of V. V. Migulin (see
[6]). As for the mathematical investigation of the bufferness phenomenon, it began on
Yu. S. Kolesov’s initiative. He studied this phenomenon in parabolic reaction-diffusion
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systems [7] using numerical methods; later he completed the theoretical research for
hyperbolic equations [8] (see also monograph [9]).

2. Bufferness phenomenon for periodic solutions

Let’s consider one mathematical result which theoretically proves the existence of
bufferness phenomenon in so-called LC'RG—autogenerator composed on a long line
with a tunnel diode. Omitting the description of physical details and the deduction
of the necessary equations (it is standard enough), we consider the boundary value
problem (see [10]) to be its mathematical model (under a number of conventional
assumptions — in particular, under cubic approximation of the diode characteristics):

Uy = —Ri — Lig, i, = —Gu — Cuy,

. 2.1
Z|I:1 =0, ’u,|$:0 + ko u|$:1 + ko u2|121 + k3 u3|121 =0, ( )

where ¢ is time, z is the coordinate along a line, u(¢,z) and i(¢,z) are the voltage
and the current in a line; all the autogenerator parameters (such as the distributed
resistance R, inductance L, capacity C' and conductivity G) are constant. It is well
known that this problem can be reduced to a boundary value problem for the so-called
telegraph equation.

It is shown in [11] that the problem of searching for auto-oscillations in this model
can be reformulated (after technical transforms and changes of variables) as a question
of existence and stability of periodic solutions of a nonlinear differential-difference
equation

Z(t)—(1—ae)2'(t—h)+ (1 —€)z(t) + (1 —ae)(1 +€)z(t — h) =
=alz(t) — (1 — ae)z(t — h)]? = [2(t) — (1 — ae)z(t — h)]3; (2.2)

here ¢ > 0 is a small parameter, the parameter o > 0 has the order of unit, the
parameters h = const > 0, a = const.

Let’s denote by wi < wsg < ... all the positive roots of the equation
wh
wtan — = 1.
2

Lemma. All the roots of a quasi-polynomial
PO =Ml-(1—-ae)e ™ +(1—e)+ (1 —ae)(l+ee

corresponding to zero equilibrium state of equation (2), for 0 < ¢ € 1 and a >
2(1 + w?)~! lie in a half-plane ReX < 0. If the parameter o > 0 is decreasing, and
when it becomes equal to the values 2(1 + w2)~1,n > 1, then the roots of a quasi-
polynomial P(\) transfer sequentially, one after another, to the half-plane ReA > 0.

Theorem. Let for some natural n > 1 the conditions

2

2 4

0<a<
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be fulfilled. Then there exists e, > 0, such that for any € € [0,€,] the equation (2)
has an exponentially orbital-stable (in metrics of the phase space W4 (—h,0)) periodic
solution z,(T,€) :

Zn(T+i_:’e) :Zn(Tae)V T:(]'—’_(;"(E))t.

For this solution the following asymptotic (when € — 0) representation is valid:

2
on(Tr€) = ex T/gm /H% — acoswnt + O(c), dnlc) = O(e).

It follows from the above Theorem (the proof of which is rather nontrivial), that the
following dynamics of equation (2) takes place under the appropriate decrease of the
parameters € and a.

Corollary. Zero equilibrium state of equation (2) is exponentially stable for all
a > 2(1+w?)~L. When the parameter « is equal to 2(1 + w?)~1, then a stable cycle
branches from this equilibrium state (the Andronov — Hopf bifurcation). For the
further decrease of «, when it becomes equal to each value 2(1 + w?)™1.n > 2, an
unstable cycle appears (the secondary Andronov — Hopf bifurcation), which becomes
stable for a > 2(1+ 2w? —w?)~L

Thus, under appropriate decrease of parameters € and «, one can guarantee the
existence of any beforehand prescribed number of stable cycles for equation (2). It
means that the bufferness phenomenon takes place for the system (1). That is, the
mathematical model of the LC RG—autogenerator with a long line, under suitable
choice of the values of its parameters, may possess an arbitrary number of stable
periodic regimes.

Let’s point out that the last conclusion can be illustrated by the real experiment
(see [12]).

To summarize all the above information, let us formulate the specific features of
the bufferness phenomenon from the physical point of view. A distributed oscillatory
system possessing the bufferness phenomenon has a set of stable periodic regimes.
Note that under the appropriate choice of the system parameters, this set may contain
an arbitrary large number of such regimes. When the values of parameters are fixed,
then the concrete regime, one of the potentially possible auto-oscillatory regimes,
comes into realization depending on the initial conditions or external factors. The
spontaneous transition of the system to some other periodic regime is impossible.

The further research concerning the bufferness phenomenon and associated prob-
lems is discussed in the monograph [13].

As a conclusion we will consider one more rather simple concrete example of a
system with a bufferness property — an example from mechanics.

Let’s consider an auto-oscillatory system consisting of the homogeneous string
of the length [ with fixed ends, to the middle of which a generator of mechanical
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oscillations is connected. Let’s assume that the oscillating string is characterized by
density p, tension T and condensation of friction forces h. As for the generator, it is
represented by a resonator consisting of the mass M, a spring with the elasticity &
and nonlinear element of friction h,(v) = A(v? — 1), > 0.

Omitting the rather simple deduction of the equations for the string and generator,
we shall consider only the final mathematical model (after necessary normalization of
the variables). It is the following boundary value problem in the segment 0 <z < 1:

Uty + EUt = Ugq,

Um0 = 0, [ugy + ea(u? — Duy + Bul|pm1 = —Yug|om1.-

Here the required function u(¢, x) characterizes the shift of an element of the string,
0 < € < 1, and parameters «, 3,7~ > 0 have the order of unit.

It appears (under certain assumptions, which are not formulated here for brevty’s
sake), that, with the appropriate increase of parameter « and proper decrease of
parameter €, one can guarantee that this boundary value problem possesses an arbi-
trary beforehand prescribed finite number of stable solutions, periodic with ¢; i.e. the
bufferness phenomenon is observed.
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