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Abstract. We characterize an arbitrary de Branges space with bi-Lipschitz phase for large dis-
tances as a subspace of a weighted Paley–Wiener space, consisting of the elements square-
integrable against an explicit extra-weight on the real line.
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1. INTRODUCTION

The inverse Fourier transform, defined by

F �1Œ'�.´/D
1
p
2�

Z �

��

ei´t'.t/dt; ´ 2C

maps L2Œ��;�� to a space of entire functions known as the classical Paley–Wiener
space and denoted by L2� . By the Paley–Wiener theorem, L2� consists of all entire
functions of exponential type at most � that are square-integrable on R. In other
words,

L2� D ff entire I kf k2 <1; jf .´/j � C"e.�C"/j´jg;

where the norm, k k2, is induced by the usual Hermitian product hf;gi2 DZ 1
�1

f .t/g.t/dt .

The Hilbert spaceL2� admits a reproducing kernel at each � 2C, that is, a function
k� 2 L

2
� satisfying hf;k� i2 D f .�/. Furthermore, it admits an orthonormal basis of

reproducing kernels, namely fkngn2Z. Explicitly,

k� .´/D
sin.�.´� N�//

�.´� N�/
;
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yielding the following expansion [4, p.150]: for f 2 L2� ,

f .´/D

1X
nD�1

dn
sin.�.´�n//
�.´�n/

:

In [3], de Branges has identified a large class of spaces of entire functions which
also admit orthogonal bases of reproducing kernels [3, p.55] and can be seen as a
generalization of L2� . A Hilbert space H of entire functions is a de Branges space if
it satisfies the following properties [3, p.57]:

(1) The linear functional H !C; f 7! f .´0/ is bounded for all ´0 2C;
(2) If f .´/ 2H , then f �.´/ also belongs to H and has the same norm as f .´/,

where f �.´/D f . Ń/;

(3) If f .´/ 2H and f .´0/D 0, then f .´/
´�´0

´�´0
also belongs to H and has the

same norm as f .´/.

By the Riesz lemma, the first property ensures that H admits a reproducing kernel at
each � 2C.

Concrete examples of de Branges spaces may be produced as follows. A func-
tion f .´/ analytic in CC is in the Nevanlinna class if it is the ratio of two analytic,
bounded functions in CC. The mean type of such a function is then given by

limsup
y!1

log jf .iy/j
y

:

For h 2 R, let us denote by NC
h

the class of functions in the Nevanlinna class whose
mean type does not exceed h. Given a Hermite–Biehler function, that is, an entire
function such that jE. Ń/j< jE.´/j for =´ > 0,

H .E/D ff entire I kf=Ek2 <1 and f=E; f �=E 2NC0 g

is a de Branges space, equipped with the norm kf k D kf=Ek2. Indeed, de Branges
proved that each de Branges space is isometrically equal to a space of the form H .E/

[3, p.57]. Notice that L2� itself is a de Branges space, obtained from the Hermite–
Biehler function E.´/D e�i�´.

In their work about sampling and interpolation, Lyubarskii and Seip studied a large
class of de Branges spaces that includes L2� , defined as follows [5]. Given a de
Branges space H , let M.´/ D kk´k. H is a weighted Paley–Wiener space if the
restriction of M to the real axis satisfies

(1) M.x/ > 0 for all x 2 R;
(2) kf k ' kf=Mk2 for all f 2H . 1

1In the sequel we say that two positive functions f and g are comparable and write f ' g if there
exist constants A, B > 0 such that Af � g � Bf .
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Concrete examples of weighted Paley–Wiener spaces are produced as follows. Let
m.t/ ' 1 be a measurable function on R. The potential of the measure m.t/ dt is
defined as

!m.´/D

Z 1
�1

log�
ˇ̌̌
1�

´

t

ˇ̌̌
m.t/dt;

where

log� j1�´=t j D
�

log j1�´=t jC .<´/=t if jt j> 1
log j1�´=t j otherwise.

Then,

PW.m/D ff entire I kf e�!mk2 <1 and jf .´/je�!m.´/ � C"e"j=´jg

is a weighted Paley–Wiener space. For g.´/ real-entire, egPW.m/ is also a weighted
Paley–Wiener space. Indeed, Lyubarskii and Seip proved that any weighted Paley–
Wiener space is equal, with equivalence of norms, to a space of the form egPW.m/.
As an example, PW.1/, the simplest weighted Paley–Wiener space, is equal to L2� .

