

INVERSE AND FACTORIZATION OF TRIANGULAR TOEPLITZ **MATRICES**

ADEM ŞAHİN

Received 01 October, 2015

Abstract. In this paper, we present a new approach for finding the inverse of some triangular Toeplitz matrices using the generalized Fibonacci polynomials and give a factorization of these matrices. We also give a new proof of Trudi's formula using our result.

2010 Mathematics Subject Classification: 15A09; 15A23; 11B39

Keywords: triangular Toeplitz matrices, generalized Fibonacci polynomials, matrix factorization

1. Introduction

Let L_n be the lower triangular Toeplitz matrix:

$$L_n = \begin{bmatrix} t_0 & 0 & \cdots & 0 \\ t_1 & t_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ t_{n-1} & \cdots & t_1 & t_0 \end{bmatrix}$$

where $(t_i)_{i=0,1,2,...,n-1}$ are real and/or complex numbers. In the matrix theory, there is quite an interest in the theory and applications of triangular Toeplitz matrices. There are a number of studies focusing on the linear algebra of the triangular Toeplitz matrices. For example, in [2] the authors discussed the linear algebra of the Pascal matrix, in [8] the authors examined the linear algebra of the k-Fibonacci matrix and the symmetric k-Fibonacci matrix, in [6] the authors studied the Pell matrix. In [9], Lee et al. defined $n \times n$ -Fibonacci matrix and obtained the inverse matrix of the Fibonacci matrix. The Fibonacci matrix $F_n = [f_{i,j}]_{i,j=1,2,...,n}$ and the inverse matrix of F_n as follows:

$$F_n = [f_{i,j}] = \begin{cases} f_{i-j+1}, & \text{for } i-j+1 \ge 0, \\ 0, & \text{for } i-j+1 < 0, \end{cases}$$

© 2018 Miskolc University Press

and

$$F_n^{-1} = [f_{i,j}^i] = \begin{cases} 1, & \text{for } i = j, \\ -1, & \text{for } i - 2 \le j \le i - 1, \\ 0, & \text{otherwise,} \end{cases}$$

where f_n is nth Fibonacci numbers.

The inverse of Toeplitz matrices was first studied by Trench [18] in 1964 and by Gohberg and Semencul [4] in 1972. In the last decades some papers related to computing the inverse of a nonsingular Toeplitz matrix and the lower triangular Toeplitz matrix were presented, etc. [1, 3, 5, 7, 11, 16, 17, 19, 21]. In [16] Merca derived the inverse of triangular Toeplitz matrix using symmetric functions.

In this paper, we obtain the inverse of $n \times n$ lower triangular Toeplitz matrix T_n as follows:

$$T_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ -t_{1} & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ -t_{n-1} & \cdots & -t_{1} & 1 \end{bmatrix}$$
(1.1)

where $(t_i)_{i=1,2,\dots,n-1}$ are the elements of a ring.

To achieve this goal, we use the generalized Fibonacci polynomials which are general form of a large number of recurrent relation numbers and polynomials. MacHenry [12, 13] defined generalized Fibonacci polynomials $(F_{k,n}(t))$, where t_i $(1 \le i \le k)$ are constant coefficients of the core polynomial

$$P(x;t_1,t_2,...,t_k) = x^k - t_1 x^{k-1} - \dots - t_k,$$

which is denoted by the vector $t = (t_1, t_2, \dots, t_k)$. $F_{k,n}(t)$ is defined inductively by

$$F_{k,n}(t) = 0, n < 0;$$

$$F_{k,0}(t) = 1,$$

$$F_{k,n+1}(t) = t_1 F_{k,n}(t) + \dots + t_k F_{k,n-k+1}(t).$$
(1.2)

In addition, in [14] the authors obtained $F_{k,n}(t)$ $(n, k \in \mathbb{N}, n \ge 1)$ as,

$$F_{k,n}(t) = \sum_{b \vdash n} {b \choose b_{1,\dots,b_n}} t_1^{b_1} \dots t_n^{b_n}.$$
 (1.3)

Throughout this paper, the notations $b \vdash n$ and |b| are used instead of $\sum_{j=1}^{n} jb_j = n$

and $\sum_{j=1}^{n} b_j$, respectively.

