Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 2, pp. 1105-1116 DOI: 10.18514/MMN.2015.1756

PI-PROPERTIES OF SOME MATRIX ALGEBRAS WITH
INVOLUTION

TSETSKA RASHKOVA
Received 23 September, 2015

Abstract. We define the nilpotency index of the b-variables in second order matrix algebras with
Grassmann entries and involution b. Identities of minimal degree are found for a concrete subal-
gebra of the matrix algebra M4(K). When it has an involution ¢ as well some of its ¢-identities
are given. For an analogue of this subalgebra over finite dimensional Grassmann algebras a new
involution (b) is introduced and its (b)-identities are discussed.
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1. INTRODUCTION

The classical PI-theory (the theory of the polynomial identities) has its develop-
ment for algebras with involution as well. The contributions of Amitsur [ 1], Levchenko
[9], Rowen [14], Wenxin and Racine [17], Giambruno and Valenti [6], Drensky and
Giambruno [5], Rashkova [11], La Mattina and Misso [8] are only a part of it.

In 1973 Krasovski and Regev [7] described completely the T'-ideal of the identities
of the Grassmann algebra E and it was a natural step to investigate the PI-structure
of algebras not only over fields (with any characteristic) but over algebras as well,
especially Grassmann algebras [4, 12, 16].

In the paper we consider mainly finite dimensional Grassmann algebras and spe-
cial matrix algebras over them.

We recall the definition of the Grassmann algebra E as:

E =K(ey,ez,...leiej +eje; =0,i, ] =1,2,...),
where K is a field of characteristic zero.
We cite basic propositions from [3,7]. The notation [x, y, z] = [[x, v],z] =[x, y]z—
z[x, y] will be used.
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Proposition 1 ([7, Corollary, p. 437]). The T - ideal of the Grassmann algebra E
is generated by the identity [x,y,z] = 0.

Proposition 2 ([3, Lemma 6.1]). For any n,k > 2 in the algebra E the identity
S,]f(xl, s Xy) = 0 holds, where

Sn(X1,.00sXn) = Z (_l)axa(l)-'-xa(n)
oceSym(n)

is the n-th standard polynomial.

Proposition 3 ([3, Lemma 6.6]). The matrix algebra M, (E) does not satisfy the
identity
SP(X1,.es Xm) =0
for any m.

There are subalgebras of M, (E) however being counter examples of Proposition 3
for concrete m.

We use the notation E,; for a non unitary Grassmann algebra with generators
€1,...,€n.

The existence of nilpotent elements of minimal nilpotency index both in finite
dimensional Grassmann algebras and in matrix algebras over them was investigated
in [12, 13]. We state some of the results needed:

Proposition 4 ([13, Proposition 13]). The identity x> = 0 holds for the algebra
El
4

Proposition 5 ([13, Proposition 16]). The algebra Mz(Eé) satisfies the identity
X*=o.

In [13] examples were given as well of subalgebras 2l;,i = 1,2 of M, (*R) such that
the identities x* = 0 and [x, y,z] = 0 in 9% imply the identity X* = 0in 24;,i = 1,2.

An involution ¥ on the Grassmann algebras E’2 and £ ; defines an involution ¢ on
the corresponding 2 x 2 matrix algebra over any of them. In that case the classes of
symmetric and of skew-symmetric to the involution ¢ matrices of nilpotency indices
2 and 3 were described in [12].

In the present paper we continue the investigations started in [12]:

We define the nilpotency index of the b-variables in the considered algebras with
involution ¢ = b.

For a concrete subalgebra of the matrix algebra M4 (K) identities of minimal de-
gree are found. When additionally the algebra has an involution ¢ some of its ¢-
identities are given.

For an analogue of this subalgebra over finite dimensional Grassmann algebras a
new involution ¢ = (b) is introduced and some (b)-identities are discussed.
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2. RESULTS

2.1. Pl-properties of involution second order matrix algebras with Grassmann
entries

We recall the definition of an involution on an algebra R: it is a second order
antiautomorphism v such that ¥ (ab) = ¥ (b)y(a) for all a, b € R.

