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Abstract. We define the nilpotency index of the [-variables in second order matrix algebras with
Grassmann entries and involution [. Identities of minimal degree are found for a concrete subal-
gebra of the matrix algebra M4.K/. When it has an involution � as well some of its �-identities
are given. For an analogue of this subalgebra over finite dimensional Grassmann algebras a new
involution .[/ is introduced and its .[/-identities are discussed.
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1. INTRODUCTION

The classical PI-theory (the theory of the polynomial identities) has its develop-
ment for algebras with involution as well. The contributions of Amitsur [1], Levchenko
[9], Rowen [14], Wenxin and Racine [17], Giambruno and Valenti [6], Drensky and
Giambruno [5], Rashkova [11], La Mattina and Misso [8] are only a part of it.

In 1973 Krasovski and Regev [7] described completely the T -ideal of the identities
of the Grassmann algebra E and it was a natural step to investigate the PI-structure
of algebras not only over fields (with any characteristic) but over algebras as well,
especially Grassmann algebras [4, 12, 16].

In the paper we consider mainly finite dimensional Grassmann algebras and spe-
cial matrix algebras over them.

We recall the definition of the Grassmann algebra E as:

E DKhe1; e2; :::jeiej C ej ei D 0; i;j D 1;2; :::i;

where K is a field of characteristic zero.
We cite basic propositions from [3,7]. The notation Œx;y;´�D ŒŒx;y�;´�D Œx;y�´�

´Œx;y� will be used.
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Proposition 1 ([7, Corollary, p. 437]). The T - ideal of the Grassmann algebra E
is generated by the identity Œx;y;´�D 0.

Proposition 2 ([3, Lemma 6.1]). For any n;k � 2 in the algebra E the identity
Skn .x1; :::;xn/D 0 holds, where

Sn.x1; :::;xn/D
X

�2Sym.n/

.�1/�x�.1/:::x�.n/

is the n-th standard polynomial.

Proposition 3 ([3, Lemma 6.6]). The matrix algebra Mn.E/ does not satisfy the
identity

Snm.x1; :::;xm/D 0

for any m.

There are subalgebras ofMn.E/ however being counter examples of Proposition 3
for concrete m.

We use the notation E
0

n for a non unitary Grassmann algebra with generators
e1; :::; en.

The existence of nilpotent elements of minimal nilpotency index both in finite
dimensional Grassmann algebras and in matrix algebras over them was investigated
in [12, 13]. We state some of the results needed:

Proposition 4 ([13, Proposition 13]). The identity x3 D 0 holds for the algebra
E

0

4.

Proposition 5 ([13, Proposition 16]). The algebra M2.E
0

4/ satisfies the identity
X4 D 0.

In [13] examples were given as well of subalgebras Ai; i D 1;2 ofMn.R/ such that
the identities x4 D 0 and Œx;y;´�D 0 in R imply the identity X4 D 0 in Ai; i D 1;2.

An involution  on the Grassmann algebras E
0

2 and E
0

3 defines an involution � on
the corresponding 2� 2 matrix algebra over any of them. In that case the classes of
symmetric and of skew-symmetric to the involution � matrices of nilpotency indices
2 and 3 were described in [12].

In the present paper we continue the investigations started in [12]:
We define the nilpotency index of the [-variables in the considered algebras with

involution � D [.
For a concrete subalgebra of the matrix algebra M4.K/ identities of minimal de-

gree are found. When additionally the algebra has an involution � some of its �-
identities are given.

For an analogue of this subalgebra over finite dimensional Grassmann algebras a
new involution � D .[/ is introduced and some .[/-identities are discussed.
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2. RESULTS

2.1. PI-properties of involution second order matrix algebras with Grassmann
entries

We recall the definition of an involution on an algebra R: it is a second order
antiautomorphism  such that  .ab/D  .b/ .a/ for all a; b 2R.

ByR� we denote the skew-symmetric due to the involution elements ofR, namely
´1; ::;´i ; ::: and by RC we denote the symmetric due to the involution elements
y1; ::;yj ; :::. It is important to consider  -variables (symmetric and skew-symmetric)
as the elements of RC form a Jordan algebra due to the multiplication y1 ı y2 D
y1y2Cy2y1 and the elements ofR� form a Lie algebra due to the operation Œ´1;´2�.