Corollary 1 ([10]). Let $F_{k,n}(t)$ be the generalized Fibonacci polynomials and $H_{-(k,n)}$ be the $n \times n$ lower Hessenberg matrix such that

$$H_{-(k,n)} = \begin{bmatrix} t_1 & -1 & 0 & \cdots & 0 \\ t_2 & t_1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{k-1} & t_{k-2} & t_{k-3} & \cdots & -1 \\ t_k & t_{k-1} & t_{k-2} & \cdots & t_1 \end{bmatrix}.$$

Then,

$$\det H_{-(k,n)} = F_{k,n}(t).$$

2. THE INVERSE OF N×N LOWER TRIANGULAR TOEPLITZ MATRIX

In this section, we obtain the inverse of matrix T_n (1.1). This result was obtained in [16] as a result of the study on symmetry between complete symmetric functions and elementary symmetric functions. We present new approach for this using definition of generalized Fibonacci polynomials.

Theorem 1. Let T_n be the $n \times n$ lower triangular Toeplitz matrix in (1.1) and $F_{k,n}(t)$ be the generalized Fibonacci polynomials defined in (1.2), then

$$(T_n)^{-1} = [t_{i,j}] = \begin{cases} F_{k,i-j}(t), & for \ i-j > 0, \\ 1, & for \ i-j = 0, \\ 0, & otherwise. \end{cases}$$

Proof.

$$A_n = [a_{i,j}] = \begin{cases} F_{k,i-j}(t), & \text{for } i-j > 0, \\ 1, & \text{for } i-j = 0, \\ 0, & \text{otherwise.} \end{cases}$$

and R_i is ith row vector of A_n , C_i is ith column vector of T_n .

If we show the equation $A_n T_n = I = [e_{i,j}]$, the proof is completed. It is obvious that $e_{ij} = 0$ for i < j and $e_{ii} = \langle R_i, C_i \rangle = 1$ from the definitions of A_n and T_n . Now we obtain e_{ij} for i > j;

$$e_{ij} = \langle R_i, C_j \rangle = F_{k,i-j+1}(t) - t_1 F_{k,i-j}(t) - t_2 F_{k,i-j}(t) - \dots - t_k F_{k,0}(t).$$

From the definition of generalized Fibonacci polynomials and previous equation, we obtain $e_{ij} = 0$ for i > j, which ends the proof.

Example 1. We obtain the inverse of matrix T_5 using Theorem 1;

$$(T_5)^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -t_1 & 1 & 0 & 0 & 0 \\ -t_2 & -t_1 & 1 & 0 & 0 \\ -t_3 & -t_2 & -t_1 & 1 & 0 \\ -t_4 & -t_3 & -t_2 & -t_1 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ F_{k,1}(t) & 1 & 0 & 0 & 0 \\ F_{k,2}(t) & F_{k,1}(t) & 1 & 0 & 0 \\ F_{k,3}(t) & F_{k,2}(t) & F_{k,1}(t) & 1 & 0 \\ F_{k,4}(t) & F_{k,3}(t) & F_{k,2}(t) & F_{k,1}(t) & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ t_1 & 1 & 0 & 0 & 0 \\ t_2 + t_1^2 & t_1 & 1 & 0 & 0 \\ t_3 + 2t_1t_2 + t_1^3 & t_2 + t_1^2 & t_1 & 1 & 0 \\ t_4 + 2t_1t_3 + t_2^2 + t_1^4 + 3t_1^2t_2 & t_3 + 2t_1t_2 + t_1^3 & t_2 + t_1^2 & t_1 & 1 \end{bmatrix}.$$