By R~ we denote the skew-symmetric due to the involution elements of R, namely
Z1,.:Zis... and by RT we denote the symmetric due to the involution elements
Y1,...Yj,.... Itis important to consider -variables (symmetric and skew-symmetric)
as the elements of R form a Jordan algebra due to the multiplication yj o y, =
y1Y2 + y2y1 and the elements of R~ form a Lie algebra due to the operation [z1,22].

Definition 1. Let f = f(xy,....,x») € K(x1,...,Xn), the free associative algebra
on n generators over K. We say that f is a v-identity in skew variables for the
algebra R over K if f(z1,...,2m) =0 for all zy,...,2,» € R™. Accordingly f is a
Y-identity in symmetric variables for the algebra R over K if f(y1,..., ym) = 0 for
all y1,....,ym € RT.

We say that f is a y-identity if f(z1,...,2i,Yi+1,-» Ym) = 0 for any z1,...,2; €
R~ and any y;11,....,ym € R™.

We denote an involution on the basic field or algebra as ¥ while ¢ will mean an
involution on the corresponding matrix algebra.

If a ring R has an involution t = * two involutions ¢; = § and ¢ =b on M>(R)
are defined as follows [15]:

abﬂ_a*c* abb_d*b*
(ca)=( &) (2a)-(c )

It is known [2] that two involutions play an important role in the Grassmann
algebra: the involution ¥; acting on the generators ¢; of E as ¥1(exr) = €2r—1,
Y¥r1(ear—1) = ey and the trivial on the generators involution v, for which ¥, (e;) =
e; forall e;.

Here we consider the algebra (MZ(E;, ¥»),b) and continue some of the investiga-
tions made in [ 12] by finding the nilpotency index of the b-variables of (M, (E;, ¥2),b).

Theorem 1. The algebra (MZ(E;,WZ),I)) satisfies the b-identity Y* = 0 in b-
symmetric variables and the b-identity Z3 = 0 in b-skew symmetric variables.

Proof of Theorem 1. As Proposition 5 holds we have to prove only that Z3 = 0 in
b-skew symmetric variables.

Let Z = ( Zl il ) The condition ¢»(Z) = —Z means that ¥»(z1) = —z1,
2 )2

V2(22) = —22, ¥2(y1) = —y2 and ¥2(y2) = —y1. Thus we get that

Z1 = aserex +ugeres3 +agereq + ageres +ageneq + jpe3ey
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+aj1e1e2e3 +a12e1e2e4 +13€1€3€64 + X14€2€3€4;
22 = Bserex + Peeres + Preres + Pgezes + Poeres + Proezes
+ Brierezez + Pirereses + Braereszes + Praereses;
Y1 =vVY1e1+y2e2+ y3e3+ yseq
+Yse1e2 +yee1e3 + yre1eq + yseaes + yoeres + Yio€3es
+ Y11€1€2€3 1+ Y12€1€2€4 1 Y13€1€3€4 1 Y14€2€3€4 1 Y15€1€2€3€4;
Y2 = —Y1€1 — V262 —)3€3 —Y4€4
+ Yse1ex + Yee1€3 + y7€1e4 + ygere3 + yoereq + yi0€3e4
+yi1e1e2e3 + yi2e1eze4 + Y13€1€384 + Y14€2€3€4 — Y15€1€2€3€84.

As in z;z; the least degree of the summands is 4 we have xz;zx =0, Zjxzg =0,
ZjZxx = 0 for any entry x of the matrix Z. As the least degree of the summands in
viZ; is 3 we get that y;z;zx = 0. The least degree in yl-2 is 3 and we have inZj =0
and ziyj2 = 0 as well. Thus for the matrix Z3 = (aij) we getajy =az =0,a12 =
viz1y2 and az; = y222)1.

We consider the four summands of degree 3 (the minimal one) in y;z1:

aejezes  — o = y108 — Y206 + Y305
Berezes — B =yia9—yr07+yaas
yeiezes — Yy = Y1010 — Y307 + Y46
dejezes — 8 =yra10— Y309 + ys0s.

