PI-PROPERTIES OF SOME MATRIX ALGEBRAS WITH INVOLUTION

TSETSKA RASHKOVA

Received 23 September, 2015

Abstract. We define the nilpotency index of the \(b\)-variables in second order matrix algebras with Grassmann entries and involution \(b\). Identities of minimal degree are found for a concrete subalgebra of the matrix algebra \(M_4(K)\). When it has an involution \(\phi\) as well some of its \(\phi\)-identities are given. For an analogue of this subalgebra over finite dimensional Grassmann algebras a new involution \(\langle b\rangle\) is introduced and its \(\langle b\rangle\)-identities are discussed.

2010 Mathematics Subject Classification: 16R10; 15A75; 16R50

Keywords: PI-algebras, matrix algebra over Grassmann algebras, algebras with involution \(\phi\), \(\phi\)-variables, \(\phi\)-identities

1. INTRODUCTION

The classical PI-theory (the theory of the polynomial identities) has its development for algebras with involution as well. The contributions of Amitsur [1], Levchenko [9], Rowen [14], Wenxin and Racine [17], Giambruno and Valenti [6], Drensky and Giambruno [5], Rashkova [11], La Mattina and Misso [8] are only a part of it.

In 1973 Krasovski and Regev [7] described completely the \(T\)-ideal of the identities of the Grassmann algebra \(E\) and it was a natural step to investigate the PI-structure of algebras not only over fields (with any characteristic) but over algebras as well, especially Grassmann algebras [4, 12, 16].

In the paper we consider mainly finite dimensional Grassmann algebras and special matrix algebras over them.

We recall the definition of the Grassmann algebra \(E\) as:

\[E = K\langle e_1, e_2, \ldots | e_i e_j + e_j e_i = 0, i, j = 1, 2, \ldots \rangle, \]

where \(K\) is a field of characteristic zero.

We cite basic propositions from [3, 7]. The notation \([x, y, z] = [[x, y], z] = [x, y]z - z[x, y]\) will be used.

Partially supported by Grant I 02/18 of the Bulgarian National Science Fund.
Proposition 1 ([7, Corollary, p. 437]). The T-ideal of the Grassmann algebra E is generated by the identity $[x, y, z] = 0$.

Proposition 2 ([3, Lemma 6.1]). For any $n, k \geq 2$ in the algebra E the identity $S_n^k(x_1, \ldots, x_n) = 0$ holds, where

$$S_n(x_1, \ldots, x_n) = \sum_{\sigma \in \text{Sym}(n)} (-1)^{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$$

is the n-th standard polynomial.

Proposition 3 ([3, Lemma 6.6]). The matrix algebra $M_n(E)$ does not satisfy the identity

$$S_m^n(x_1, \ldots, x_m) = 0$$

for any m.

There are subalgebras of $M_n(E)$ however being counter examples of Proposition 3 for concrete m.

We use the notation E'_n for a non unitary Grassmann algebra with generators e_1, \ldots, e_n.

The existence of nilpotent elements of minimal nilpotency index both in finite dimensional Grassmann algebras and in matrix algebras over them was investigated in [12, 13]. We state some of the results needed:

Proposition 4 ([13, Proposition 13]). The identity $x^3 = 0$ holds for the algebra E_4'.

Proposition 5 ([13, Proposition 16]). The algebra $M_2(E_4')$ satisfies the identity $X^4 = 0$.

In [13] examples were given as well of subalgebras $\mathfrak{A}_i, i = 1, 2$ of $M_n(\mathfrak{R})$ such that the identities $x^4 = 0$ and $[x, y, z] = 0$ in \mathfrak{R} imply the identity $X^4 = 0$ in $\mathfrak{A}_i, i = 1, 2$.

An involution ψ on the Grassmann algebras E'_2 and E'_3 defines an involution ϕ on the corresponding 2×2 matrix algebra over any of them. In that case the classes of symmetric and of skew-symmetric to the involution ϕ matrices of nilpotency indices 2 and 3 were described in [12].

In the present paper we continue the investigations started in [12];

We define the nilpotency index of the b-variables in the considered algebras with involution $\phi = b$.

For a concrete subalgebra of the matrix algebra $M_4(K)$ identities of minimal degree are found. When additionally the algebra has an involution ϕ some of its ϕ-identities are given.

