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Abstract. In this paper, we present a new approach for finding the inverse of some triangular

Toeplitz matrices using the generalized Fibonacci polynomials and give a factorization of these
matrices. We also give a new proof of Trudi’s formula using our result.
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1. INTRODUCTION

Let L, be the lower triangular Toeplitz matrix:

to 0 0
t 1

SO

Ih—1 T o

where (#;);=0,1,2,....n—1 are real and/or complex numbers. In the matrix theory, there
is quite an interest in the theory and applications of triangular Toeplitz matrices.
There are a number of studies focusing on the linear algebra of the triangular Toeplitz
matrices. For example, in [2] the authors discussed the linear algebra of the Pascal
matrix, in [8] the authors examined the linear algebra of the k-Fibonacci matrix and
the symmetric k-Fibonacci matrix, in [60] the authors studied the Pell matrix. In
[9], Lee et al. defined n x n-Fibonacci matrix and obtained the inverse matrix of
the Fibonacci matrix. The Fibonacci matrix F, = [f; jli,j=1,2,....n and the inverse
matrix of F, as follows:

Ji—j+1, fori—j+1>0,

F = 57 =
n =] 0, fori—j +1<0,
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and
1, fori = j,
Fl=[f1=1-1, fori—-2<j<i-1,
0, otherwise,

where f, is nth Fibonacci numbers.

The inverse of Toeplitz matrices was first studied by Trench [18] in 1964 and by
Gohberg and Semencul [4] in 1972. In the last decades some papers related to com-
puting the inverse of a nonsingular Toeplitz matrix and the lower triangular Toeplitz
matrix were presented, etc. [1,3,5,7,11,16,17,19,21]. In [16] Merca derived the
inverse of triangular Toeplitz matrix using symmetric functions.

In this paper, we obtain the inverse of nxn lower triangular Toeplitz matrix 7}, as
follows:

L= " b (1.1)
T
—th—1 - —t1 1

where (#;)i=1,2,....n—1 are the elements of a ring.

To achieve this goal, we use the generalized Fibonacci polynomials which are gen-
eral form of a large number of recurrent relation numbers and polynomials. MacHenry
[12, 13] defined generalized Fibonacci polynomials (Fj ,(¢)), where #; (1 <i <k)
are constant coefficients of the core polynomial

P(xit1,t2, ... 1) = xF — 1y x*71

E—
which is denoted by the vector t = (11,12,...,1). Fi ,(t) is defined inductively by
Firan(t)=0,n<0;
Fro(t) =1, (1.2)
Fient1(t) =11 Fpepn (1) + -+ tg Fie pic 41 (1)

In addition, in [14] the authors obtained Fy ,(f) (n,k € N, n > 1) as,

b
Fk,n(z)=z(b | |b )r{’l...z,fn. (1.3)

bkn e

n
Throughout this paper, the notations b - n and |b| are used instead of ) jb; =n
Jj=1

n
and > b;, respectively.
j=1
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Corollary 1 ([10]). Let Fy ,(t) be the generalized Fibonacci polynomials and
H_ (k) be the n x n lower Hessenberg matrix such that

H —1 0 -+ 0
15 1 -1 - 0
H_ ey =| : : o
k=1 lg—2 tg—3 - —1
e lg—1 lk—2 - I |

Then,
det H_(kn)y = Frn ().

2. THE INVERSE OF NXN LOWER TRIANGULAR TOEPLITZ MATRIX

In this section, we obtain the inverse of matrix 7}, (1.1). This result was obtained in
[16] as a result of the study on symmetry between complete symmetric functions and
elementary symmetric functions. We present new approach for this using definition
of generalized Fibonacci polynomials.

Theorem 1. Let T, be the nxn lower triangular Toeplitz matrix in (1.1) and
Fy (t) be the generalized Fibonacci polynomials defined in (1.2), then

Fri—;@), fori—j>0,

(Tw) ' =[t,1=11, fori—j =0,
0, otherwise.
Proof.
Fk,i—j(t)’ fOI'i-j >0,
Ap =laij]=11, fori —j =0,
0, otherwise.

and R; is ith row vector of A, C; is ith column vector of T;,.

If we show the equation A, T, = I = [e; ;], the proof is completed. It is obvious
thate;; =0fori < j and ¢;; = (R;,C;) = 1 from the definitions of A, and 7},. Now
we obtain e;; fori > j;

eij =(Ri.Cj)= Fri—jt1()—t1 Fri—j(t) —ta Fgi—; (t) — ... — tg Fi o (0).