Now we define the coefficient of the only summand (of degree 4) ina12 = y1212.

It is equal to

—va(y108 — Y2ate + y305) + y3(y1000 — Y207 + yaots)
—y2(y1010 — V37 + yate) + y1(y2a10 — Y309 + yaag) = 0.
The same is valid for a1 = y»z2y1 as well. Thus Z3 is the zero matrix. O

If we change the involution v, considered in E:l, with the involution 1, the
b-variables of (MZ(E;, Y¥1),b) do not have a lower nilpotency index, namely

Theorem 2. The algebra (Mz(Eé,wl),b) satisfies the b-identity A* = 0 for A
being any b-variable.

Proof of Theorem 2. We mach only the crucial steps of the proof.

In this case Y1 (e1) = e2 (Y1(e2) = e1) and Y1(e3) = es (Y1(es) = e3).
We have to consider only the case when A = Z is a b-skew symmetric variable.
The conditions ¥1(z;) = —z; and ¥1(y1) = —y2 give that

z1 =ay(e1—ez) +asz(ez—eq) +ag(eres +exeq) +ay(ereq +ezes)
+aj1(erezes —ejeres) +aq3(erezes —ezeses);
22 = B1(e1 —e2) + B3(e3 —eq) + Bo(e1e3 + ezeq) + Br(e1e4 +e2e3)
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+ Biri(e1ezez —erezes) + Pra(erezes —ereses);

Y1 =Y1€1+ Y262 +y3e3 + yseq
+yserez +yse1e3 + y7e1e4 + ygezes + yoezes + yioezes
+Y11€1€2€3 + Y12€1€2€4 + Y13€1€3€4 + Y14€2€384;

Y2 = —Y2e1 — Y162 —Y4€3 —Y3€4
—Yse1e2 +Yyoe1e3 1 ygei1e4 1+ y7€2€3 + Y6204 — ¥Y10€3€4
—Y12€1€2€3 —Y11€1€2€4 — )14€1€3€4 —Y13€2€3€4.

We follow the coefficient of ejezes intheentryay; =z122y1+Y12122 +21Y222
of the matrix Z3 = (q; 7). Forming z1z, we find the coefficient of ejezes in the
product y1(z122), namely —(y1 + y2)(a183 —a3f1).

The same holds for the coefficient of e epe3 in the products z1z2y1 andin z1y225.
Thus Z3 is not a zero matrix.

Taking into account the conditions on the entries of a b-symmetric matrix ¥ we
see that the coefficient of ejezes in the entry by of the matrix Y 3= (bij)is 3(y1 —

y2) (o183 —a3B1). O

2.2. Pl-properties of some fourth order matrix algebras

We define the 8-th dimensional matrix algebra AM4(K) as the algebra of the
matrices of type

ail 0 a3 0

0 ax 0 an

a3zl 0 ass 0

0 asx 0 aas

, ajj € K. The following theorem holds:

Theorem 3. The algebra AM4(K) satisfies the Hall identity [ X1, X2]?, X3] = 0.

Proof of Theorem 3. For X1,X, € AM4(K) in [X1, X3] = (c;;j) we have ¢33 =
—c11 and c44 = —c2o. The matrix [X 1, X5]? = (dij) is a diagonal matrix with d33 =
d11 and d44 = d22. Thus [[X],Xz]Z,X3] =0. O

By the system for computer algebra Mathematica we see that AM4(K) satisfies
the identity S4(X1, X2, X3, X4) = 0 as well.

The n-th analogue of AM4(K) is the algebra A M,,(K). Its elements are of type
(ai;j) with non-zero entries only among a;; fori =1,...,2n, aj 4+ ; and a,4 ; ; for
j =1,...,n. The two identities in AM4(K) hold in AM>, (K) as well.