For an analogue of this subalgebra over finite dimensional Grassmann algebras a new involution $\phi = (b)$ is introduced and some (b)-identities are discussed.
2. Results

2.1. PI-properties of involution second order matrix algebras with Grassmann entries

We recall the definition of an involution on an algebra R: it is a second order antiautomorphism ψ such that $\psi(ab) = \psi(b)\psi(a)$ for all $a, b \in R$.

By R^- we denote the skew-symmetric due to the involution elements of R, namely $z_1, ..., z_i, ...$ and by R^+ we denote the symmetric due to the involution elements $y_1, ..., y_j, ...$. It is important to consider ψ-variables (symmetric and skew-symmetric) as the elements of R^+ form a Jordan algebra due to the multiplication $y_1 \circ y_2 = y_1y_2 + y_2y_1$ and the elements of R^- form a Lie algebra due to the operation $[z_1, z_2]$.

Definition 1. Let $f = f(x_1, ..., x_m) \in K(x_1, ..., x_n)$, the free associative algebra on n generators over K. We say that f is a ψ-identity in skew variables for the algebra R over K if $f(z_1, ..., z_m) = 0$ for all $z_1, ..., z_m \in R^-$. Accordingly f is a ψ-identity in symmetric variables for the algebra R over K if $f(y_1, ..., y_m) = 0$ for all $y_1, ..., y_m \in R^+$.

We say that f is a ψ-identity if $f(z_1, ..., z_i, y_{i+1}, ..., y_m) = 0$ for any $z_1, ..., z_i \in R^-$ and any $y_{i+1}, ..., y_m \in R^+$.

We denote an involution on the basic field or algebra as ψ while ϕ will mean an involution on the corresponding matrix algebra.

If a ring R has an involution $\psi = \ast$ two involutions $\phi_1 = \ast$ and $\phi_2 = b$ on $M_2(R)$ are defined as follows [15]:

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}^\ast = \begin{pmatrix}
 a^* & c^* \\
 b^* & d^*
\end{pmatrix},
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}^b = \begin{pmatrix}
 d^* & b^* \\
 c^* & a^*
\end{pmatrix}.
$$

It is known [2] that two involutions play an important role in the Grassmann algebra: the involution ψ_1 acting on the generators e_i of E as $\psi_1(e_{2k}) = e_{2k-1}$, $\psi_1(e_{2k-1}) = e_{2k}$ and the trivial on the generators involution ψ_2 for which $\psi_2(e_i) = e_i$ for all e_i.

Here we consider the algebra $(M_2(E_4', \psi_2), b)$ and continue some of the investigations made in [12] by finding the nilpotency index of the b-variables of $(M_2(E_4', \psi_2), b)$.

Theorem 1. The algebra $(M_2(E_4', \psi_2), b)$ satisfies the b-identity $Y^4 = 0$ in b-symmetric variables and the b-identity $Z^3 = 0$ in b-skew symmetric variables.

Proof of Theorem 1. As Proposition 5 holds we have to prove only that $Z^3 = 0$ in b-skew symmetric variables.

Let $Z = \begin{pmatrix}
 y_1 & z_1 \\
 z_2 & y_2
\end{pmatrix}$. The condition $\phi_2(Z) = -Z$ means that $\psi_2(z_1) = -z_1$, $\psi_2(z_2) = -z_2$, $\psi_2(y_1) = -y_2$ and $\psi_2(y_2) = -y_1$. Thus we get that