Definition 1. Let f D f .x1; :::;xm/ 2 Khx1; :::;xni, the free associative algebra
on n generators over K. We say that f is a  -identity in skew variables for the
algebra R over K if f .´1; :::;´m/ D 0 for all ´1; :::;´m 2 R�. Accordingly f is a
 -identity in symmetric variables for the algebra R over K if f .y1; :::;ym/D 0 for
all y1; :::;ym 2RC.

We say that f is a  -identity if f .´1; :::;´i ;yiC1; :::;ym/D 0 for any ´1; :::;´i 2
R� and any yiC1; :::;ym 2RC.

We denote an involution on the basic field or algebra as  while � will mean an
involution on the corresponding matrix algebra.

If a ring R has an involution  D � two involutions �1 D ] and �2 D [ on M2.R/

are defined as follows [15]:�
a b

c d

�]
D

�
a� c�

b� d�

�
;

�
a b

c d

�[
D

�
d� b�

c� a�

�
:

It is known [2] that two involutions play an important role in the Grassmann
algebra: the involution  1 acting on the generators ei of E as  1.e2k/ D e2k�1,
 1.e2k�1/D e2k and the trivial on the generators involution  2 for which  2.ei /D
ei for all ei .

Here we consider the algebra .M2.E
0

4; 2/;[/ and continue some of the investiga-
tions made in [12] by finding the nilpotency index of the [-variables of .M2.E

0

4; 2/;[/.

Theorem 1. The algebra .M2.E
0

4; 2/;[/ satisfies the [-identity Y 4 D 0 in [-
symmetric variables and the [-identity Z3 D 0 in [-skew symmetric variables.

Proof of Theorem 1. As Proposition 5 holds we have to prove only that Z3 D 0 in
[-skew symmetric variables.

Let Z D
�
y1 ´1
´2 y2

�
. The condition �2.Z/ D �Z means that  2.´1/ D �´1,

 2.´2/D�´2,  2.y1/D�y2 and  2.y2/D�y1. Thus we get that

´1 D ˛5e1e2C˛6e1e3C˛7e1e4C˛8e2e3C˛9e2e4C˛10e3e4



1108 TSETSKA RASHKOVA

C˛11e1e2e3C˛12e1e2e4C˛13e1e3e4C˛14e2e3e4I

´2 D ˇ5e1e2Cˇ6e1e3Cˇ7e1e4Cˇ8e2e3Cˇ9e2e4Cˇ10e3e4

Cˇ11e1e2e3Cˇ12e1e2e4Cˇ13e1e3e4Cˇ14e2e3e4I

y1 D 
1e1C
2e2C
3e3C
4e4

C
5e1e2C
6e1e3C
7e1e4C
8e2e3C
9e2e4C
10e3e4

C
11e1e2e3C
12e1e2e4C
13e1e3e4C
14e2e3e4C
15e1e2e3e4I

y2 D�
1e1�
2e2�
3e3�
4e4

C
5e1e2C
6e1e3C
7e1e4C
8e2e3C
9e2e4C
10e3e4

C
11e1e2e3C
12e1e2e4C
13e1e3e4C
14e2e3e4�
15e1e2e3e4:

As in ´i j́ the least degree of the summands is 4 we have x j́´k D 0, j́x´k D 0,
j́´kx D 0 for any entry x of the matrix Z. As the least degree of the summands in
yi j́ is 3 we get that yi j́´k D 0. The least degree in y2i is 3 and we have y2i j́ D 0

and ´iy2j D 0 as well. Thus for the matrix Z3 D .aij / we get a11 D a22 D 0, a12 D
y1´1y2 and a21 D y2´2y1.

We consider the four summands of degree 3 (the minimal one) in y1´1:

˛e1e2e3 ! ˛ D 
1˛8�
2˛6C
3˛5
ˇe1e2e3 ! ˇ D 
1˛9�
2˛7C
4˛5

e1e2e3 ! 
 D 
1˛10�
3˛7C
4˛6
ıe1e2e3 ! ı D 
2˛10�
3˛9C
4˛8:

Now we define the coefficient of the only summand (of degree 4) in a12D y1´1y2.
It is equal to

�
4.
1˛8�
2˛6C
3˛5/C
3.
1˛9�
2˛7C
4˛5/

�
2.
1˛10�
3˛7C
4˛6/C
1.
2˛10�
3˛9C
4˛8/� 0:

The same is valid for a21 D y2´2y1 as well. Thus Z3 is the zero matrix. �

If we change the involution  2, considered in E
0

4, with the involution  1, the
[-variables of .M2.E

0

4; 1/;[/ do not have a lower nilpotency index, namely

Theorem 2. The algebra .M2.E
0

4; 1/;[/ satisfies the [-identity A4 D 0 for A
being any [-variable.