It is known that in a matrix algebra over a field K of characteristic zero up to iso-
morphism there are two types of involutions - the transpose one ¢ and the symplectic
involution *, the latter defined on an even 2k order matrix algebra as

A B\ _( D -B
c o) \-ct 4 )
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where A, B,C, D are k x k matrices.

We recall that the Hall identity [[Y7, Y2]?, Y3] = 0 is a *-identity of minimal degree
in *x-symmetric variables for the algebra (M4(K), *) [5].

Next we consider the matrix algebra A M4(K) with the symplectic involution .

Theorem 4. The algebra (AM4(K), *) satisfies the *-identity [Y1,Y2] = 0 in *-
symmetric variables.

Proof of Theorem 4. From

3
all 0 als 0

0 ax 0 an
az; 0 azz O
0 asz 0 aga

as3 0 —aiz O air. 0 a3z O
. 0 a44 0  —azx | _ 0 ax 0 anx
B —das3] 0 aill 0 B a3l 0 ass 0
0 —asx O az 0 asx 0 aas
we see that the x-symmetric elements of (AM4(K), *) are diagonal matrices. g

As 72 is *-symmetric we come to

Corollary 1. The algebra (AM4(K), *) satisfies the *-identity [Z%,Z%] =0in
*-skew symmetric variables.

Now the matrix algebras considered will have entries that are elements of a Grass-
mann algebra. In the statements below we use Proposition 4. As it was proved in [13]
using the system for computer algebra Mathematica we give here its analytic proof.

Proof of Proposition 4. Without loss of generality we consider x € E;t with sum-

mands of length 1 and 2 only (the other ones will give zeros either in x? or in x3).

Thus
X = «a1e1+oger+wzes+ageq +ase1en +0agere3
+ «a7ereq +ogeres +ageneq + ppesey.
We define the coefficients of the four summands of length 3 in x2. They are:
aejezes o =2(a1og—ar0e + A3as)
Berezeqs B =2(a1a9—a2a7 +agas)
yeieszeqs >y =2(ajo10— a3y + oqe)
deyezeq +— 6= 2(0(26110 — 0309 +O(40lg).

The coefficient of the only summand (which is of length 4) of x3 is proportional
to

—ay (2010 — 309 +agag) +az (a0 — 307 + A406)

—a3(ayog — o7 + agas) +ag(oag —azae + azas) = 0.
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The identity [y, x, x] = 0 and the linearization of x> = 0 lead to
Corollary 2. In E; the following identities hold:

x2y4+yx2=0,xyx =0, xyz+zyx =0,

xy2z =—zyxy =0, y®’xz = —zyxy =0, zxy? = —yxyz = 0.
Theorem 5. The algebra AM4(E‘1) is a nil algebra with nil index 4.
Proof of Theorem 5. For a matrix A € AM4(E;), where

yi 0 z1 O
_ 0 y2 0 2z2
| z3 0 y3 O
0 za 0 y4

and A3 = (aij) we get
a1 = 2z21Z3y1+y12123 +21y323,
a3 =yiz1+2z12321 +y121y3 +21)3,
asn = 2224Y2 + Y22224 +22Y424,
az4 = y%m + 222422+ Y222Y4 + uyf,
az1 = z3y7 +y3zay1 +232123 + Y323,
a33 = 23y121+y32321 +2321)3,
a4y = Z4y§ + YaZaya +242224+ yZZ4,
44 = 22Y222 + V42421 +2422)4.
Now we investigate the entries of A* = (b; i)
b1 = ZlZ3y%+J’IZIZ3J’1 +21y323)1 +J’1ZZIZ3
+ 21232123+ Y121Y123 +Z1y§Z3

Applying Corollary 2 we simplify b1y and get b1; = 21y323y1 + y121Y323- The
identity xyz = —zyx gives

21y323)Y1 = —Z23)Y1)Y3Z21 = Y321)Y1X3 = —)Y121)3Z3.