Motivation and main result. Let H be a de Branges space and let k´ 2H be the
reproducing kernel at ´ 2C. The sequence of complex numbers f j́ g is interpolating
for H if there exists an f 2 H satisfying f . j́ / D aj for any choice of interpola-
tion data faj =kk j́

kg 2 `2.C/ [9, p.21]. It is complete interpolating if in addition f
is unique. The sequence f j́ g is sampling if kf k2 '

P
jf . j́ /j

2=kk
j́
k2: The no-

tions of sampling and interpolating sequences are often presented as dual. It is well
known [6, p.3] that f j́ g is complete interpolating if and only if it is interpolating and
sampling.

Classes of de Branges spaces are often studied in order to understand their sampling
and interpolating sequences [1, 2, 5, 6, 9]. Results are obtained for weighted Paley–
Wiener spaces [5]. Notice that the Hermite–Biehler function of such a space may be
chosen with zeroes equidistributed on the same line, in the sense that the distance
between two consecutive zeroes is comparable with 1. At the other extreme, results
are also obtained for de Branges spaces coming from a Hermite–Biehler function
with sparse zeroes [1].

The question is asked [6, p.5] to identify a class of de Branges spaces broader
than the weighted Paley–Wiener spaces, but still opposite to the sparse case, in which
some structural results may be obtained. Indeed, a class of de Branges spaces larger
than the weighted Paley–Wiener spaces is already studied in [5]. Its definition and
the results implicitly present in [5] are given in Section 3; see [7] for a complete
exposition.

The present paper proposes to study an even larger class of de Branges spaces,
defined as follows. Let H .E/ be a de Branges space whose Hermite–Biehler func-
tion E does not have any real zeroes. Then E.x/ admits a polar decomposition
jE.x/je�i'.x/ on the real axis, where '.x/, the so-called phase, is real-analytic and
well-defined up to the addition of 2k� . It is well known that '.x/ is also increasing
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[3, p.54]. We are interested in the case where ' is bi-Lipschitz for large distances:
there exist positive constants N , C1, and C2 such that

C1.x2�x1/� '.x2/�'.x1/� C2.x2�x1/ whenever x2�x1 >N;

where C1, C2, and N are independent of x1 and x2.
Let us state our main result. Following Lyubarskii and Seip [5], we shall say that

f .´/ is of !m-type if for each " > 0, there exists a C" > 0 such that

jf .´/j � C"e"j´je!m.´/

in the complex plane.

Theorem 1. Let H DH .E/ be a de Branges space, with E.x/D jE.x/je�i'.x/

on the real line. Assume ' is bi-Lipschitz for distances larger than N � 0. Then,
there exists a measurable m' 1 and a real-entire g.´/ such that

H � egPW.m/:

Namely,

e�gH D ff entire I kf .x/e�!m.x/e�.x/k2 <1; jf .´/je�!m.´/ � C"e"j=´jg;

where �.x/D
1

�

Z
jt�xj<N

'.t/�'.x/

t �x
dt .

In their study of weighted Paley–Wiener spaces, Lyubarskii and Seip developed a
multiplier lemma in the line of Beurling [2]. It produces, for � > supm, a Hermite–
Biehler functionE��m whose zeroes are equidistributed along the axis =´D�1. Let
˙��m be the set of zeroes of E��m. The multiplication by E��m is then a bijection
with equivalence of norms from PW.m/ to

L2�� Œ˙��m�D ff entire I kf .x/k2 <1; jf .´/j< C"e.��C"/j=´j; f .˙��m/D 0g:

In this way, Lyubarskii and Seip transferred results about sampling and interpolation
from L2�� Œ˙��m� to PW.m/. Our theorem implies that a similar transfer may be
done from

ff entire I kf .x/e�.x/k2 <1; jf .´/j< C"e.��C"/j=´j; f .˙��m/D 0g

to e�gH .
To prove our theorem we shall follow part of Lyubarskii and Seip’s study of

weighted Paley–Wiener spaces with two modifications. Firstly, we shall general-
ize the definition of ! so that .x/ may be any positive, continuous function whose
antiderivative '.x/ satisfies j'.x/�'.0/j ' jxj. Efforts are made to show that !
satisfies the expected properties of the potential of a measure in C (see [8]). Secondly,
we shall generalize Lyubarskii and Seip’s multiplier lemma so the zeroes of the res-
ulting Hermite–Biehler function may be multiple.
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Notation and terminology. For positive functions f and g, we write f . g if
there exists a constant C such that f � Cg pointwise. As already mentioned, we
write f ' g and say that f is comparable with g if f . g and g . f . We also say
that a set of points is equidistributed if the distance between a point and its closest
neighbor is comparable with 1.