$$
z_1 = \alpha_5 e_1 e_2 + \alpha_6 e_1 e_3 + \alpha_7 e_1 e_4 + \alpha_8 e_2 e_3 + \alpha_9 e_2 e_4 + \alpha_{10} e_3 e_4
$$
The conditions
It is equal to
\[y = \gamma \]
In this case
\[\text{Proof of Theorem 2.} \]
We consider the four summands of degree 3
\[y_2 = -\gamma y_1 - y_2 y_2 - y_3 y_3 - y_4 y_4 \]
As in \(z \) the least degree of the summands is 4 we have \(x z_j z_k = 0, z_j x z_k = 0, \) \(z_j z_k x = 0 \) for any entry \(x \) of the matrix \(Z \). As the least degree of the summands in \(y_1 z_1 \) is 3 we get that \(y_1 z_1 z_k = 0 \). The least degree in \(y_2^2 \) is 3 and we have \(y_2^2 z_1 = 0 \) and \(z_1 y_2^2 = 0 \) as well. Thus for the matrix \(Z^2 = (a_{ij}) \) we get \(a_{11} = a_{22} = 0, a_{12} = y_1 z_1 y_2 \) and \(a_{21} = y_2 z_2 y_1 \).
We consider the four summands of degree 3 (the minimal one) in \(y_1 z_1 \):
\[
\begin{align*}
\alpha e_1 e_2 e_3 & \rightarrow \alpha = \gamma \alpha_8 - \gamma_2 \alpha_6 + \gamma_3 \alpha_5 \\
\beta e_1 e_2 e_3 & \rightarrow \beta = \gamma \alpha_9 - \gamma_2 \alpha_7 + \gamma_4 \alpha_5 \\
\gamma e_1 e_2 e_3 & \rightarrow \gamma = \gamma \alpha_{10} - \gamma \alpha_7 + \gamma_4 \alpha_6 \\
\delta e_1 e_2 e_3 & \rightarrow \delta = \gamma \alpha_{10} - \gamma_3 \alpha_9 + \gamma_4 \alpha_8.
\end{align*}
\]
Now we define the coefficient of the only summand (of degree 4) in \(a_{12} = y_1 z_1 y_2 \).
It is equal to
\[
-\gamma_4 (\gamma \alpha_8 - \gamma_2 \alpha_6 + \gamma_3 \alpha_5) + \gamma_3 (\gamma_1 \alpha_9 - \gamma_2 \alpha_7 + \gamma_4 \alpha_5)
\]
\[
-\gamma_2 (\gamma_1 \alpha_{10} - \gamma_3 \alpha_7 + \gamma_4 \alpha_6) + \gamma_1 (\gamma_2 \alpha_{10} - \gamma_3 \alpha_9 + \gamma_4 \alpha_8)
\]
\[
\equiv 0.
\]
The same is valid for \(a_{21} = y_2 z_2 y_1 \) as well. Thus \(Z^3 \) is the zero matrix.

If we change the involution \(\psi_2 \), considered in \(E_4' \), with the involution \(\psi_1 \), the \(b \)-variables of \((M_2(E_4', \psi_1), b) \) do not have a lower nilpotency index, namely

Theorem 2. The algebra \((M_2(E_4', \psi_1), b) \) satisfies the \(b \)-identity \(A^4 = 0 \) for \(A \) being any \(b \)-variable.

Proof of Theorem 2. We mach only the crucial steps of the proof.
In this case \(\psi_1(e_1) = e_2 (\psi_1(x)) = e_1 \) and \(\psi_1(e_3) = e_4 (\psi_1(e_4)) = e_3 \).
We have to consider only the case when \(A = Z \) is a \(b \)-skew symmetric variable.
The conditions \(\psi_1(z_1) = -z_1 \) and \(\psi_1(y_1) = -y_2 \) give that
\[
\begin{align*}
z_1 &= \alpha_1 (e_1 - e_2) + \alpha_3 (e_3 - e_4) + \alpha_6 (e_1 e_3 + e_2 e_4) + \alpha_7 (e_1 e_4 + e_2 e_3) \\
&+ \alpha_{11} (e_1 e_2 e_3 - e_1 e_2 e_4) + \alpha_{13} (e_1 e_3 e_4 - e_2 e_3 e_4);
\end{align*}
\[
\begin{align*}
z_2 &= \beta_1 (e_1 - e_2) + \beta_3 (e_3 - e_4) + \beta_6 (e_1 e_3 + e_2 e_4) + \beta_7 (e_1 e_4 + e_2 e_3)
\end{align*}
\]

\[+ \beta_{11}(e_1e_2e_3 - e_1e_2e_4) + \beta_{13}(e_1e_3e_4 - e_2e_3e_4): \]
\[y_1 = \gamma_1e_1 + \gamma_2e_2 + \gamma_3e_3 + \gamma_4e_4 \]
\[+ \gamma_5e_1e_2 + \gamma_6e_1e_3 + \gamma_7e_1e_4 + \gamma_8e_2e_3 + \gamma_9e_2e_4 + \gamma_{10}e_3e_4 \]
\[+ \gamma_{11}e_1e_2e_3 + \gamma_{12}e_1e_2e_4 + \gamma_{13}e_1e_3e_4 + \gamma_{14}e_2e_3e_4: \]
\[y_2 = -\gamma_2e_1 - \gamma_1e_2 - \gamma_4e_3 - \gamma_3e_4 \]
\[- \gamma_5e_1e_2 + \gamma_9e_1e_3 + \gamma_7e_1e_4 + \gamma_6e_2e_3 - \gamma_10e_3e_4 \]
\[- \gamma_{12}e_1e_2e_3 - \gamma_{11}e_1e_2e_4 - \gamma_{13}e_1e_3e_4 - \gamma_{14}e_2e_3e_4. \]

We follow the coefficient of \(e_1e_2e_3 \) in the entry \(a_{11} = z_1z_2y_1 + y_1z_1z_2 + z_1y_2z_2 \) of the matrix \(Z^3 = (a_{ij}) \). Forming \(z_1z_2 \) we find the coefficient of \(e_1e_2e_3 \) in the product \(y_1(z_1z_2) \), namely \(- (\gamma_1 + \gamma_2)(\alpha_1\beta_3 - \alpha_3\beta_1)\).