Thus b11 =0.
In an analogous way we investigate the other entries of A4%:

2
b1z =z123y121+ 1212321 +21Y32321 + Y121)3

+212321)3 +y1Z1y§ +Z1y333
According to Corollary 2 we have b1z = 0.
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Now we consider

by = z2z4y§ + ¥22224y2 +22y424y2 + y512z4
+ 22222224+ y222y424 + Z4ny4-
The same Corollary leads to by = 22V424Y2 + ¥222Y424. As
22Y424)Y2 = —24Y2Y432 = Y432)Y234 = —Y222)434
we get bpy = 0.

Applying Corollary 2 we get bp4 = b31 = 0. In b33 we have to consider only the
part y323y121 +23Y121)3- As

Y3Z23Y121 = —Y12123Y3 = 2321Y1Y3 = —Y3Y12321 = 21)Y123Y3 = —Z3)Y121)3
we get b3z = 0.
The identities in Corollary 2 immediately lead to b4y = 0, bgq = 0. Thus A* =
0. O
Now we consider the subalgebra AS M4(E) of the matrices of type

and prove that it is a PI-algebra.

S 6 O 8
S0 O
Lo o

0
b
0
d

Theorem 6. The algebra AS M4(E) satisfies the identity U[X,Y,Z] = 0.

Proof of Theorem 6. Let X,Y, Z be matrices from AS M4(E) denoting its entries
by a;,b;,ci,d; fori =1,2,3 respectively. We form the diagonal entries of [X,Y] =

(aij), namely
ayy = lay,az]+ajca —azey,
azz = [b1,b2] +b1da —bad,,
asz =|[c1,¢2]+craz —caay,
asq = [d1,d2] +d1b2 — da ;.
For the matrix [X, Y, Z] = (;;) we have modulo [x,y,z] =0 for x, y,z € E that
b11+ b33
= [ayca —azcy.asz]+ ([ar,a2] +arca —azcr)es —asz([c1, c2] +craz —czar)
+ [c1a2 —caay,c3] + ([c1.c2] + c1a2 — caar)az — c3([ar.ax] + arca —aszcy)
= [ayca —azcy,asz]+ (ay1ca —azcy)es —asz(craz —caay)
+ [c1a2 —c2ay,c3] + (c1az —czar)az —c3(aica —ascy)
= [a1c2 —azcr,a3] + [c1a2 — c2ay1, ¢3] + [ar1c2 —azcer, e3] + [c1a2 — c2a1, a3]
= [la1,c2] +[c1.az],a3] +[[c1,a2] + [a1, 2], 3] = 0.



PI-PROPERTIES OF SOME MATRIX ALGEBRAS 1113

Analogously we get that byy + bgg = 0. Thus U[X,Y,Z] = 0 for any matrix
U e ASMy(E). 0

The analogue of ASM4(E) in the general case is the matrix algebra
ASM>,(E). Its elements are of type (a;;), where a;; = a; p4; fori =1,...,n and
ajj =aj j—pfor j =n+1,...,2n. The algebra AS M>, (E) satisfies the same identity
Uulx,y,Z]1=0.

For now we are able to find involutions in My (E) for n > 2 only considering an
involution in E. We generalize the case n = 2, namely

Proposition 6. The mapping (b), defined as

®)
a1 diz aiz a4

daz1 dz2 dz3 424
as1 a3z dsz3z dsz4
a41 442 d43 444

_(A4 B (b): (D)* (B) _ ay; a3y ay; ajs
¢ D ©) (4

is an involution on M4(E, = *).

Proof of Proposition 6. Considering in details the entries of the two matrices (A B )(")
and (B)® (4)® we see that their corresponding entries are equal i.e. the mapping
(b) is an involution. 0

We cover the following special case: Let £ ; be the non-unitary finite dimensional
Grassmann algebra with generators e1,e,,e3 and AM (2)(E;) be the subalgebra of
AMy(E /3) defined by the matrices of type

yi 0 z1 O
0 y» 0 z2
zz 0 y3 0 |’
0 z4 0 4

where y; are even elements (of even length) of E ; while z; are odd elements (of odd
length) of £ ;, i =1,...,4. We equip the algebra AM(2)(E ; ¥, ) with the involution
(b) as defined in Proposition 6.