Example 2. We obtain " $s_{8,3}$ " for matrix $S_n = [s_{i,j}]_{n \times n}$ which is the inverse of matrix $R_n = [r_{ij}]_{n \times n} = \begin{cases} 1, & i = j, \\ 0, & i < j, \text{ using Theorem 1 and equation (1.3);} \\ j-i, & i > j, \end{cases}$

$$s_{8,3} = F_{k,5}(1,2,3,4,5) = \sum_{b \vdash 5} {b \choose b_1,...,b_5} 1^{b_1} ... 5^{b_5} = 55.$$

Since $F_{k,n}(t)$ is the general form of the Fibonacci type numbers and polynomials, the results that we obtained are applicable for many polynomials and sequences, such as generalized order-k Fibonacci, Pell and Jacobsthal numbers, generalized bivariate Fibonacci p-polynomials, bivariate Jacobsthal p-polynomials, Chebyshev polynomial of the second kind and bivariate Pell p-polynomials etc.[see Table 1]

The generalized bivariate Fibonacci p-polynomials [20] are, for n > p,

$$F_{p,n}(x,y) = xF_{p,n-1}(x,y) + yF_{p,n-p-1}(x,y),$$
(2.1)

with boundary conditions for n = 1, 2, ..., p, $F_{p,0}(x, y) = 0$, $F_{p,n}(x, y) = x^{n-1}$.

Corollary 2. Let $F_{p,n}(x,y)$ be the generalized bivariate Fibonacci p-polynomials defined in (2.1) and $T_{n,p}$ is $n \times n$ lower triangular Toeplitz matrix as

$$T_{n,p} = [c_{i,j}] = \begin{cases} 1, & \text{for } i - j = 0, \\ -x, & \text{for } i - j = 1, \\ -y, & \text{for } i - j = p + 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$(T_{n,p})^{-1} = [a_{i,j}] = \begin{cases} F_{p,i-j}(x,y), & for \ i-j > 0, \\ 1, & for \ i-j = 0, \\ 0, & otherwise. \end{cases}$$

Proof. It is obvious that $F_{k-1,n}(x,y) = F_{k,n}(t)$ for $t_1 = x, t_i = 0 (2 \le i \le (k-1)), t_k = y$. So using Theorem 1, we obtain the required result.

TABLE 1. [20] Cognate polynomial sequences.

x	y	p	$F_{p,n}(x,y)$
X	у	1	bivariate Fibonacci polynomials $F_n(x, y)$
x	1	p	Fibonacci p-polynomials $F_{p,n}(x)$
x	1	1	Fibonacci polynomials $f_n(x)$
1	1	p	Fibonacci p-numbers $F_p(n)$
1	1	1	Fibonacci numbers F_n
2x	y	p	bivariate Pell p-polynomials $F_{p,n}(2x, y)$
2x	y	1	bivariate Pell polynomials $F_n(2x, y)$
2x	1	p	Pell p-polynomials $P_{p,n}(x)$
2x	1	1	Pell polynomials $P_n(x)$
2	1	1	Pell numbers P_n
2x	-1	1	second kind Chebysev polynomials $U_{n-1}(x)$
x	2 <i>y</i>	p	bivariate Jacobsthal p-polynomials $F_{p,n}(x,2y)$
x	2 <i>y</i>	1	bivariate Jacobsthal polynomials $F_n(x, 2y)$
1	2 <i>y</i>	1	Jacobsthal Polynomials $J_n(y)$
1	2	1	Jacobsthal Numbers J_n

Corollary 3. Let U_n be the $n \times n$ lower triangular Toeplitz matrix as

$$U_{n} = [u_{i,j}] = \begin{cases} \left[\sum_{m=0}^{\lfloor i-j-1 \rfloor} \binom{i-j}{2m+1} x^{i-j-2m} (x^{2}-1)^{m}, & for \ i-j > 0, \\ 1, & for \ i-j = 0, \\ 0, & otherwise. \end{cases}$$

Then

$$(U_n)^{-1} = \begin{cases} 1, & \text{for } i - j = 0, i - j = 2, \\ -2x, & \text{for } i - j = 1, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. It is obvious in the Table 1 that $F_{1,n}(x,y) = U_{n-1}(x)$ and

$$U_n(x) = \sum_{m=0}^{\left\lfloor \frac{i-j}{2} \right\rfloor} {i-j+1 \choose 2m+1} x^{i-j-2m} (x^2-1)^m$$

from the definition of the second kind of Chebyshev polynomials. So using Corollary 2, we obtain the required result.