Proof of Theorem 2. We mach only the crucial steps of the proof.
In this case  1.e1/D e2 . 1.e2/D e1/ and  1.e3/D e4 . 1.e4/D e3/.
We have to consider only the case when A D Z is a [-skew symmetric variable.

The conditions  1.´i /D�´i and  1.y1/D�y2 give that

´1 D ˛1.e1� e2/C˛3.e3� e4/C˛6.e1e3C e2e4/C˛7.e1e4C e2e3/

C˛11.e1e2e3� e1e2e4/C˛13.e1e3e4� e2e3e4/I

´2 D ˇ1.e1� e2/Cˇ3.e3� e4/Cˇ6.e1e3C e2e4/Cˇ7.e1e4C e2e3/
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Cˇ11.e1e2e3� e1e2e4/Cˇ13.e1e3e4� e2e3e4/I

y1 D 
1e1C
2e2C
3e3C
4e4

C
5e1e2C
6e1e3C
7e1e4C
8e2e3C
9e2e4C
10e3e4

C
11e1e2e3C
12e1e2e4C
13e1e3e4C
14e2e3e4I

y2 D�
2e1�
1e2�
4e3�
3e4

�
5e1e2C
9e1e3C
8e1e4C
7e2e3C
6e2e4�
10e3e4

�
12e1e2e3�
11e1e2e4�
14e1e3e4�
13e2e3e4:

We follow the coefficient of e1e2e3 in the entry a11D ´1´2y1Cy1´1´2C´1y2´2
of the matrix Z3 D .aij /. Forming ´1´2 we find the coefficient of e1e2e3 in the
product y1.´1´2/, namely �.
1C
2/.˛1ˇ3�˛3ˇ1/.

The same holds for the coefficient of e1e2e3 in the products ´1´2y1 and in ´1y2´2.
Thus Z3 is not a zero matrix.

Taking into account the conditions on the entries of a [-symmetric matrix Y we
see that the coefficient of e1e2e3 in the entry b11 of the matrix Y 3 D .bij / is 3.
1�

2/.˛1ˇ3�˛3ˇ1/. �

2.2. PI-properties of some fourth order matrix algebras

We define the 8-th dimensional matrix algebra AM4.K/ as the algebra of the
matrices of type0BB@
a11 0 a13 0

0 a22 0 a24
a31 0 a33 0

0 a42 0 a44

1CCA ; aij 2K. The following theorem holds:

Theorem 3. The algebra AM4.K/ satisfies the Hall identity ŒŒX1;X2�2;X3�D 0.

Proof of Theorem 3. For X1;X2 2 AM4.K/ in ŒX1;X2� D .cij / we have c33 D
�c11 and c44D�c22. The matrix ŒX1;X2�2D .dij / is a diagonal matrix with d33D
d11 and d44 D d22. Thus ŒŒX1;X2�2;X3�D 0. �

By the system for computer algebra Mathematica we see that AM4.K/ satisfies
the identity S4.X1;X2;X3;X4/D 0 as well.

The n-th analogue of AM4.K/ is the algebra AM2n.K/. Its elements are of type
.aij / with non-zero entries only among ai i for i D 1; :::;2n, aj;nCj and anCj;j for
j D 1; :::;n. The two identities in AM4.K/ hold in AM2n.K/ as well.

It is known that in a matrix algebra over a field K of characteristic zero up to iso-
morphism there are two types of involutions - the transpose one t and the symplectic
involution �, the latter defined on an even 2k order matrix algebra as�

A B

C D

��
D

�
D �B t

�C t A

�
;
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where A;B;C;D are k�k matrices.
We recall that the Hall identity ŒŒY1;Y2�2;Y3�D 0 is a �-identity of minimal degree

in �-symmetric variables for the algebra .M4.K/;�/ [5].
Next we consider the matrix algebra AM4.K/ with the symplectic involution �.

Theorem 4. The algebra .AM4.K/;�/ satisfies the �-identity ŒY1;Y2�D 0 in �-
symmetric variables.