From the definition of generalized Fibonacci polynomials and previous equation, we
obtain ¢;; = 0 for i > j, which ends the proof. O
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Example 1. We obtain the inverse of matrix 75 using Theorem 1;

-1

1 0 0 0O O
—1 1 0 0 O
(Ts) '=| =t - 1 0 0O
—13 —1 —h 1 0
—ty —t3 —tp —t; 1
1 0 0 0 0
Fra() 1 0 0 0
=| Fra(t) Fr,() 1 0 0
Fi3(t) Fro(t) Fiq(t) 1 0
| Fra®) Fra(t) Fra@) Fra() 1
B 1 0 0 0 0
1 1 0 0 0
= h+1? f 1 00
l3+2l1t2+ll3 Z2+112 1 1 0
| 20tz 4t 433 320041 b+t ]

Example 2. We obtain “sg 3~ for matrix S, = [s;, j]axn Which is the inverse of

1, I =],
matrix R, = [rijlnxn = 0, i < j, using Theorem 1 and equation (1.3);
j—i, i>],

b
58,3=Fk,5(1,2,3,4,5)=2( 1] )1b1...5b5=55.

b1 b
s \b1,...b5

Since Fy , () is the general form of the Fibonacci type numbers and polynomials,
the results that we obtained are applicable for many polynomials and sequences, such
as generalized order-k Fibonacci, Pell and Jacobsthal numbers, generalized bivariate
Fibonacci p-polynomials, bivariate Jacobsthal p-polynomials, Chebyshev polyno-
mial of the second kind and bivariate Pell p-polynomials etc.[see Table 1]

The generalized bivariate Fibonacci p-polynomials [20] are, for n > p,

Fp,n(xvY) = XFp,n—l(x»J’) +pr,n—p—1(xvY)’ (2.1)

with boundary conditions forn = 1,2, ..., p, Fp0(x,y) =0, Fpn(x,y) = x""L.
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Corollary 2. Let F), ,(x,y) be the generalized bivariate Fibonacci p-polynomials
defined in (2.1) and Ty, p is nxn lower triangular Toeplitz matrix as

1, fori—j =0,
—-x, fori—j =1,

T, »=lci ;1=
np = Icij] -y, fori—j=p+1,
0, otherwise.
Then
Fpi—j(x,y), fori—j >0,
(Tn.p) ' =laij]= 11, fori—j =0,

0, otherwise.

Proof. It is obvious that Fg_y ,(x,y) = Fi ,(t) fort; = x,t; =02 <i < (k-
1)),tx = y. So using Theorem 1, we obtain the required result. O

TABLE 1. [20] Cognate polynomial sequences.

x|y |p| Fpalx.y)
x | y | 1 || bivariate Fibonacci polynomials F, (x, y)
x | 1 | p || Fibonacci p-polynomials F}, , (x)
x | 1 | 1 || Fibonacci polynomials f; (x)
1 | 1 | p | Fibonacci p-numbersFy(n)
1 1 | 1 || Fibonacci numbers F,
2x | y | p || bivariate Pell p-polynomials F, , (2x,y)
2x | y | 1 || bivariate Pell polynomials Fy, (2x, y)
2x | 1 | p || Pell p-polynomials P, (x)
2x | 1 | 1 || Pell polynomials Py (x)
2 1 | 1 || Pell numbersP;,
2x | —1 | 1 || second kind Chebysev polynomialsUy,—_1 (x)
x | 2y | p || bivariate Jacobsthal p-polynomials F, , (x,2y)
x | 2y | 1 || bivariate Jacobsthal polynomials F}, (x,2y)
1 | 2y | 1 || Jacobsthal Polynomials J;,(y)
1 2 | 1 || Jacobsthal Numbers J;,
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Corollary 3. Let U, be the nxn lower triangular Toeplitz matrix as

e

> (G )X R = fori—j >0,

2m+1
Un el [ul,]] frd m=0 ) .
1, fori—j =0,
0, otherwise.
Then
1, fori—j=0,i—j =2,
Un) ' =13-2x, fori—j=1,
0, otherwise.

Proof. 1t is obvious in the Table 1 that Fy ,(x,y) = Uy—1(x) and

2m+1

AP

Up(x) = Z (l —J+ )xi—j—Zm(xz —pm
m=0

from the definition of the second kind of Chebyshev polynomials. So using Corollary

2, we obtain the required result. U

3. FACTORIZATIONS OF LOWER TRIANGULAR TOEPLITZ MATRIX

The set of all square matrices of order 7 is denoted by P,. A matrix P € P, of the
form

Py O - 0
p_| 0 Px
: .0
0 0 Pkk

n
in which P;; € Py,,i €{1,2,...,k},and ) n; = n, is called block diagonal. Nota-
k=1
tionally, such a matrix is often indicated as P = P11 @ Py ®--- @ Py ; this is called

the direct sum of the matrices Py1, P22, -+, Prk.