3. FACTORIZATIONS OF LOWER TRIANGULAR TOEPLITZ MATRIX

The set of all square matrices of order n is denoted by P_n . A matrix $P \in P_n$ of the form

$$P = \begin{bmatrix} P_{11} & 0 & \cdots & 0 \\ 0 & P_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & P_{kk} \end{bmatrix}$$

in which $P_{ii} \in P_{n_i}$, $i \in \{1, 2, ..., k\}$, and $\sum_{k=1}^n n_i = n$, is called block diagonal. Notationally, such a matrix is often indicated as $P = P_{11} \oplus P_{22} \oplus \cdots \oplus P_{kk}$; this is called the direct sum of the matrices $P_{11}, P_{22}, \cdots, P_{kk}$.

In [9], Lee *et al.* gave the factorization of Fibonacci matrix. Now we consider the factorization of lower triangular Toeplitz matrix. We define the matrices C_n and $\widetilde{T_n}$ by

$$C_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ -F_{k,1}(t) & & & \\ \vdots & & I_{n+2} \\ -F_{k,n+2}(t) & & \end{bmatrix} \text{ and } \widetilde{T_{n}} = [1] \oplus T_{n}.$$
 (3.1)

Theorem 2. Let T_n be the $n \times n$ lower triangular Toeplitz matrix in (1.1) and matrices C_n , $\widetilde{T_n}$ defined in (3.1). Then $(\widetilde{T_{k-1}})(C_{k-3}) = T_n$ for $k \ge 3$.

Proof. For k = 3, we have $(\widetilde{T}_2)(C_0) = T_3$. Letting k > 3 and applying the definition of generalized Fibonacci polynomials, the proof complete.

Theorem 3. Let T_n be the $n \times n$ lower triangular Toeplitz matrix in (1.1), the matrix C_n defined in (3.1) and I_n be the $n \times n$ identity matrix. Then $T_n = (I_{n-2} \oplus (C_{-1})) \dots (I_1 \oplus (C_{n-4}))(C_{n-3})$.

Proof. The proof is an immediate consequence of Theorem 2. \Box

Example 3. We obtain the factorization of the matrix T_5 using Theorem 3;

$$T_5 = (I_3 \oplus C_{-1})(I_2 \oplus C_0)(I_1 \oplus C_1)C_2,$$

i.e.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -t_1 & 1 & 0 & 0 & 0 \\ -t_2 & -t_1 & 1 & 0 & 0 \\ -t_3 & -t_2 & -t_1 & 1 & 0 \\ -t_4 & -t_3 & -t_2 & -t_1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -t_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -t_1 & 1 & 0 & 0 \\ 0 & 0 & -(t_1^2 + t_2) & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & -(t_1^2 + t_2) & 0 & 1 & 0 \\ 0 & -(t_1^2 + t_2) & 0 & 1 & 0 \\ 0 & -(t_1^2 + t_2) & 0 & 1 & 0 \\ 0 & -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 1 & 0 & 0 \\ -(t_1^2 + t_2) & 0 & 0 & 0 & 1 \end{bmatrix}.$$

If that C , the the $(t_1 + 2) \times (t_1 + 2)$ Hassenthere matrix in 2.1.

Lemma 1. Let C_n be the $(n+3) \times (n+3)$ Hessenberg matrix in 3.1, then

$$(C_n)^{-1} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ F_{k,1}(t) & & & \\ \vdots & & I_{n+2} \\ F_{k,n+2}(t) & & & \end{bmatrix}$$

Proof. The proof is obvious from the matrix product.