We characterize the (b)-symmetric elements Y; and the (b)-skew symmetric ele-

ments Z; of the algebra (AM(2) (E;, ¥2), (0)).

Theorem 7. The algebra (AM (2)(E/3, V), (b)) satisfies the (b)-identity Y3 =0
in (b)-symmetric variables.
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Proof of Theorem 7. Let consider a (b)-symmetric element Y. Denoting for short

yf{ 0 Z; 0 yi 0 z1 O
. : * 0 zj 0 0 z
Y¥» as * in the equality a Y 8 »: 01 =1 2 )(}) 2 Vs 02 we get
0 z3x 0 yf 0 z4 0 4

the following conditions on the entries of Y: ¥2(y4) = y1, ¥2(y3) = y2, ¥2(22) =
z1 and ¥2(24) = 23.

Let y1 = s1e1e2+s2e1e3+s3eze3. Then y4 = ¥2(y1) = —y1. For yo =t1e1e2+
treres +tzezes we get y3 = Ya(y2) = —y2. Obviously y% = y% =0.

As the entries are from E ; we could work with odd entries having summands of
degree 1 only. Let z; = a1e; +azez +aszes and z3 = mye; +maer +mses. Then
722 =V2(21) = 21, 24 = V¥2(23) = 23. Considering Y3 = Y?2Y = (aij) as

2123 0 Y121 —21)2 0
0 2123 0 Y221 —Z21)1
Z3y1— Y223 0 2321 0
0 Z3y2— Y123 0 2321

yi 0z 0
0 » 0 zy
23 0 —y2 0
0 zz 0 -y

we see that manipulating with the generators ej, e, e3, probably nontrivial entries
could be only

ayz =azs = 212321 = Pre1ezes, az; = asn = 232123 = Paerezes.
Applying Corollary 2 we get that both of them are zero. O
Theorem 8. The algebra (AM(2) (E;, Vo), (b)) satisfies the (b)-identity Z3 =0

in (b)-skew symmetric variables.

Proof of Theorem 8. Using the same notations for the matrix entries of Z as in the
previous theorem, in this case we have

ya=—Y2(31) = y1. y3 = —¥2(y2) = 2,
yi=y3=0
22 =—V2(21) = —21. 24 = —¥2(23) = 2.
In Z3 = Z2Z = (b;;) nonzero could be only the entries b13 = —bp4 = 212321 and

b31 = —b4p = 737123. Corollary 2 proves they both are zero. O]

We consider the subalgebra (AM(2) (E;, Y¥2), (b)) instead of the algebra
(AM4(E3,92), (b)) itself as if A" = 0 for a b-variable A of (AM4(E,,¥2), (b)) we
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have n > 3. Thus the algebras (AM4(E;,w2),(b)) and AM4(E4;) have equal nil
indices.

We give an example of another matrix algebra with involution (b) having lower
nilpotency index of its (b)-skew symmetric variables:

Let BM(2)(E ;) be the algebra defined by the matrices of type

yi 0 0 zy
0 y2 z2 O
0 zz3 y3 O
z4 0 0 y4

, Where y; are even elements of E ;, while z; are odd elements of £ ;, i=1,....,4. We
equip the algebra BM (2)(E;, Yr») with the involution (b) as defined in Proposition 6.

Theorem 9. The algebra (BM(Z)(E;, V), (b)) satisfies the (b)-identity Y3 =0 in
(b)-symmetric variables and the (b)-identity Z? = 0 in (b)-skew symmetric variables.

Proof of Theorem 9. In the algebra (BM (2)(E ;, Y¥2), (b)) any (b)-skew symmetric
variable Z is a diagonal matrix and Z2 = 0 as yl-2 =0fori =1,...,4. U

There is a package written in the system for computer algebra Mathematica [10]
for manipulating in finite dimensional Grassmann algebras. Using it a programme
was written by the author giving an alternative way of confirming the validity of the
corresponding theorems in the paper.
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