For real-valued functions f and g, we write f � g if f > gC " for a certain
" > 0.

For a complex-valued function f , we define f �.´/ D f . Ń/. The L2-norm of
f .´/ is defined as kf k22 D

R1
�1
jf .x/j2dx, provided that this last integral converges.

Finally, we say that f .´/ is real-entire if it is an entire function real on the real line.

2. PROOFS

2.1. Potentials considered

Let '.x/ be a continuously differentiable, increasing function satisfying j'.x/j '
jxj for jxj large. Our aim is to verify that

!'0.´/D

Z 1
�1

log�
ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt

satisfies the expected properties of a potential.
Let us show that the above integral is absolutely convergent. The condition on '

ensures that for R > j´jC1,Z
jt j>R

@

@t

�
log�

ˇ̌̌
1�

´

t

ˇ̌̌�
'.t/dt D

Z
jt j>R

<

�
´2

t2.t �´/

�
'.t/dt

is well-defined. The following integral is thus also well-defined,Z
jt j>R

log�
ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt D AR.´/�

Z
jt j>R

�
@

@t
log�

ˇ̌̌
1�

´

t

ˇ̌̌�
'.t/dt;

where AR.´/ D log� j1C ´=Rj'.�R/� log� j1�´=Rj'.R/. Since its integrand
changes sign finitely many times, it is absolutely convergent. The result follows.

The continuity of !'0 also follows from the previous relation, by applying the
dominated convergence theorem to the integral on its right-hand side.

Let us show that for y ¤ 0, ´D xC iy, @
@y
!'0 may be calculated by interchanging

the derivative and the integral. The dominated convergence theorem implies

@

@y

Z
jt j>R

log�
ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt D

@

@y
AR.´/�

Z
jt j>R

@

@t

�
@

@y
log�

ˇ̌̌
1�

´

t

ˇ̌̌�
'.t/dt:

The last integral in the above relation may be evaluated by parts, yielding

@

@y

Z
jt j>R

log�
ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt D

Z
jt j>R

@

@y
log�

ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt:
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The dominated convergence theorem may also be used for the interval of integration
Œ�R;R�, yielding in total

@

@y
!'0.´/D

Z 1
�1

@

@y
log�

ˇ̌̌
1�

´

t

ˇ̌̌
'0.t/dt D

Z 1
�1

y

.x� t /2Cy2
'0.t/dt D �P'0.´/;

where P denotes the Poisson transform.
Finally, let us point out that the distributional Laplacian of !'0 is given by

�!'0.xC iy/D 2�'0.x/dx dı0.y/;

where ı0 denotes the Dirac measure at 0. The proof is exactly the same as when
'0.x/' 1, see [7, p.6], which follows closely [8, p.74].

2.2. Multiplier lemma

We now develop a version of Lyubarskii and Seip’s multiplier lemma dealing with
a positive, continuous .t/ whose antiderivative is bi-Lipschitz for large distances.
We shall obtain an equivalence e! .´/ ' jF .´/j for a real-entire function F .´/
whose zeroes are equidistributed on the real line, but now have multiplicity. It will
not be possible to shift them to C� without breaking the equivalence, which thus
holds on an upper half-plane =´ > " > 0 only.

Let '.x/D
R x
0 .t/dt . By hypothesis, there exist C1, C2, and N such that

C1.x2�x1/� '.x2/�'.x1/� C2.x2�x1/ whenever x2�x1 �N: (2.1)

Consider a sequence AD f˛kgk2Z of natural numbers satisfying 2C2N < ˛k < B

for a certain bound B . Let � � �< x�1 < x0 < x1 < � � � be the partition of R defined by
x0 D 0 and

R xkC1
xk

.t/dt D ˛k .
We claim that xkC1�xk ' 1. Indeed, for xk � x � xkC2N

'.x/�'.xk/� '.xkC2N/�'.xk/� 2C2N < ˛k;

which yields xkC1 > xkC2N . Similarly, for x�xk � B=C1

'.x/�'.xk/� B > ˛k;

which yields xkC1 <xkC.B=C1/. Therefore, 2N < xkC1�xk <B=C1, as desired.

