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BOUNDS FOR THE ARITHMETIC MEAN IN TERMS OF THE
TOADER MEAN AND OTHER BIVARIATE MEANS
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Abstract. We find the greatest values ˛1 and ˛2, and the least values ˇ1 and ˇ2, such that
the double inequalities ˛1T .a;b/C .1�˛1/H.a;b/ < A.a;b/ < ˇ1T .a;b/C .1�ˇ1/H.a;b/
and ˛2T .a;b/C .1�˛2/H.a;b/ < A.a;b/ < ˇ2T .a;b/C .1�ˇ2/H.a;b/ hold for all a;b >
0 with a ¤ b. Here, H.a;b/ D

p
2ab=

p
a2Cb2, H.a;b/ D 2ab=.aC b/, A.a;b/ D .aC

b/=2, and T .a;b/D 2
�

�=2R
0

p
a2cos2 �Cb2sin2 �d� denote the harmonic root-square, harmonic,

arithmetic and Toader means of a and b, respectively.
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1. INTRODUCTION

In [16], Toader introduced the Toader mean T .a;b/ of two positive numbers a and
b as follows:

T .a;b/D
2

�

Z �=2

0

p
a2 cos2 �Cb2 sin2 �d�

D

8<: 2aE.
p
1� .b=a/2/=�; a > b;

2bE.
p
1� .a=b/2/=�; a < b;

a; aD b:

(1.1)

where E D E.r/ D
R �=2
0 .1� r2 sin2 �/1=2d�.r 2 Œ0;1�/ is the complete elliptic in-

tegral of the second kind.
Recently, the Toader mean has been the object of intensive research. In particu-

lar, many remarkable inequalities for the Toader mean T .a;b/ can be found in the
literatures [9–12, 14–16]
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Let H.a;b/ D
p
2ab=

p
a2Cb2;H.a;b/ D 2ab=.a C b/;G.a;b/ D

p
ab;

A.a;b/D .aC b/=2;S.a;b/D
p
.a2Cb2/=2;C.a;b/D .a2C b2/=.aC b/ be the

harmonic root-squre, harmonic, geometric, arithmetic, quadratic, and contraharmonic
means of a and b, respectively. Then it is known that the inequalities

H.a;b/ < H.a;b/ < G.a;b/ < A.a;b/ < S.a;b/ < C.a;b/ (1.2)

hold for all a;b > 0 with a¤ b.
For p 2 R;a;b > 0 with a¤ b the power mean Mp.a;b/ is defined by

Mp.a;b/D

( �
apCap

2

�1=p
; p ¤ 0;

p
ab; p D 0:

(1.3)

It is well known that the power mean Mp.a;b/ is continuous and strictly increas-
ing with respect to p. Many means are special case of Mp.a;b/, for example,
M�1.a;b/ D H.a;b/ D 2ab=.a C b/;M0.a;b/ D G.a;b/ D

p
ab;M1.a;b/ D

A.a;b/D .aCb/=2;M2.a;b/D S.a;b/D
p
.a2Cb2/=2.

Vuorinen [17] conjectured that

M3=2.a;b/ < T .a;b/ (1.4)

for all a;b > 0 with a ¤ b. This conjecture was solved by Qiu and Shen[14], and
Barnard, Pearce and Richards in [6], respectively.

In [1], Alzer and Qiu presented that

T .a;b/ <Mlog2= log.�=2/.a;b/ (1.5)

for all a;b > 0 with a¤ b, which gives a best possible upper bound for Toader mean
in terms of the power mean.

From (1.4) and (1.5) one concludes that

A.a;b/ < T .a;b/ < S.a;b/ (1.6)

for all a;b > 0 with a¤ b.
In [11], the authors demonstrated that the double inequality

˛S.a;b/C .1�˛/A.a;b/ < T .a;b/ < ˇS.a;b/C .1�ˇ/A.a;b/ (1.7)

holds for all a;b > 0 with a¤ b if and only if ˛ � 1
2

and ˇ � 4��

.
p
2�1/�

.
In [15], the authors proved that the double inequalities

˛1C.a;b/C .1�˛1/A.a;b/ < T .a;b/ < ˇ1C.a;b/C .1�ˇ1/A.a;b/;

˛2

A.a;b/
C
1�˛2

C.a;b/
<

1

T .a;b/
<

ˇ2

A.a;b/
C
1�ˇ2

C.a;b/
(1.8)

hold for all a;b > 0 with a ¤ b if and only if ˛1 � 1=4;ˇ1 � 4=� � 1 and ˛2 �
�=2�1;ˇ2 � 3=4.
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The main purpose of this paper is to find the greatest values ˛1;˛2 and the least
values ˇ1;ˇ2 in .0;1/ such that the double inequalities

˛1T .a;b/C .1�˛1/H.a;b/ < A.a;b/ < ˇ1T .a;b/C .1�ˇ1/H.a;b/;

˛2T .a;b/C .1�˛2/H.a;b/ < A.a;b/ < ˇ2T .a;b/C .1�ˇ2/H.a;b/;

hold for all a;b > 0 with a¤ b.
As an application, we get a new lower bound for the complete elliptic integral of

the second kind in terms of elementary functions, which improves some well-known
results.

