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Received 18 September, 2015

Abstract. We show that every orthomodular lattice can be considered as a left residuated l-
groupoid satisfying divisibility, antitony, the double negation law and three more additional con-
ditions expressed in the language of residuated structures. Also conversely, every left residuated
l-groupoid satisfying the mentioned conditions can be organized into an orthomodular lattice.
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It is well-known that residuated structures form an algebraic axiomatization of
fuzzy logics, see e. g. [1] for an overview. The reader can find necessary concepts
and definitions concerning residuated structures in [5], however this paper is self-
contained. Orthomodular lattices were introduced by G. Birkhoff and J. von Neu-
mann as an algebraic axiomatization of the logic of quantum mechanics, see e. g.
[4], [6] or [2] for details. Hence it is a natural question if these two concepts have
a common base, i. e. if orthomodular lattices can be considered as residuated struc-
tures and hence as an axiomatization of certain fuzzy logic and, conversely, if certain
residuated structures can be converted into orthomodular lattices, i. e. if the logic of
quantum mechanics can be considered as a kind of fuzzy logic. For the theory of
orthomodular lattices cf. the monographs [6] and [2] as well as the paper [3].

We start with the definition of an orthomodular lattice.

Definition 1. An orthomodular lattice is an algebra LD .L;_;^;0 ;0;1/ of type
.2;2;1; 0;0/ satisfying (i) – (v) for all x;y 2 L:

(i) .L;_;^;0;1/ is a bounded lattice.
(ii) x_x0 D 1

(iii) x � y implies y0 � x0.
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(iv) .x0/0 D x

(v) x � y implies y D x_ .y^x0/.

Remark 1. In every lattice .L;_;^/ with a unary operation 0 satisfying (iii) and
(iv) the so-called de Morgan laws

.x_y/0 D x0^y0 and .x^y/0 D x0_y0

hold.

Remark 2. According to the de Morgan laws condition (v) can be replaced by

(vi) x � y implies x D y^ .x_y0/.

Now we introduce left residuated l-groupoids.

Definition 2. A left residuated l-groupoid is an algebra AD .A;_;^;ˇ;!;0;1/

of type .2;2;2;2;0;0/ satisfying (i) – (iii) for all x;y;´ 2 A:

(i) .A;_;^;0;1/ is a bounded lattice.
(ii) xˇ1D 1ˇx D x.

(iii) xˇy � ´ if and only if x � y! ´.

Condition (iii) is called left adjointness. A is said to satisfy divisibility if

.x! y/ˇx D x^y

for all x;y 2 A. We define a unary operation 0 on A by

x0 WD x! 0

for all x 2 A. A is said to satisfy antitony if

x � y implies y0 � x0

for all x;y 2 A and A is said to satisfy the double negation law if

.x0/0 D x

for all x 2 A.

Example 1. If A WD f0;a;a0;b;b0;1g, .A;_;^;0;1/ denotes the bounded lattice
with the Hasse diagram
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and the binary operationsˇ and! are defined by the tables

ˇ 0 a a0 b b0 1

0 0 0 0 0 0 0

a 0 a 0 b b0 a

a0 0 0 a0 b b0 a0

b 0 a a0 b 0 b

b0 0 a a0 0 b0 b0

1 0 a a0 b b0 1

! 0 a a0 b b0 1

0 1 1 1 1 1 1

a a0 1 a0 a0 a0 1

a0 a a 1 a a 1

b b0 b0 b0 1 b0 1

b0 b b b b 1 1

1 0 a a0 b b0 1

then .A;_;^;ˇ;!;0;1/ is a left residuated l-groupoid satisfying divisibility, anti-
tony and the double negation law. The mentioned lattice is the smallest orthomodular
lattice which is not a Boolean algebra and it is usually denoted by MO2.

The following theorem says that to every orthomodular lattice there can be as-
signed a left residuated l-groupoid in a natural way.