Proof of Theorem 4. From0BB@
a11 0 a13 0

0 a22 0 a24
a31 0 a33 0

0 a42 0 a44

1CCA
�

D

0BB@
a33 0 �a13 0

0 a44 0 �a24
�a31 0 a11 0

0 �a42 0 a22

1CCAD
0BB@
a11 0 a13 0

0 a22 0 a24
a31 0 a33 0

0 a42 0 a44

1CCA
we see that the �-symmetric elements of .AM4.K/;�/ are diagonal matrices. �

As ´2 is �-symmetric we come to

Corollary 1. The algebra .AM4.K/;�/ satisfies the �-identity ŒZ21 ;Z
2
2 � D 0 in

�-skew symmetric variables.

Now the matrix algebras considered will have entries that are elements of a Grass-
mann algebra. In the statements below we use Proposition 4. As it was proved in [13]
using the system for computer algebra Mathematica we give here its analytic proof.

Proof of Proposition 4. Without loss of generality we consider x 2 E
0

4 with sum-
mands of length 1 and 2 only (the other ones will give zeros either in x2 or in x3).
Thus

x D ˛1e1C˛2e2C˛3e3C˛4e4C˛5e1e2C˛6e1e3
C ˛7e1e4C˛8e2e3C˛9e2e4C˛10e3e4:

We define the coefficients of the four summands of length 3 in x2. They are:

˛e1e2e3 7! ˛ D 2.˛1˛8�˛2˛6C˛3˛5/

ˇe1e2e4 7! ˇ D 2.˛1˛9�˛2˛7C˛4˛5/


e1e3e4 7! 
 D 2.˛1˛10�˛3˛7C˛4˛6/

ıe2e3e4 7! ı D 2.˛2˛10�˛3˛9C˛4˛8/:

The coefficient of the only summand (which is of length 4) of x3 is proportional
to

�˛1.˛2˛10�˛3˛9C˛4˛8/C˛2.˛1˛10�˛3˛7C˛4˛6/

�˛3.˛1˛9�˛2˛7C˛4˛5/C˛4.˛1˛8�˛2˛6C˛3˛5/� 0:
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�

The identity Œy;x;x�D 0 and the linearization of x3 D 0 lead to

Corollary 2. In E
0

4 the following identities hold:

x2yCyx2 D 0; xyx D 0; xy´C´yx D 0;

xy2´D�´yxy D 0; y2x´D�´yxy D 0; ´xy2 D�yxy´D 0:

Theorem 5. The algebra AM4.E
0

4/ is a nil algebra with nil index 4.

Proof of Theorem 5. For a matrix A 2 AM4.E
0

4/, where

AD

0BB@
y1 0 ´1 0

0 y2 0 ´2
´3 0 y3 0

0 ´4 0 y4

1CCA
and A3 D .aij / we get

a11 D ´1´3y1Cy1´1´3C´1y3´3;

a13 D y
2
1´1C´1´3´1Cy1´1y3C´1y

2
3 ;

a22 D ´2´4y2Cy2´2´4C´2y4´4;

a24 D y
2
2´2C´2´4´2Cy2´2y4C´4y

2
4 ;

a31 D ´3y
2
1Cy3´3y1C´3´1´3Cy

2
3´3;

a33 D ´3y1´1Cy3´3´1C´3´1y3;

a42 D ´4y
2
2Cy4´4y2C´4´2´4Cy

2
4´4;

a44 D ´2y2´2Cy4´4´1C´4´2y4:

Now we investigate the entries of A4 D .bij /:

b11 D ´1´3y
2
1Cy1´1´3y1C´1y3´3y1Cy

2
1´1´3

C´1´3´1´3Cy1´1y1´3C´1y
2
3´3

Applying Corollary 2 we simplify b11 and get b11 D ´1y3´3y1Cy1´1y3´3. The
identity xy´D�´yx gives

´1y3´3y1 D�´3y1y3´1 D y3´1y1´3 D�y1´1y3´3:

Thus b11 D 0.
In an analogous way we investigate the other entries of A4:

b13 D ´1´3y1´1Cy1´1´3´1C´1y3´3´1Cy
2
1´1y3

C´1´3´1y3Cy1´1y
2
3C´1y

3
3

According to Corollary 2 we have b13 D 0.
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Now we consider

b22 D ´2´4y
2
2Cy2´2´4y2C´2y4´4y2Cy

2
2´2´4

C´2´2´2´4Cy2´2y4´4C´4y
2
4´4:

The same Corollary leads to b22 D ´2y4´4y2Cy2´2y4´4. As

´2y4´4y2 D�´4y2y4´2 D y4´2y2´4 D�y2´2y4´4

we get b22 D 0.
Applying Corollary 2 we get b24 D b31 D 0. In b33 we have to consider only the

part y3´3y1´1C´3y1´1y3. As

y3´3y1´1 D�y1´1´3y3 D ´3´1y1y3 D�y3y1´3´1 D ´1y1´3y3 D�´3y1´1y3

we get b33 D 0.
The identities in Corollary 2 immediately lead to b42 D 0; b44 D 0. Thus A4 D

0. �

Now we consider the subalgebra ASM4.E/ of the matrices of type0BB@
a 0 a 0

0 b 0 b

c 0 c 0

0 d 0 d

1CCA and prove that it is a PI-algebra.

Theorem 6. The algebra ASM4.E/ satisfies the identity U ŒX;Y;Z�D 0.

Proof of Theorem 6. Let X;Y;Z be matrices from ASM4.E/ denoting its entries
by ai ;bi ; ci ;di for i D 1;2;3 respectively. We form the diagonal entries of ŒX;Y �D
.aij /, namely

a11 D Œa1;a2�Ca1c2�a2c1;

a22 D Œb1;b2�Cb1d2�b2d1;

a33 D Œc1; c2�C c1a2� c2a1;

a44 D Œd1;d2�Cd1b2�d2b1:

For the matrix ŒX;Y;Z�D .bij / we have modulo Œx;y;´�D 0 for x;y;´ 2E that

b11Cb33

D Œa1c2�a2c1;a3�C .Œa1;a2�Ca1c2�a2c1/c3�a3.Œc1; c2�C c1a2� c2a1/

C Œc1a2� c2a1; c3�C .Œc1; c2�C c1a2� c2a1/a3� c3.Œa1;a2�Ca1c2�a2c1/

D Œa1c2�a2c1;a3�C .a1c2�a2c1/c3�a3.c1a2� c2a1/

C Œc1a2� c2a1; c3�C .c1a2� c2a1/a3� c3.a1c2�a2c1/

D Œa1c2�a2c1;a3�C Œc1a2� c2a1; c3�C Œa1c2�a2c1; c3�C Œc1a2� c2a1;a3�

D ŒŒa1; c2�C Œc1;a2�;a3�C ŒŒc1;a2�C Œa1; c2�; c3�� 0:
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Analogously we get that b22C b44 D 0. Thus U ŒX;Y;Z� D 0 for any matrix
U 2 ASM4.E/. �

The analogue of ASM4.E/ in the general case is the matrix algebra
ASM2n.E/. Its elements are of type .aij /, where ai i D ai;nCi for i D 1; :::;n and
ajj D aj;j�n for j D nC1; :::;2n. The algebraASM2n.E/ satisfies the same identity
U ŒX;Y;Z�D 0.

For now we are able to find involutions in Mn.E/ for n > 2 only considering an
involution in E. We generalize the case nD 2, namely

Proposition 6. The mapping .[/, defined as0BB@
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1CCA
.[/

D

�
A B

C D

�.[/
D

�
.D/[ .B/[

.C /[ .A/[

�
D

0BB@
a�44 a�34 a�24 a�14
a�43 a�33 a�23 a�13
a�42 a�32 a�22 a�12
a�41 a�31 a�21 a�11

1CCA
is an involution on M4.E; D �/.

Proof of Proposition 6. Considering in details the entries of the two matrices .AB/.[/

and .B/.[/.A/.[/ we see that their corresponding entries are equal i.e. the mapping
.[/ is an involution. �

We cover the following special case: Let E
0

3 be the non-unitary finite dimensional
Grassmann algebra with generators e1; e2; e3 and AM.2/.E

0

3/ be the subalgebra of
AM4.E

0

3/ defined by the matrices of type0BB@
y1 0 ´1 0

0 y2 0 ´2
´3 0 y3 0

0 ´4 0 y4

1CCA ;
where yi are even elements (of even length) ofE

0

3, while ´i are odd elements (of odd
length) of E

0

3, i D 1; :::;4. We equip the algebra AM.2/.E
0

3; 2/ with the involution
.[/ as defined in Proposition 6.