The same holds for the coefficient of \(e_1e_2e_3 \) in the products \(z_1z_2y_1 \) and in \(z_1y_2z_2 \). Thus \(Z^3 \) is not a zero matrix.

Taking into account the conditions on the entries of a \(b \)-symmetric matrix \(Y \) we see that the coefficient of \(e_1e_2e_3 \) in the entry \(b_{11} \) of the matrix \(Y^3 = (b_{ij}) \) is \(3(\gamma_1 - \gamma_2)(\alpha_1\beta_3 - \alpha_3\beta_1) \).

\[\Box \]

2.2. PI-properties of some fourth order matrix algebras

We define the 8-th dimensional matrix algebra \(AM_4(K) \) as the algebra of the matrices of type
\[
\begin{pmatrix}
 a_{11} & 0 & a_{13} & 0 \\
 0 & a_{22} & 0 & a_{24} \\
 a_{31} & 0 & a_{33} & 0 \\
 0 & a_{42} & 0 & a_{44}
\end{pmatrix}, \quad a_{ij} \in K.
\]

The following theorem holds:

Theorem 3. The algebra \(AM_4(K) \) satisfies the Hall identity \([[X_1, X_2]^2, X_3] = 0 \).

Proof of Theorem 3. For \(X_1, X_2 \in AM_4(K) \) in \([X_1, X_2] = (c_{ij}) \) we have \(c_{33} = -c_{11} \) and \(c_{44} = -c_{22} \). The matrix \([X_1, X_2]^2 = (d_{ij}) \) is a diagonal matrix with \(d_{33} = d_{11} \) and \(d_{44} = d_{22} \). Thus \([[X_1, X_2]^2, X_3] = 0 \). \[\Box \]

By the system for computer algebra Mathematica we see that \(AM_4(K) \) satisfies the identity \(S_4(X_1, X_2, X_3, X_4) = 0 \) as well.

The \(n \)-th analogue of \(AM_4(K) \) is the algebra \(AM_{2n}(K) \). Its elements are of type \((a_{ij})\) with non-zero entries only among \(a_{ij} \) for \(i = 1, \ldots, 2n \), \(a_{j,n+j} \) and \(a_{n+j,j} \) for \(j = 1, \ldots, n \). The two identities in \(AM_4(K) \) hold in \(AM_{2n}(K) \) as well.

It is known that in a matrix algebra over a field \(K \) of characteristic zero up to isomorphism there are two types of involutions - the transpose one \(t \) and the symplectic involution \(\ast \), the latter defined on an even \(2k \) order matrix algebra as
\[
\begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}^\ast = \begin{pmatrix}
 D & -B^t \\
 -C^t & A
\end{pmatrix}.
\]
where A, B, C, D are $k \times k$ matrices.

We recall that the Hall identity $[[Y_1, Y_2]^2, Y_3] = 0$ is a $*$-identity of minimal degree in $*$-symmetric variables for the algebra $(M_4(K), *)$ [5].

Next we consider the matrix algebra $AM_4(K)$ with the symplectic involution $*$.

Theorem 4. The algebra $(AM_4(K), *)$ satisfies the $*$-identity $[Y_1, Y_2] = 0$ in $*$-symmetric variables.

Proof of Theorem 4. From

$$
\begin{pmatrix}
 a_{11} & 0 & a_{13} & 0 \\
 0 & a_{22} & 0 & a_{24} \\
 a_{31} & 0 & a_{33} & 0 \\
 0 & a_{42} & 0 & a_{44}
\end{pmatrix}^*
= \begin{pmatrix}
 a_{33} & 0 & -a_{13} & 0 \\
 0 & a_{44} & 0 & -a_{24} \\
 -a_{31} & 0 & a_{11} & 0 \\
 0 & -a_{42} & 0 & a_{22}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & 0 & a_{13} & 0 \\
 0 & a_{22} & 0 & a_{24} \\
 a_{31} & 0 & a_{33} & 0 \\
 0 & a_{42} & 0 & a_{44}
\end{pmatrix}
$$

we see that the $*$-symmetric elements of $(AM_4(K), *)$ are diagonal matrices. □

As z^2 is $*$-symmetric we come to

Corollary 1. The algebra $(AM_4(K), *)$ satisfies the $*$-identity $[Z_1^2, Z_2^2] = 0$ in $*$-skew symmetric variables.