2. PRELIMINARIES AND LEMMAS

In order to establish our main result we need several lemmas, which we present in
this section.

For 0 < r < 1 and r 0 D
p
1� r2 Legendre’s complete elliptic integrals of the first

and second kinds [7, 8] are defined by8<: K DK.r/D
R �=2
0 .1� r2 sin2 �/�1=2d�;

K 0 DK 0.r/DK.r 0/;

K.0/D �=2; K.1/D1

and 8<: E D E.r/D
R �=2
0 .1� r2 sin2 �/1=2d�;

E 0 D E 0.r/D E.r 0/;

E.0/D �=2; E.1/D 1;

respectively.
For 0 < r < 1, the following formulas were presented in [4, Appendix E, pp. 474-

475]:

dK

dr
D

E � r 0
2
K

rr 02
;

dE

dr
D

E �K

r
;

d.E � r 0
2
K/

dr
D rK;

d.K �E/

dr
D
rE

r 02
;

E

�
2
p
r

1C r

�
D
2E � r 02K

1C r
: (2.1)

The following lemma can be found in [4, Theorem 3.21 (1)].

Lemma 1. .E � r 02K/=r2 is strictly increasing from .0;1/ onto .�=4;1/.
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Lemma 2 (Theorem 1.25 in [4]). For �1 < a < b <1, let f;g W Œa;b�! R
be continuous on Œa;b�, and be differentiable on .a;b/, let g0.x/ ¤ 0 on .a;b/. If
f 0.x/=g0.x/ is increasing (decreasing) on .a;b/, then so are

f .x/�f .a/

g.x/�g.a/
and

f .x/�f .b/

g.x/�g.b/
:

If f 0.x/=g0.x/ is strictly monotone, then the monotonicity in the conclusion is also
strict.

3. MAIN RESULTS

Now we are in a position to state and prove our main results.

Theorem 1. The double inequality

˛1T .a;b/C .1�˛1/H.a;b/ < A.a;b/ < ˇ1T .a;b/C .1�ˇ1/H.a;b/ (3.1)

holds for all a;b > 0 with a¤ b if and only if ˛1 � �
4

and ˇ1 � 4
5

.

Proof. Without loss of generality, we assume that a > b. Let t D b=a 2 .0;1/ and
r D 1�t

1Ct
, then

A.a;b/�H.a;b/

T .a;b/�H.a;b/
D

1Ct
2
�

2t
1Ct

2
�

E 0.t/� 2t
1Ct

D

1
1Cr
� .1� r/

2
�

E
�
2
p
r

1Cr

�
� .1� r/

D
r2

2
�
.2E � r 02K/�1C r2

: (3.2)

Let f1.r/D r2;f2.r/D 2
�
.2E � r 02K/�1C r2; and

f .r/D
f1.r/

f2.r/
D

r2

2
�
.2E � r 02K/�1C r2

: (3.3)

Then simple computations lead to

f1.0/D f2.0/D 0; (3.4)

f 01.r/D 2r; (3.5)

f 02.r/D
2

�

E � r 02K

r
C2r; (3.6)

f 01.r/

f 02.r/
D

1

1
�

E�r 02K
r2

C1
: (3.7)
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It follows from (3.7) with Lemma 1 and Lemma 2 that f .r/ is strictly decreasing in
.0;1/. Moreover, using L’Hôpital’s rule we get

lim
x!0C

f .x/D
4

5
; (3.8)

and

lim
x!1�

f .x/D
�

4
: (3.9)

Therefore, Theorem 1 follows from (3.8) and (3.9) together with the monotonicity of
f .r/. �

From Theorem1 we get a new bound for the complete elliptic integral E.r/ of the
second kind in terms of elementary functions as follows.

Corollary 1. For r 2 .0;1/ and r 0 D
p
1� r2, we have

�

2

�
5

8
.1C r 0/�

r 0

2.1C r 0/

�
< E.r/ <

�

2

�
2.1C r 0/

�
� .1�

4

�
/
2r 0

1C r 0

�
: (3.10)

Proof. Without loss of generality, assume that a > b. Substituting r 0 D b
a
;˛1 D

�
4
;ˇ1 D

4
5

into Theorem 1 produces Corollary 1. �

Theorem 2. The double inequality

˛2T .a;b/C .1�˛2/H.a;b/ < A.a;b/ < ˇ2T .a;b/C .1�ˇ2/H.a;b/; (3.11)

holds for all a;b > 0 with a¤ b if and only if ˛2 � �
4

and ˇ2 � 6
7

.