Corollary 4. Let T_n be the $n \times n$ lower triangular Toeplitz matrix in (1.1), the matrix C_n defined in (3.1) and I_n be the $n \times n$ identity matrix. Then $(T_n)^{-1} = (C_{n-3})^{-1}(I_1 \oplus (C_{n-4}))^{-1} \dots (I_{n-2} \oplus (C_{-1}))^{-1}$.

Proof. The proof follows by a simple calculation using the previous lemma and the equation $(I_k \oplus (C_{n-k-3}))^{-1} = I_k \oplus (C_{n-k-3})^{-1}$.

4. A NEW PROOF OF TRUDI'S FORMULA

Merca [15] gave a proof of the Trudi's formula. We give a different proof of this identity using our results.

Theorem 4 (Trudi's formula [15]). Let m be a positive integer. Then

$$\det \begin{bmatrix} a_1 & a_0 & \cdots & 0 \\ a_2 & a_1 & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{m-1} & a_{m-2} & \cdots & a_1 & a_0 \\ a_m & a_{m-1} & \cdots & a_2 & a_1 \end{bmatrix}$$

$$= \sum_{(k_1, k_2, \dots, k_m)} \binom{k_1 + \dots + k_m}{k_1, \dots, k_m} (-a_0)^{m-k_1 - \dots - k_m} a_1^{k_1} a_2^{k_2} \cdots a_m^{k_m}$$

where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + mt_m = m$.

Proof. Using the properties of determinants of Hessenberg matrices, we can write

$$\det\begin{bmatrix} a_1 & a_0 & 0 & 0 \\ a_2 & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_0 \\ a_m & \cdots & a_2 & a_1 \end{bmatrix}$$

$$= \det\begin{bmatrix} a_1 & -1 & 0 & \cdots & 0 \\ -a_0 a_2 & a_1 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ (-1)^{m-2} a_0^{m-2} a_{m-1} & (-1)^{m-3} a_0^{m-3} a_{m-2} & \ddots & a_1 & -1 \\ (-1)^{m-1} a_0^{m-1} a_m & (-1)^{m-2} a_0^{m-2} a_{m-1} & -a_0 a_2 & a_1 \end{bmatrix}.$$

And if we take

$$t_1 = a_1, t_2 = -a_0 a_2, ..., t_m = (-1)^{m-1} a_0^{m-1} a_m$$

in equation 1.3 and Corollary 1, we obtain

$$\det \begin{bmatrix} a_1 & -1 & 0 & \cdots & 0 \\ -a_0a_2 & a_1 & -1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ (-1)^{m-2}a_0^{m-2}a_{m-1} & (-1)^{m-3}a_0^{m-3}a_{m-2} & \ddots & a_1 & -1 \\ (-1)^{m-1}a_0^{m-1}a_m & (-1)^{m-2}a_0^{m-2}a_{m-1} & -a_0a_2 & a_1 \end{bmatrix}$$

$$= \sum_{(k_1,k_2,\dots,k_m)} \binom{k_1+\dots+k_m}{k_1,\dots,k_m} a_1^{k_1}(-a_0a_2)^{k_2}\dots((-a_0)^{m-1}a_m)^{k_m}$$

Finally, when we make the necessary calculations, equation

$$\sum_{(k_1,k_2,\dots,k_m)} {k_1 + \dots + k_m \choose k_1,\dots,k_m} a_1^{k_1} (-a_0 a_2)^{k_2} \dots ((-a_0)^{m-1} a_m)^{k_m}$$

$$= \sum_{(k_1,k_2,\dots,k_m)} {k_1 + \dots + k_m \choose k_1,\dots,k_m} (-a_0)^{m-k_1-\dots-k_m} a_1^{k_1} a_2^{k_2} \dots a_m^{k_m}$$

is obtained. \Box

ACKNOWLEDGEMENT

The authors express their sincere gratitude to the referee for valuable suggestions concerning improvement of the paper.