Now the matrix algebras considered will have entries that are elements of a Grassmann algebra. In the statements below we use Proposition 4. As it was proved in [13] using the system for computer algebra Mathematica we give here its analytic proof.

Proof of Proposition 4. Without loss of generality we consider $x \in E'_4$ with summands of length 1 and 2 only (the other ones will give zeros either in x^2 or in x^3). Thus

$$x = \alpha_1 e_1 e_2 + \alpha_2 e_2 e_4 + \alpha_3 e_3 + \alpha_4 e_4 + \alpha_5 e_1 e_2 + \alpha_6 e_1 e_3 + \alpha_7 e_1 e_4 + \alpha_8 e_2 e_3 + \alpha_9 e_2 e_4 + \alpha_{10} e_3 e_4.$$

We define the coefficients of the four summands of length 3 in x^2. They are:

$$
\begin{align*}
\alpha e_1 e_2 e_3 & \mapsto \alpha = 2(\alpha_1 \alpha_8 - \alpha_2 \alpha_6 + \alpha_3 \alpha_5) \\
\beta e_1 e_2 e_4 & \mapsto \beta = 2(\alpha_1 \alpha_9 - \alpha_2 \alpha_7 + \alpha_4 \alpha_5) \\
\gamma e_1 e_3 e_4 & \mapsto \gamma = 2(\alpha_1 \alpha_{10} - \alpha_3 \alpha_7 + \alpha_4 \alpha_6) \\
\delta e_2 e_3 e_4 & \mapsto \delta = 2(\alpha_2 \alpha_{10} - \alpha_3 \alpha_9 + \alpha_4 \alpha_8).
\end{align*}
$$

The coefficient of the only summand (which is of length 4) of x^3 is proportional to

$$-\alpha_1 (\alpha_2 \alpha_{10} - \alpha_3 \alpha_9 + \alpha_4 \alpha_8) + \alpha_2 (\alpha_1 \alpha_{10} - \alpha_3 \alpha_7 + \alpha_4 \alpha_6) + \alpha_3 (\alpha_1 \alpha_9 - \alpha_2 \alpha_7 + \alpha_4 \alpha_5) + \alpha_4 (\alpha_1 \alpha_8 - \alpha_2 \alpha_6 + \alpha_3 \alpha_5) = 0.$$
The identity \([y, x, x] = 0\) and the linearization of \(x^3 = 0\) lead to

Corollary 2. In \(E_4'\) the following identities hold:
\[
x^2 y + yx^2 = 0,\ xyx = 0,\ xyz + zyx = 0,\xy^2 z = -zyxy = 0,\ y^2 xz = -zyxy = 0,\ zxy^2 = -yxyz = 0.
\]

Theorem 5. The algebra \(AM_4(E_4')\) is a nil algebra with nil index 4.

Proof of Theorem 5. For a matrix \(A \in AM_4(E_4')\), where
\[
A = \begin{pmatrix}
y_1 & 0 & z_1 & 0 \\
0 & y_2 & 0 & z_2 \\
z_3 & 0 & y_3 & 0 \\
0 & z_4 & 0 & y_4
\end{pmatrix}
\]
and \(A^3 = (a_{ij})\) we get
\[
\begin{align*}
a_{11} &= z_1 z_3 y_1 + y_1 z_1 z_3 + z_1 y_3 z_3, \\
a_{13} &= y_1^2 z_1 + z_1 z_3 z_1 + y_1 z_1 y_3 + z_1 y_3^2, \\
a_{22} &= z_2 z_4 y_2 + y_2 z_2 z_4 + z_2 y_4 z_4, \\
a_{24} &= y_2^2 z_2 + z_2 z_4 z_2 + y_2 z_4 z_4 + z_4 y_4^2, \\
a_{31} &= z_3 y_1^2 + y_3 z_3 y_1 + z_3 z_1 z_3 + y_3^2 z_3, \\
a_{33} &= z_3 y_1 z_1 + y_3 z_3 z_1 + z_3 z_1 y_3, \\
a_{42} &= z_4 y_2^2 + y_4 z_4 y_2 + z_4 z_2 z_4 + y_4^2 z_4, \\
a_{44} &= z_2 y_2 z_2 + y_4 z_4 z_4 + z_4 z_4 y_4.
\end{align*}
\]