Theorem 1. Let LD .L;_;^;0 ;0;1/ be an orthomodular lattice and define binary
operationsˇ and! on L by the following formulas:

xˇy D .x_y0/^y; (0.1)

x! y D .y^x/_x0: (0.2)

Then A.L/D .L;_;^;ˇ;!;0;1/ is a left residuated l-groupoid satisfying divisibil-
ity, antitony, the double negation law as well as the following identity:

xˇ .x_y/D x: (0.3)

Moreover, x0 D x! 0 for all x 2 L.

Proof. Let a;b 2 L. We have

a! 0D .0^a/_a0 D 0_a0 D a0:

Of course, .L;_;^;0;1/ is a bounded lattice. Moreover,

aˇ1D .a_10/^1D .a_0/^1D a^1D a and

1ˇaD .1_a0/^aD 1^aD a:

If aˇb � c then .a_b0/^b � c and hence

a � a_b0 D ..a_b0/^b/_b0 D ...a_b0/^b/^b/_b0 � .c^b/_b0 D b! c:

If, conversely, a � b! c then a � .c^b/_b0 and hence

aˇb D .a_b0/^b � ...c^b/_b0/_b0/^b D ..c^b/_b0/^b D c^b � c:

Now, using orthomodularity (i. e. (v) of Definition 1), we have

.a! b/ˇaD ...b^a/_a0/_a0/^aD ..b^a/_a0/^aD a^b:
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In view of Definition 1, a � b implies b0 � a0 and we have .a0/0 D a. Finally, by
applying (0.1) and (vi) of Remark 2 we obtain

aˇ .a_b/D .a_ .a_b/0/^ .a_b/D a:

�

Remark 3. The operation xˇy WD .x_y0/^y is called the Sasaki projection of
x onto y (cf. [6] and [2]).

Conversely, certain left residuated l-groupoids give rise to an orthomodular lattice.

Theorem 2. Let A D .A;_;^;ˇ;!;0;1/ be a left residuated l-groupoid satis-
fying antitony, the double negation law as well as identities (0.1) and (0.3) of The-
orem 1. Moreover, define x0 WD x! 0 for all x 2A. Then L.A/D .A;_;^;0 ;0;1/ is
an orthomodular lattice.

Proof. Let a;b 2 A. Clearly, .A;_;^;0;1/ is a bounded lattice and a0 D a! 0.
Using antitony we see that a � b implies b0 � a0. Moreover, we have .a0/0 D a

according to the double negation law. Finally, if a � b then, using (0.3) and (0.1), we
have

b D .b0/0 D .b0ˇ .b0_a0//0 D .b0ˇa0/0 D ..b0_a/^a0/0 D a_ .b^a0/

and hence a_a0 D a_ .1^a0/D 1. �

Finally, we prove that the correspondence described in the last two theorems is
one-to-one.

Theorem 3. We have L.A.L//DL for every orthomodular lattice L and A.L.A//D

A for every left residuated l-groupoid satisfying antitony, the double negation law as
well as identities (0.1) – (0.3) of Theorem 1.

Proof. If LD .L;_;^;0 ;0;1/ is an orthomodular lattice, A.L/D .L;_;^;ˇ;!

;0;1/ and L.A.L//D .L;_;^;� ;0;1/ then

x� D x! 0D .0^x/_x0 D 0_x0 D x0

for all x 2 L, therefore we obtain L.A.L// D L. Conversely, if A D .A;_;^;ˇ;

!;0;1/ is a left residuated l-groupoid satisfying divisibility, antitony, the double
negation law as well as identities (0.1) – (0.3) of Theorem 1, L.A/D .A;_;^;0 ;0;1/

and A.L.A//D .A;_;^;ı;);0;1/ then

x ıy D .x_y0/^y D xˇy and

x) y D .y^x/_x0 D x! y

for all x;y 2 A, therefore we obtain A.L.A//DA. �
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Remark 4. We have shown that orthomodular lattices can be considered as special
residuated lattices and hence the logic of quantum mechanics axiomatized by them
has a common base with a certain fuzzy logic axiomatized just by means of resid-
uated lattices as pointed out in [1]. This sheds a new light on the logic of quantum
mechanics and yields new tools for its investigation.
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