We characterize the .[/-symmetric elements Yi and the .[/-skew symmetric ele-
ments Zj of the algebra .AM.2/.E

0

3; 2/; .[//.

Theorem 7. The algebra .AM.2/.E
0

3; 2/; .[// satisfies the .[/-identity Y 3 D 0
in .[/-symmetric variables.
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Proof of Theorem 7. Let consider a .[/-symmetric element Y . Denoting for short

 2 as � in the equality

0BB@
y�4 0 ´�2 0

0 y3� 0 ´�1
´4� 0 y�2 0

0 ´3� 0 y�1

1CCAD
0BB@
y1 0 ´1 0

0 y2 0 ´2
´3 0 y3 0

0 ´4 0 y4

1CCA we get

the following conditions on the entries of Y :  2.y4/D y1,  2.y3/D y2,  2.´2/D
´1 and  2.´4/D ´3.

Let y1D s1e1e2Cs2e1e3Cs3e2e3. Then y4D 2.y1/D�y1. For y2D t1e1e2C
t2e1e3C t3e2e3 we get y3 D  2.y2/D�y2. Obviously y21 D y

2
2 D 0.

As the entries are from E
0

3 we could work with odd entries having summands of
degree 1 only. Let ´1 D ˛1e1C˛2e2C˛3e3 and ´3 Dm1e1Cm2e2Cm3e3. Then
´2 D  2.´1/D ´1, ´4 D  2.´3/D ´3. Considering Y 3 D Y 2Y D .aij / as0BB@

´1´3 0 y1´1�´1y2 0

0 ´1´3 0 y2´1�´1y1
´3y1�y2´3 0 ´3´1 0

0 ´3y2�y1´3 0 ´3´1

1CCA
0BB@
y1 0 ´1 0

0 y2 0 ´1
´3 0 �y2 0

0 ´3 0 �y1

1CCA
we see that manipulating with the generators e1; e2; e3, probably nontrivial entries
could be only

a13 D a24 D ´1´3´1 D ˇ1e1e2e3; a31 D a42 D ´3´1´3 D ˇ2e1e2e3:

Applying Corollary 2 we get that both of them are zero. �

Theorem 8. The algebra .AM.2/.E
0

3; 2/; .[// satisfies the .[/-identity Z3 D 0
in .[/-skew symmetric variables.

Proof of Theorem 8. Using the same notations for the matrix entries ofZ as in the
previous theorem, in this case we have

y4 D� 2.y1/D y1; y3 D� 2.y2/D y2;

y21 D y
2
2 D 0;

´2 D� 2.´1/D�´1; ´4 D� 2.´3/D�´3:

In Z3 DZ2Z D .bij / nonzero could be only the entries b13 D�b24 D ´1´3´1 and
b31 D�b42 D ´3´1´3. Corollary 2 proves they both are zero. �

We consider the subalgebra .AM.2/.E
0

3; 2/; .[// instead of the algebra
.AM4.E

0

3; 2/; .[// itself as if An D 0 for a [-variable A of .AM4.E
0

4; 2/; .[// we
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have n > 3. Thus the algebras .AM4.E
0

4; 2/; .[// and AM4.E
0

4/ have equal nil
indices.

We give an example of another matrix algebra with involution .[/ having lower
nilpotency index of its .[/-skew symmetric variables:

Let BM.2/.E
0

3/ be the algebra defined by the matrices of type0BB@
y1 0 0 ´1
0 y2 ´2 0

0 ´3 y3 0

´4 0 0 y4

1CCA
, where yi are even elements of E

0

3, while ´i are odd elements of E
0

3, i D 1; :::;4. We
equip the algebra BM.2/.E

0

3; 2/ with the involution .[/ as defined in Proposition 6.

Theorem 9. The algebra .BM.2/.E
0

3; 2/; .[// satisfies the .[/-identity Y 3D 0 in
.[/-symmetric variables and the .[/-identityZ2D 0 in .[/-skew symmetric variables.

Proof of Theorem 9. In the algebra .BM.2/.E
0

3; 2/; .[// any .[/-skew symmetric
variable Z is a diagonal matrix and Z2 D 0 as y2i D 0 for i D 1; :::;4. �

There is a package written in the system for computer algebra Mathematica [10]
for manipulating in finite dimensional Grassmann algebras. Using it a programme
was written by the author giving an alternative way of confirming the validity of the
corresponding theorems in the paper.
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