Now we investigate the entries of \(A^4 = (b_{ij})\):
\[
\begin{align*}
b_{11} &= z_1 z_3 y_1^2 + y_1 z_1 z_3 y_1 + z_1 y_3 z_3 y_1 + y_1^2 z_1 z_3 \\
&\quad + z_1 z_3 z_1 z_3 + y_1 z_1 y_1 z_3 + z_1 y_3^2 z_3 \\
b_{11} &= z_1 y_3 z_3 y_1 = -zyxyz \text{ gives}\n\end{align*}
\]
\[
\begin{align*}
z_1 y_3 z_3 y_1 &= -zyxyz = y_3 z_1 y_1 z_3 = -y_1 y_1 y_3 z_3.
\end{align*}
\]

Thus \(b_{11} = 0\).

In an analogous way we investigate the other entries of \(A^4\):
\[
\begin{align*}
b_{13} &= z_1 z_3 y_1 z_1 + y_1 z_1 z_3 z_1 + z_1 y_3 z_3 z_1 + y_1^2 z_1 y_3 \\
&\quad + z_1 z_3 z_1 y_3 + y_1 z_1 y_3^2 + z_1 y_3^3
\end{align*}
\]

According to Corollary 2 we have \(b_{13} = 0\).
Now we consider
\[b_{22} = z_2z_4y_2^2 + y_2z_2z_4y_2 + z_2y_4z_4y_2 + y_2^2z_2z_4 + z_2z_2z_2z_4 + y_2z_2y_4z_4 + z_4y_4^2z_4. \]

The same Corollary leads to \(b_{22} = z_2y_4z_4y_2 + y_2z_2y_4z_4. \) As
\[z_2y_4z_4y_2 = -z_4y_2y_4z_2 = y_4z_2y_2z_4 = -y_2z_2y_4z_4 \]
we get \(b_{22} = 0. \)

Applying Corollary 2 we get \(b_{24} = b_{31} = 0. \) In \(b_{33} \) we have to consider only the part \(y_3z_3y_3z_1 + z_3y_3z_1y_3. \) As
\[y_3z_3y_3z_1 = -y_1z_1z_3y_3 = z_3z_1y_1y_3 = -y_3y_1z_3z_1 = z_1y_1z_3y_3 = -z_3y_1z_1y_3 \]
we get \(b_{33} = 0. \)

The identities in Corollary 2 immediately lead to \(b_{42} = 0, b_{44} = 0. \) Thus \(A^4 = 0. \)

Now we consider the subalgebra \(ASM_4(E) \) of the matrices of type
\[
\begin{pmatrix}
a & 0 & a & 0 \\
0 & b & 0 & b \\
c & 0 & c & 0 \\
0 & d & 0 & d
\end{pmatrix}
\]
and prove that it is a PI-algebra.

Theorem 6. The algebra \(ASM_4(E) \) satisfies the identity \(U[X,Y,Z] = 0. \)

Proof of Theorem 6. Let \(X, Y, Z \) be matrices from \(ASM_4(E) \) denoting its entries by \(a_i, b_i, c_i, d_i \) for \(i = 1, 2, 3 \) respectively. We form the diagonal entries of \([X,Y] = (a_{ij}), \) namely
\[
\begin{align*}
a_{11} &= [a_1, a_2] + a_1c_2 - a_2c_1, \\
a_{22} &= [b_1, b_2] + b_1d_2 - b_2d_1, \\
a_{33} &= [c_1, c_2] + c_1a_2 - c_2a_1, \\
a_{44} &= [d_1, d_2] + d_1b_2 - d_2b_1.
\end{align*}
\]