In [9], Lee et al. gave the factorization of Fibonacci matrix. Now we consider the
factorization of lower triangular Toeplitz matrix. We define the matrices C, and T},
by

| 0 -« 0
_Fk (l) —_—
Cp = . and Ty = [1] @ T, G.1)
: Inyo
_Fk,n—i-z(t)

Theorem 2. Let T, be the nxn lower triangular Toeplitz matrix in (1.1) and
matrices Cy, Ty, defined in (3.1). Then (Tj,_1)(Ci—3) = Ty, for k > 3.



TRIANGULAR TOEPLITZ MATRICES 533

Proof. For k = 3, we have (ﬁ)(Cg) = T3. Letting k > 3 and applying the defini-
tion of generalized Fibonacci polynomials, the proof complete. O

Theorem 3. Let T, be the nxn lower triangular Toeplitz matrix in (1.1), the mat-
rix Cy, defined in (3.1) and I, be the n x n identity matrix. Then T, = (Ip—2 ®
(C=1)) ... (11 B (Cp—a))(Cpn—3).

Proof. The proof is an immediate consequence of Theorem 2. O
Example 3. We obtain the factorization of the matrix 75 using Theorem 3;

Ts =(I3®C_1)(12® Co)(I1 & C1)C,

i.e.
1 0 0 0
-5 10 0 0
—l —In 1 0 0
—t3 —l —h 1 0
—ty —t3 —tp —11 1
100 0 0 10 0 00
010 0 0 0 1 0 00
=001 0 o0 0 0 1 00
000 1 0 0 0 —1 1 0
000 - 1 0 0 —(t3+1n) 0 1
1 0 000
0 1 000
0 —1 1 00
0 —(t? +12) 010
0 —(tz+2un+t3) 0 0 1
1 00 00
—1 1 000
—(t? +12) 01 00
—(t3 + 21112 +13) 0010
—(ta+20113+13 +11 +3t3) 0 0 0 1

Lemma 1. Let C,, be the (n + 3) x (n + 3) Hessenberg matrix in 3.1, then

()" = Fie1(7)
n . 1n+2

Frn12()

Proof. The proof is obvious from the matrix product. O
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Corollary 4. Let T, be the nxn lower triangular Toeplitz matrix in (1.1), the
matrix Cy, defined in (3.1) and I, be the n x n identity matrix. Then (T,)~! =
(Cn—3)"' (11 ® (Cr—a)) ™" ... (In—2® (C1)) 71,

Proof. The proof follows by a simple calculation using the previous lemma and
the equation (I ® (Cp—x—3)) ' = I ® (Cp_—3) L. 0
4. A NEW PROOF OF TRUDI’S FORMULA

Merca [15] gave a proof of the Trudi’s formula. We give a different proof of this
identity using our results.

Theorem 4 (Trudi’s formula [15]). Let m be a positive integer. Then

ai agp 0
an aq
det :
dm—1 dm—2 -+ d1 4o
| 9m adm—1 -+ 4z 41 |
ki+-+km ey —kyy k1 K k
= Z ( ki, .k (_aO)m ' malla22“'amm
(k12 eeerkem) oo

where the summation is over nonnegative integers satisfying t1 + 2t + -+ +mty, =
m.

Proof. Using the properties of determinants of Hessenberg matrices, we can write

al ao 0 0

a, a
det 2 !
ao
am e az al
B ai —1 0 0 7
—daopdy al —1 :
D" 2al 2amy (D" 30l Pam— . a1 -1
L D™ Y ay, (1) 2al 2 am —apaz ap
And if we take
T =ai, th =—aopasz,....t,y = (—1)m_106n_10m

in equation 1.3 and Corollary 1, we obtain
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B ai -1 0 0 7
—daodz ai —1
D" 2ad2am— ()" 24l Pams . ar -1
= (_1)m_1a6n_lam (—1)m_2aom_20m—1 —agaz ai
kit k
= Z L a]fl(—aoaz)kz"'((—ao)m_lam)k’"
ki kom

(k1,k2,e0km)

Finally, when we make the necessary calculations, equation

ki+-+k _
> ; " at (—a0az)*2 - ((—ao)™ L am)*m

ki, .k
(k1 kgmdem) \ L m
ki+-+km
ke ek 1k k
ST JN N R R
(k1,k2,eekm) oo
is obtained. O
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