Let �k D
1

˛k

Z xkC1

xk

t.t/ dt . We claim that �k , which lies in .xk;xkC1/, is

bounded away from xk , and hence �kC1� �k ' 1. In fact,

�k �
1

˛k

Z xkCN

xk

xk.t/dtC
1

˛k

Z xkC1

xkCN

.xkCN/.t/dt D xkC
N

˛k
.'.xkC1/�'.xkCN//:

Moreover, '.xkC1/� '.xk CN/ � C1.xkC1 � xk �N/ > C1N . Therefore, �k �
xk � C1N

2=˛k � C1N
2=B , as desired.
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Consider the auxiliary measure

d�.t/D .t/dt �
1X

kD�1

˛k dı�k .t/;

where dı� denotes the Dirac measure at � 2 R. Let f�.x/D
R x
0 d�.t/ (inclusive of

the endpoints) and g�.x/ D
R x
0 f�.t/ dt . For a < b and ´ … R, two integrations by

parts giveZ
Œa;b�

log j1�´=t jd�.t/D
Z b

a

g�.t/
@2

@t2
log j1�´=t jdtCR.a;b/;

where R.a;b/D .f�.t/ log j1�´=t j�g�.t/ @@t log j1�´=t j/ jba.
Since �k 2 .xk;xkC1/, clearly f�.xk/ D 0 for all k. Since in addition A is

bounded, f� is a bounded function on R. Moreover, g�.xk/ D 0 for all k 2 Z by
choice of �k . In addition, g� is bounded on R.

We deduce on the one hand that R.a;b/! 0 when a!�1 and b!1. On the
other hand, using any appropriate branch of the logarithm,Z b

a

g�.t/
@2

@t2
log j1�´=t jdt D

Z b

a

g�.t/<
@2

@t2
log.1�´=t/dt

D�

Z b

a

g�.t/<
1

.t �´/2
dtC

Z b

a

g�.t/

t2
dt:

Since g� is bounded, and since g�.t/ is nonnegative and ' t2 in a neighborhood of
x0 D 0, we conclude that

R1
�1

log j1�´=t jd�.t/ is well-defined and satisfiesˇ̌̌̌Z 1
�1

log j1�´=t jd�.t/
ˇ̌̌̌
. 1

when =´� 0 (i.e., when =´ > " > 0 for a certain " > 0).
An integration by parts also givesZ 1

�1

�RnŒ�1;1�.t/

t
d�.t/D�f�.�1/�f�.1/C

Z
jt j>1

f�.t/

t2
dt:

Since f� is bounded, the above expression is just a real constant C . In total,ˇ̌̌̌Z 1
�1

log� j1�´=t jd�.t/�Cx
ˇ̌̌̌
. 1

when =´� 0. Letting ˛ D C �
P
j�k j�1

˛k=�k , it follows that

j! .´/�˛x�
P
k ˛k.log j1�´=�kjCx=�k/ j. 1:

In other words, for F .´/D e˛´
Q
k.1�´=�k/

˛ke´˛k=�k ,

jF .´/j ' e! .´/
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when =´� 0.
We have proven the following multiplier lemma:

Proposition 1. Let .x/ be a positive, continuous function whose antiderivative
'.x/ satisfies the condition (2.1). Let AD f˛kgk2Z be a bounded sequence of pos-
itive integers larger than 2C2N . Then, F .´/ D e˛´

Q
k.1� ´=�k/

˛ke´˛k=�k is a
real-entire function satisfying

jF .´/j ' e! .´/ when =´� 0:

The consecutive zeroes f�kg of F are real, have respective multiplicity ˛k , and sat-
isfy �kC1� �k ' 1.

2.3. Proof of the theorem

Let H DH .E/ be a de Branges space whose phase ' satisfies the equation (2.1).
Since E is a Hermite–Biehler function, log jE.xC ijyj/j is subharmonic. The com-
putation of its distributional Laplacian is the same as that for weighted Paley–Wiener
spaces. Indeed, for H.x;y/ D log jE.xC iy/j, @2

@x2
.H.x; jyj// D . @

2

@x2
H/.x; jyj/,

while
@2

@y2
.H.x; jyj//D

@2H

@y2
.x; jyj/C2

@H

@y
.x; jyj/dı0.y/dx

in the sense of distributions, where ı0 denotes the Dirac measure at 0. The harmon-
icity of H in the neighborhood of the closed upper half-plane implies