For the matrix \([X,Y,Z] = (b_{ij}) \) we have modulo \([x,y,z] = 0 \) for \(x, y, z \in E \) that
\[
b_{11} + b_{33} = [a_1c_2 - a_2c_1, a_3] + ([a_1, a_2] + a_1c_2 - a_2c_1)c_3 - a_3(c_1, c_2 + c_1a_2 - c_2a_1) \\
+ [c_1a_2 - c_2a_1, c_3] + ([c_1, c_2] + c_1a_2 - c_2a_1)a_3 - c_3([a_1, a_2] + a_1c_2 - a_2c_1) \\
= [a_1c_2 - a_2c_1, a_3] + (a_1c_2 - a_2c_1)c_3 - a_3(c_1, c_2 + c_1a_2 - c_2a_1) \\
+ [c_1a_2 - c_2a_1, c_3] + (c_1a_2 - c_2a_1)a_3 - c_3(a_1c_2 - a_2c_1) \\
= [a_1c_2 - a_2c_1, a_3] + [c_1a_2 - c_2a_1, c_3] + [a_1c_2 - a_2c_1, c_3] + [c_1a_2 - c_2a_1, a_3] \\
= [[a_1, c_2] + [c_1, a_2], a_3] + [[c_1, a_2] + [a_1, c_2], c_3] \equiv 0.
\]
Analogously we get that $b_{22} + b_{44} = 0$. Thus $U[X, Y, Z] = 0$ for any matrix $U \in ASM_4(E)$. □

The analogue of $ASM_4(E)$ in the general case is the matrix algebra $ASM_{2n}(E)$. Its elements are of type (a_{ij}), where $a_{ii} = a_{i,n+i}$ for $i = 1, \ldots, n$ and $a_{jj} = a_{j,n-j}$ for $j = n+1, \ldots, 2n$. The algebra $ASM_{2n}(E)$ satisfies the same identity $U[X, Y, Z] = 0$.

For now we are able to find involutions in $M_n(E)$ for $n > 2$ only considering an involution in E. We generalize the case $n = 2$, namely

Proposition 6. The mapping (b), defined as

$$
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}^{(b)} = \begin{pmatrix}
 A & B \\
 C & D
\end{pmatrix}^{(b)} = \begin{pmatrix}
 (D)^b & (B)^b \\
 (C)^b & (A)^b
\end{pmatrix}
$$

is an involution on $M_4(E, \psi = *)$.

Proof of Proposition 6. Considering in details the entries of the two matrices $(AB)^{(b)}$ and $(B)^{(b)}(A)^{(b)}$ we see that their corresponding entries are equal i.e. the mapping (b) is an involution. □

We cover the following special case: Let E_3' be the non-unitary finite dimensional Grassmann algebra with generators e_1, e_2, e_3 and $AM(2)(E_3')$ be the subalgebra of $AM_4(E_3')$ defined by the matrices of type

$$
\begin{pmatrix}
 y_1 & 0 & z_1 & 0 \\
 0 & y_2 & 0 & z_2 \\
 z_3 & 0 & y_3 & 0 \\
 0 & z_4 & 0 & y_4
\end{pmatrix},
$$

where y_i are even elements (of even length) of E_3', while z_i are odd elements (of odd length) of $E_3', i = 1, \ldots, 4$. We equip the algebra $AM(2)(E_3', \psi_2)$ with the involution (b) as defined in Proposition 6.

We characterize the (b)-symmetric elements Y_i and the (b)-skew symmetric elements Z_j of the algebra $(AM(2)(E_3', \psi_2), (b))$.

Theorem 7. The algebra $(AM(2)(E_3', \psi_2), (b))$ satisfies the (b)-identity $Y^3 = 0$ in (b)-symmetric variables.
Proof of Theorem 7. Let consider a \((\nu)\)-symmetric element \(Y\). Denoting for short
\[\psi_2\] as \(*\) in the equality
\[
\begin{pmatrix}
 y_4^* & 0 & z_2^* & 0 \\
 0 & y_3^* & 0 & z_1^* \\
 z_4^* & 0 & y_2^* & 0 \\
 0 & z_3^* & 0 & y_1^*
\end{pmatrix}
=
\begin{pmatrix}
 y_1 & 0 & z_1 & 0 \\
 0 & y_2 & 0 & z_2 \\
 z_3 & 0 & y_3 & 0 \\
 0 & z_4 & 0 & y_4
\end{pmatrix}
\]
we get the following conditions on the entries of \(Y\): \(\psi_2(y_4) = y_1, \psi_2(y_3) = y_2, \psi_2(z_2) = z_1\) and \(\psi_2(z_4) = z_3\).

Let \(y_1 = s_1 e_1 e_2 + s_2 e_1 e_3 + s_3 e_2 e_3\). Then \(y_4 = \psi_2(y_1) = -y_1\). For \(y_2 = t_1 e_1 e_2 + t_2 e_1 e_3 + t_3 e_2 e_3\) we get \(y_3 = \psi_2(y_2) = -y_2\). Obviously \(y_1^2 = y_2^2 = 0\).