REFERENCES

- [1] S. Belhaj and M. Dridi, "A note on computing the inverse of a triangular Toeplitz matrix." *Appl. Math. Comput.*, vol. 236, pp. 512–523, 2014.
- [2] R. Brawer and M. Pirovino, "The linear algebra of the Pascal matrix." *Linear Algebra Appl.*, vol. 174, pp. 13–23, 1992.
- [3] D. Commenges and M. Monsion, "Fast inversion of triangular Toeplitz matrices." *IEEE Trans. Automat. Control*, vol. AC-29, pp. 250–251, 1984.
- [4] I. Gohberg and A. Semencul, "The inversion of finite Toeplitz matrices and their continual analogues." *Mat. Issled.*, vol. 7, pp. 201–223, 1972.
- [5] M. Gutknecht and M. Hochbruck, "The stability of inversion formulas for Toeplitz matrices." *Linear Algebra Appl.*, vol. 223-224, pp. 307–324, 1995.
- [6] E. Kılıc and D. Tasci, "The linear algebra of the Pell matrix." *Bol. Soc. Mat. Mexicana*, vol. 11, no. 3, pp. 163–174, 2005.
- [7] G. Labahn and T. Shalom, "Inversion of Toeplitz matrices with only two standard equations." *Linear Algebra Appl.*, vol. 175, pp. 143–158, 1992.
- [8] G. Y. Lee and J. S. Kim, "The linear algebra of the k-Fibonacci matrix." *Linear Algebra Appl.*, vol. 373, pp. 75–87, 2003.

- [9] G. Lee, J. Kim, and S. Lee, "Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices." *Fibonacci Quart.*, vol. 40, no. 3, pp. 203–211, 2002.
- [10] H. Li and T. MacHenry, "Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences." *Journal of Integer Sequences*, vol. 16, p. 13.3.5., 2013.
- [11] F.-R. Lin, W. Ching, and M. Ng, "Fast inversion of triangular Toeplitz matrices." *Theor. Comput. Sci.*, vol. 315, pp. 511–523, 2014.
- [12] T. MacHenry, "A Subgroup of the Group of Units in the Ring of Arithmetic Functions." Rocky Mountain J. Math., vol. 29, no. 3, pp. 1055–1065, 1999.
- [13] T. MacHenry, "Generalized Fibonacci and Lucas Polynomials and Multiplicative Arithmetic Functions." Fibonacci Quart., vol. 38, pp. 17–24, 2000.
- [14] T. MacHenry and K. Wong, "Degree k Linear Recursions mod(p) and Number Fields." Rocky Mountain J. Math., vol. 41, no. 4, pp. 1303–1327, 2011.
- [15] M. Merca, "A note on the determinant of a Toeplitz-Hessenberg matrix." *Special Matrices*, vol. 1, pp. 10–16, 2013, doi: DOI: 10.2478/spma-2013-0003.
- [16] M. Merca, "A generalization of the symmetry between complete and elementary symmetric functions," *Indian J. Pure Appl. Math.*, vol. 45, no. 1, pp. 75–89, 2014.
- [17] V. Pan, Structured Matrices and Polynomials, Unified Superfast Algorithms. New York: Springer, 2001.
- [18] W. F. Trench, "An algorithm for the inversion of finite Toeplitz matrices." J. SIAM, vol. 12, pp. 515–522, 1964.
- [19] W. F. Trench, "Inverses of lower triangular Toeplitz matrices.", pp. 1-2, 2009.
- [20] N. Tuglu, E. Kocer, and A. Stakhov, "Bivariate fibonacci like p-polynomials." Appl. Math. Comput., vol. 217, pp. 10239–10246, 2011, doi: doi:10.1016/j.amc.2011.05.022.
- [21] Y. Wei and H. Diao, "On group inverse of singular Toeplitz matrices." *Linear Algebra Appl.*, vol. 399, pp. 109–123, 2005.

Author's address

Adem Şahin

Gaziosmanpaşa University, Faculty of Education, 60250, Tokat, Turkey

E-mail address: adem.sahin@gop.edu.tr, hessenberg.sahin@gmail.com