�.H.x; jyj//D .�H/.x; jyj/C2
@H

@y
.x; jyj/dı0.y/dx D 2

@H

@y
.x;0/dx dı0.y/:

Since logE.x/DH.x;0/� i'.x/ has an analytic extension in the neighborhood of
R, the Cauchy–Riemann equations yield �.H.x; jyj// D 2'0.x/ dx dı0.y/. Con-
sequently,

log jE.xC ijyj/j D h.´/C!'0=�.´/;
where ´D xC iy and h is harmonic. Since h. Ń/D h.´/, h is indeed the real part of
a real-entire function g.´/. It follows that for  D '0=�

e�gH D ff entire I kf e�!k2 <1; f #e�!�i Q! 2NC0 g;

where f # varies in ff;f �g.
Observe that ! .´C i/ > ! .´/ on the upper half-plane. In fact, e! .´/�! .´Ci/

and e! .´Ci/�! .´/ are moduli of functions in NC0 , since the mean value theorem
and the dominated convergence theorem imply

0� limsup
y!1

! .i.yC1//�! .iy/
y

� limsup
y!1

yC1

y

Z 1
�1

1

t2Cy2
.t/dt D 0:

Therefore, ! .´/ may be replaced with ! .´C i/ in the condition f #e�!�i Q! 2

NC0 . Moreover, the multiplier lemma ensures that e! .´/ ' F .´/ on =´ � 0
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for an entire function F .´/ with equidistributed (but multiple) zeroes on the real
axis. Obviously, there exists an m.x/' 1 generating the same zeroes with the same
multiplicities, so e!m.´/ ' Fm.´/ D F .´/ ' e! .´/ when =´� 0.2 In particular,
e! .´Ci/ ' e!m.´Ci/ ' e!m.´/ for =´ � 0, where the last equivalence is justified by
the mean value theorem. In total, the condition f #e�!�i Q! 2 NC0 may thus be
replaced with f #e�!m�i Q!m 2NC0 in the characterization of e�gH .

As for weighted Paley–Wiener spaces, we may replace this last condition with
an omega type condition. In fact, let � > supm and E��m.´/D F��m.´C i/, where
F��m is given by the multiplier lemma (with zeroes of multiplicity 1). Then,
jE��m.´/j ' e!��m.´/ for =´ � 0, while !� .x C iy/ D �� jyj. The condition
f #e�!m�i Q!m 2 NC0 is thus equivalent to f #E��m 2 NC�� . Observe that E��m is a
Hermite–Biehler function satisfying E��m. Ń/D E��m.´�2i/, and hence the mean
value theorem impliesˇ̌̌̌

E���m.iy/
E��m.iy/

ˇ̌̌̌
' e!��m.i.y�2//�!��m.iy/ ' 1:

In particular, E���m=E��m 2 NC0 . The condition f #E��m 2 NC�� is thus equival-
ent to f #E��m 2 NC�� and .f #E��m/

� 2 NC�� simultaneously (where f # varies in
ff;f �g). By Krein’s theorem [3, p.38], it is equivalent to say that f #E��m is an
entire function of exponential type at most �� . Furthermore, for f 2 e�gH

kfE��mk2 ' kf e!��mk2 D kf e�!mk2 ' kf .x/e�! .xCi/
k2 � kf e�!k2 <1:

In particular, f #E��m belongs to the classical Paley–Wiener space L2�� , so the
exponential type condition jf #.´/E��m.´/j � C"e.��C"/j´j may be replaced with
jf #.´/E��m.´/j � C"e.��C"/jyj for ´ D xC iy 2 C. Since E��m is a Hermite–
Biehler function, it is equivalent to say that this last inequation holds on f=´� 0g
only (where f # varies in ff;f �g). There, jE��m.´/j ' e�� jyje�!m.´/, and hence
the last inequation is equivalent to jf #.´/je�!m.´/ � C"e"jyj for =´ � 0, that is, to
jf .´/je�!m.´/ � C"e"jyj for all ´ 2C. Therefore,

e�gH D ff entire I kf e�!k2 <1; jf .´/je�!m.´/ � C"e"jyjg:

Let �0.x/D ! .xC i/�! .x/, so e�! .x/ ' e�!m.x/e�0.x/. This extra weight is
easily computed:

�0.x/D

Z 1
�1

log
ˇ̌̌̌
1�

i
t �x

ˇ̌̌̌
.t/dt D

1

2

Z 1
�1

log
�
1C

1

.t �x/2

�
'0.t/

�
dt;

where the integral is well-defined. For a fixed x 2 R, let

A.t/D .'.t/�'.x// log
�
1C

1

.t �x/2

�
:

2In practice, any choice of a concrete m such that e!m.´/ ' e! .´/ when =´� 0 works.
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Notice that limt!xA.t/D 0, while limjt j!1A.t/D 0. Consequently, an integration
by parts yields

�0.x/D
1

�

Z 1
�1

1

1C .t �x/2
'.t/�'.x/

t �x
dt:

The equation (2.1) implies

�0.x/D
1

�

Z
jt�xj<N

1

1C .t �x/2
'.t/�'.x/

t �x
dtCO.1/

when jxj !1. Since ' is non decreasing, it also implies that j'.t/�'.x/j< 2NC2
when jt �xj<N . Therefore,

�0.x/D �.x/�
1

�

Z
jt�xj<N

t �x

1C .t �x/2
.'.t/�'.x//dtCO.1/D �.x/CO.1/;

where

�.x/D
1

�

Z
jt�xj<N

'.t/�'.x/

t �x
dt:

In conclusion, e�0.x/ ' e�.x/, and hence

e�gH D ff entire I kf .x/e�!m.x/e�.x/k2 <1; jf .´/je�!m.´/ � C"e"jyjg

D ff 2 PW.m/ I kf .x/e�!m.x/e�.x/k2 <1g;

with the above expression for �.x/.

3. EXAMPLES: MC-SPACES

In [5], Lyubarskii and Seip studied structural properties of a larger class of de
Branges spaces than the weighted Paley–Wiener spaces. Let us define this larger
class through a list of postulates [7].

A piecewise continuous function R! R is a mountain chain if its graph consists
of a succession of continuous pieces, called mountains and plateaux, satisfying the
following conditions:

� Each mountain has a Poissonian shape
�

.x� �/2C�2
with two sides and a

summit, .�;1=�/;
� The bases of the mountains are' 1;
� The summits have level more than 1; horizontally, they are bounded away

from the endpoints of the mountain bases;
� The plateaux consist of horizontal segments of level 1, without restriction on

their lengths (finite or infinite).
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Let E be a Hermite–Biehler function without real zero and of phase '. For x 2 R,
let �x � i�x be the zero of E.´/ closest to x (with the smallest x-coordinate in case
of equality). We postulate the existence of a ı > 0 such that the function

�.x/D

( �x

.x� �x/2C�2x
if �x < ı;

1 otherwise

is a mountain chain, satisfying in addition

'0.x/' �.x/:

Observe that each mountain of � lies over a zero of E.´/ in the critical strip �ı <
=´ < 0, and conversely. We postulate that each such zero is simple. Finally, let
f.�k;1=�k/gk2Z be an indexation of the summits of � in order of x-coordinates, so
that

� � �< ��1 < �0 < �1 < � � �

We postulate the following, weak limitation on the growth of the summits:

j log.�k/� log.�l/j DO.j�k � �l j
1�"/

uniformly in l when jk� l j !1, where " > 0 is arbitrarily small.
In the sequel, a de Branges space H shall be called an MC-space if H DH .E/

for a Hermite–Biehler function E without real zero, whose phase satisfies the afor-
mentioned, postulated properties. In their profound study of weighted Paley–Wiener
spaces, Lyubarskii and Seip proved the following theorem:

If H is an MC-space, then there exists a real-entire g.´/ and a measurable, posit-
ive m.x/' 1 such that

egPW.m/�H :

The majorants of these two spaces are both comparable with eg.x/e!m.x/ on the real
axis. In particular, if H is a weighted Paley–Wiener space, egPW.m/DH (equality
with equivalence of norms).

For the full equality egPW.m/ D H .E/ to hold, in addition to the properties of
E (more precisely, of '0) making H .E/ an MC-space, the authors established the
following, rather complicated criterion:

For ˛ 2 R, let �˛ be the zero set of sin.'.x/�˛/. Let g and m be given by the
previous theorem. Then, H .E/D egPW.m/ if and only if the following conditions
are satisfied: Firstly, e�g.´/e�!m.´/E.´/ is a (non entire) function of exponential
type on C, which satisfiesZ 1

�1

logC je�g.x/e�!m.x/E.x/j
x2C1

dx <1:
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Secondly, for two ˛ 2 Œ0;�/, �˛ is separated, while

v.x/D
sin2.'.x/�˛/
'0.x/dist.x;�˛/2

satisfies the Muckenhoupt (A2) condition.