As the entries are from \(E_3\) we could work with odd entries having summands of degree 1 only. Let \(z_1 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3\) and \(z_3 = m_1 e_1 + m_2 e_2 + m_3 e_3\). Then \(z_2 = \psi_2(z_1) = z_1, z_4 = \psi_2(z_3) = z_3\). Considering \(Y^3 = Y^2 Y = (a_{ij})\) as
\[
\begin{pmatrix}
 z_1 z_3 & 0 & y_1 z_1 - z_1 y_2 & 0 \\
 0 & z_1 z_3 & 0 & y_2 z_1 - z_1 y_1 \\
 z_3 y_1 - y_2 z_3 & 0 & z_3 z_1 & 0 \\
 0 & z_3 y_2 - y_1 z_3 & 0 & z_3 z_1
\end{pmatrix}
\]
we see that manipulating with the generators \(e_1, e_2, e_3\), probably nontrivial entries could be only
\[a_{13} = a_{24} = z_1 z_3 z_1 = \beta_1 e_1 e_2 e_3, \ a_{31} = a_{42} = z_3 z_1 z_3 = \beta_2 e_1 e_2 e_3.\]

Applying Corollary 2 we get that both of them are zero. \(\square\)

Theorem 8. The algebra \((AM(2)(E_3, \psi_2), (\nu))\) satisfies the \((\nu)\)-identity \(Z^3 = 0\) in \((\nu)\)-skew symmetric variables.

Proof of Theorem 8. Using the same notations for the matrix entries of \(Z\) as in the previous theorem, in this case we have
\[y_4 = -\psi_2(y_1) = y_1, \ y_3 = -\psi_2(y_2) = y_2, \ y_1^2 = y_2^2 = 0, \ z_2 = -\psi_2(z_1) = -z_1, \ z_4 = -\psi_2(z_3) = -z_3.\]

In \(Z^3 = Z^2 Z = (b_{ij})\) nonzero could be only the entries \(b_{13} = -b_{24} = z_1 z_3 z_1\) and \(b_{31} = -b_{42} = z_3 z_1 z_3\). Corollary 2 proves they both are zero. \(\square\)

We consider the subalgebra \((AM(2)(E_3, \psi_2), (\nu))\) instead of the algebra \((AM(4)(E_3, \psi_2), (\nu))\) itself as if \(A^n = 0\) for a \(b\)-variable \(A\) of \((AM(4)(E_3, \psi_2), (\nu))\) we
have \(n > 3 \). Thus the algebras \((AM_4(E_4, \psi_2), (b)) \) and \(AM_4(E_4') \) have equal nil indices.

We give an example of another matrix algebra with involution \((b)\) having lower nilpotency index of its \((b)\)-skew symmetric variables:

Let \(BM(2)(E_3') \) be the algebra defined by the matrices of type

\[
\begin{pmatrix}
 y_1 & 0 & 0 & z_1 \\
 0 & y_2 & z_2 & 0 \\
 0 & z_3 & y_3 & 0 \\
 z_4 & 0 & 0 & y_4
\end{pmatrix}
\]

, where \(y_i \) are even elements of \(E_3' \), while \(z_i \) are odd elements of \(E_3' \), \(i = 1, \ldots, 4 \). We equip the algebra \(BM(2)(E_3', \psi_2) \) with the involution \((b)\) as defined in Proposition 6.

Theorem 9. The algebra \((BM(2)(E_3', \psi_2), (b)) \) satisfies the \((b)\)-identity \(Y^3 = 0 \) in \((b)\)-symmetric variables and the \((b)\)-identity \(Z^2 = 0 \) in \((b)\)-skew symmetric variables.

Proof of Theorem 9. In the algebra \((BM(2)(E_3', \psi_2), (b)) \) any \((b)\)-skew symmetric variable \(Z \) is a diagonal matrix and \(Z^2 = 0 \) as \(y_i^2 = 0 \) for \(i = 1, \ldots, 4 \). \(\square \)

There is a package written in the system for computer algebra Mathematica [10] for manipulating in finite dimensional Grassmann algebras. Using it a programme was written by the author giving an alternative way of confirming the validity of the corresponding theorems in the paper.

References

Author's address

Tsetska Rashkova
University of Ruse, Department of Mathematics, 8 Studentska Str., 7017 Ruse, Bulgaria
E-mail address: tsrashkova@uni-ruse.bg