Proof. Without loss of generality, we assume that a > b. Let t D b=a 2 .0;1/ and
r D 1�t

1Ct
, then

A.a;b/�H.a;b/

T .a;b/�H.a;b/
D

1Ct
2
�

p
2t

p
1Ct2

�
2

E 0.t/�
p
2t

p
1Ct2

D

1
1Cr
�

1�rp
1Cr2

2
�

E
�
2
p
r

1Cr

�
�

1�rp
1Cr2

D

1� 1�r2p
1Cr2

2
�
.2E � r 02K/� 1�r2p

1Cr2

(3.12)

Let g1.r/D 1� 1�r2p
1Cr2

; g2.r/D
2
�
.2E � r 02K/� 1�r2p

1Cr2
and

g.r/D
g1.r/

g2.r/
D

1� 1�r2p
1Cr2

2
�
.2E � r 02K/� 1�r2p

1Cr2

: (3.13)
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Simple calculations show that

g1.0/D g2.0/D 0; (3.14)

g01.r/D
r.r2C3/

.1C r2/3=2
; (3.15)

g02.r/D
2

�

E � r 02K

r
C

r.r2C3/

.1C r2/3=2
; (3.16)

g01.r/

g02.r/
D

.r2C3/

.1Cr2/3=2

2
�

E�r 02K
r2

C
.r2C3/

.1Cr2/3=2

D
1

2
�

E�r02K

r2

.r2C3/

.1Cr2/3=2

C1

: (3.17)

It is easy to verify that the function .r2C3/

.1Cr2/3=2
is positive and strictly decreasing in

.0;1/, then (3.17) and Lemma 1 lead to the conclusion that g
0
1.r/

g 02.r/
is strictly decreasing

in .0;1/. Hence, g.r/ is strictly decreasing directly from Lemma 2. Moreover, the
usage of L’Hôpital’s rule and standard argument show that

lim
x!0C

g.x/D
6

7
; (3.18)

and

lim
x!1�

g.x/D
�

4
: (3.19)

Thus, Theorem 2 follows from (3.18) and (3.19) together with the monotonicity of
g.r/.

�

4. COMPARISON WITH SOME WELL-KNOWN RESULTS

Recently, the complete elliptic integrals have attracted the attention of numerous
mathematicians. In particular, many remarkable properties and inequalities for the
complete elliptic integrals can be found in the literature [1–3, 5, 11, 13, 18–21].

In [11], the authors obtained that

�

2

"
1

2

r
1C r 02

2
C
1C r 0

4

#
< E.r/ <

�

2

"
.

4��

.
p
2�1/�

r
1C r 02

2
C
.
p
2� �4/.1C r 0/

2.
p
2�1/�

#
;

(4.1)

for all r 2 .0;1/ and r 0 D
p
1� r2.

Guo and Qi [13] proved that

�

2
�
1

2
log

.1C r/1�r

.1� r/1Cr
< E.r/ <

� �1

2
C
1� r2

4r
log

1C r

1� r
; (4.2)

for all r 2 .0;1/.



BOUNDS FOR THE ARITHMETIC MEAN IN TERMS OF THE TOADER MEAN 209

It was pointed out in [11] that the bounds in (4.1) for E.r/ are better than that in
(4.2) for some r 2 .0;1/.

Let g.x/D 5
8
.1Cx/� x

2.1Cx/
�

�
1
2

q
1Cx2

2
C
1Cx
4

�
;x 2 .0;1/. Then simple com-

putations lead to

g.x/D
3x2C2xC3�2

p
2.1Cx2/.1Cx/

8.1Cx/
: (4.3)

Since �
3x2C2xC3

�2
�

�
2

q
2.1Cx2/.1Cx/

�2
D .1�x/4 > 0;

we clearly see that g.x/ > 0, which shows that the lower bounds in (3.10) for E.r/ is
better than the one in (4.1).

Very recently, Yin and Qi obtained in [20] that

�

2

p
6C2

p
1� r2 �3r2

2
p
2

� E.r/�
�

2

p
10�2

p
1� r2 �5r2

2
p
2

: (4.4)

Since
5

8
.1Cx/�

x

2.1Cx/
>

p
6C2x�3.1�x2/

2
p
2

is equivalent to �
5x2C6xC5

�2
> 8.xC1/2

�
3x2C2xC3

�
and .x�1/4 > 0, the lower bound in (3.10) for E.r/ is better than the one in (4.4).
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