This last condition means that
1

jI j

Z
I

v.x/dx �
1

jI j

Z
I

1

v.x/
dx . 1

when I ranges among the non empty finite intervals.
Notice that, if � has arbitrarily high mountains (corresponding to zeroes of E

arbitrarily close to the real axis), the relation '0'� ensures that ' is bi-Lipschitz for
large distances. However, ' fails to be bi-Lipschitz, since it contains arcs arbitrarily
close to step functions (describing an almost horizontal segment, followed with an
almost vertical one and an almost horizontal one, with angles arbitrarily close to the
right angle).

The MC-spaces are best studied by comparing their Hermite–Biehler function E
with a simpler function, F , obtained fromE by shifting down its zeroes in the critical
strip �ı < =´ < 0 to the axis =´ D �ı [5, p.991]. H .E/ is then related to F as
follows: for �.x/Dmin.�x;1/,

H .E/D ff entire I kf .x/'0.x/
1
2�.x/�

1
2 =F.x/k2 <1; f =F; and f �=F 2NC0 g:

In this particular context, '0.x/
1
2�.x/�

1
2 is thus the analog of our extra-weight e�.x/.

Let us give a concrete example.
Let H .E/ be the de Branges space generated by

E.´/D .´C i/
1Y
nD1

�
1�

´

n� in�˛

��
1C

´

nC in�˛

�
;

where 0� ˛ � 2. Then, from the above factorization

'0.x/D
1

x2C1
C

X
n2Z�

jnj�˛

.x�n/2Cjnj�2˛
: (3.1)

Let nx be the integer closest to x (less than x in case of equality). Then,

�.x/D

�
1=.x2C1/ if � 1

2
< x � 1

2
;

jnxj
�˛=..x�nx/

2Cjnxj
�2˛/ otherwise

is a mountain chain. In addition, '0.x/��.x/ is positive and bounded above (when
jxj !1) by

1

x2C1
C

X
jn�xj� 1

2

0 1

jnj˛.n�x/2
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�
1

x2C1
C

X
j jnj�jxj j� 1

2

0 1

jnj˛.jnj� jxj/2
CO.jxj�˛�2/

D 2 .
X

1�j< jxj
2

C

X
jxj
2
�j�jxj� 1

2

C

X
jxjC 1

2
�j

/
1

j ˛.j �jxj/2
CO.jxj�2/

.
2˛

jxj˛

X
1�j< jxj

2

1

j ˛.jxj�j /2�˛
C

 
2˛

jxj˛
C

1

.jxjC 1
2
/˛

!
1X
kD0

1

.1
2
Ck/2

CO.jxj�2/

�
2˛

jxj˛

X
1�j< jxj

2

1

j 2
CO.jxj�˛/ D O.jxj�˛/ . �.x/:

It follows that '0.x/ ' �.x/, and hence, H .E/ is an MC-space. By the above cri-
terion, H .E/ is indeed a weighted Paley–Wiener space for 0 � ˛ < 1; if instead
1 � ˛ < 2, the successive zeroes of E approach the real axis too quickly for the
Muckenhoupt (A2) condition to apply, so H .E/ is not a weighted Paley–Wiener
space (see [5, p.1005] for a similar example).

For =´� 0, the factorization of E.´/ and the simple relations

j´�nj< j´� .n� ijnj�˛/j< j´� .n� i/j

ensure that jsin.�´/j. jE.´/j. jsin.�.´C i//j: Therefore, jE.´/j ' e�=´D e!1.´/

holds for =´� 0. In this concrete case, our result thus applies for mD 1 (without
seeking another m from the multiplier lemma). Therefore,

H .E/D ff 2 L2� I kf .x/e
�.x/
k2 <1g:

Let us study the extra-weight e�.x/ for jxj> 1
2

, with N D 5
4

. Let

�0.x/D
1

�

Z 5=4

�5=4

tan�1.tCx/� tan�1.x/
t

dt;

�n.x/D
1

�

Z 5=4

�5=4

tan�1.jnj˛.tCx�n//� tan�1.jnj˛.x�n//
t

dt:

The relation (3.1) then implies that �.x/ D
P
n2Z �n.x/. Observe that �0.x/,

�nx�1.x/, and �nxC1.x/ are bounded when x varies in R. Let #.x/ D �nx .x/. It
follows that �.x/D #.x/C

P0
jn�nx j�2

�n.x/CO.1/: By the mean value theorem,

�.x/�#.x/�
X

jn�xj�3=2

0 1

�

jnj�˛

.jx�nj� 5
4
/2Cjnj�2˛

Z 5=4

�5=4

dtCO.1/DO.1/:

Thus, #.x/ stays at a bounded distance from �.x/, and hence e#.x/ ' e�.x/.
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Let us estimate #.nCh/ for n 2 Z� and h 2 Œ0; 1
2
� (the case where h 2 .�1

2
;0/

being similar). For a < b, let

T .a;b/D
1

�

Z b

a

tan�1.�/� tan�1.jnj˛h/
��jnj˛h

d�;

so #.nCh/D T .�jnj˛.5
4
�h/; jnj˛.5

4
Ch//. Notice that, when n varies in Z� and h

varies in Œ0; 1
2
�, both T .�1;1/ and T .jnj˛h�1; jnj˛hC1/ are bounded. If 1� jnj˛h�

1, then T .1; jnj˛h� 1/ is also bounded: indeed, tan�1.x/ is concave downward on
Œ1; jnj˛h�, and hence

T .1; jnj˛h�1/ �
1

�

tan�1.jnj˛h/� tan�1.1/
jnj˛h�1

Z jnj˛h�1
1

d� . 1:

Therefore,

#.nCh/D T .�jnj˛.5
4
�h/;�1/CT .jnj˛hC1; jnj˛.5

4
Ch//CO.1/

when jnj !1, uniformly in h 2 Œ0; 1
2
�. The boundedness of x.�

2
� tan�1.x// when

x varies in Œ0;1/ then ensures that

1

�

Z �1
�jnj˛. 5

4
�h/

tan�1.jnj˛h/C �
2

jnj˛h� �
d��T .�jnj˛.5

4
�h/;�1/DO.1/

and

T .jnj˛hC1; jnj˛.5
4
Ch//�

1

�

Z jnj˛. 5
4
Ch/

jnj˛hC1

�
2
� tan�1.jnj˛h/
��jnj˛h

d� DO.1/

when jnj !1, uniformly in h 2 Œ0; 1
2
�. Therefore,

#.nCh/D log.jnj˛/�
tan�1.jnj˛h/C �

2

�
log.1Cjnj˛h/CO.1/:

The boundedness of x.�
2
� tan�1.x// on Œ0;1/ finally ensures that

log.1Cjnj˛h/�
tan�1.jnj˛h/C �

2

�
log.1Cjnj˛h/DO.1/;

yielding in total

#.nCh/D log.jnj˛/� log.1Cjnj˛h/CO.1/

when jnj ! 1, uniformly in h 2 Œ0; 1
2
�. A similar result holds for h 2 .�1

2
;0/. In

conclusion, for x … .�1
2
; 1
2
�,

e�.x/ ' e#.x/ '
jnxj

˛

1Cjnxj˛jx�nxj
:

It is comparable to '0.x/
1
2�.x/�

1
2 '�.x/

1
2�.x/�

1
2 D jnxj

˛=
p
.x�nx/2jnxj2˛C1,

as expected.
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Concluding remark. We have seen that the MC-spaces share their structure
with a larger class of spaces of entire functions, namely, the de Branges spaces with
bi-Lipschitz phase for large distances. These last are of the form

H D ff entire I kf e�!m.x/e�.x/k2 <1; jf .´/je�!m.´/ � C"e"j=´jg

for a measurable m.x/ ' 1 and �.x/ D
R N
�N

'.t/�'.x/
t�x

dt , where '.x/ is a non de-
creasing, real-analytic function and N > 0. Contrary to the MC-spaces, they are
defined by a simple condition on the phase of a corresponding Hermite–Biehler func-
tion, without assuming any knowledge of its zeroes.

Some de Branges spaces with bi-Lipschitz phase for large distances appear to be
weighted Paley–Wiener spaces, despite an unbounded �.x/. The question is thus
raised to find conditions on �.x/ for such a phenomenon to occur. In this regard, it
may be attempted to re-do the analysis of Lyubarskii and Seip by reasoning on the
phase ofE (and its weight e�.x/) instead of the zeroes ofE, and see if simplifications
occur.
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