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Abstract. This paper considers the problem of determining coefficients in a class A* of normal-
ized starlike functions f analytic in the open unit disk |z| < 1 satisfying the inequality that
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1. INTRODUCTION

Let # denote the class of analytic functions in the open unit disc U = {z : |z| <
1} on the complex plane C. Also, let A denote the subclass of F comprising of
functions f normalized by f(0) =0, f/(0) = 1, and let § C A denote the class of
functions which are univalent in U. Let a function f be analytic univalent in the unit
disc U = {z : |z| < 1} on the complex plane C with the normalization f(0) = 0,
then f maps U onto a starlike domain with respect to wo = 0 if and only if

/
e { zf'(@)
f(2)
It is well known that if an analytic function f satisfies (1.1) and f(0) =0, f/(0) #0,
then f is univalent and starlike in U. The set of all functions f € # that are starlike
univalent in U will be denoted by §*.
For the purpose of this paper, we represent by A* a class which is defined by

} S0 (zeU) (L.1)

b L f2 @) 2/'(2)
AT={fes8": { f(z)} 1| <2 @ ,ZG[U} (1.2)
and a related class studied by Rgnning [8] was defined by
_ Jzf'@) zf'(2)
Sp—{feg. 176 1‘<9%e f(z),ze[U}. (1.3)
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Interpreting geometrically the condition in (1.3), we note that z f'(z)/f(z) lies inside
the parabola

(Jmw)? < 2Rew — 1,

and in this way the class §, was observed to be connected with certain conic do-
mains. In recent papers [1-4, 6, 10], certain function classes were considered and
were defined under the condition that z f/(z)/f(z) lies in a domain which possesses
some geometric properties. If we interpret the condition in (1.2) geometrically, then
we observe that the product of the distances of z f'(z)/f(z) from the foci —1 and
1 is less than twice the distance of z f/(z)/f(z) from the origin. The shape of the
domain for Q(z) =z f'(z)/f(z) is described in Theorem | below and the shape of
0 (U) is depicted in Figure 1.

Theorem 1 ([9]). If f(z) € A*, then

e
and
Z}((/S)_l <2 and ZJJ:(IS)—Fl >V2, zel. (1.5
A jm

FIGURE 1. The domain for z f'(z)/f(z), f € A*.
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2. COEFFICIENT ESTIMATES

Theorem 2. If f(z) € A* and

o
f@ =2+ az*. zel,
k=2
then
laz| <1, laz| <3/4, |as] <1/2.
Proof. In view of (1.2), we have

21 (2) 2_ B 2f'(2)
{ 7@ % =270y

where

(o,]
w@) <1 zel, wz) =) ez*.
k=1
Thus, we obtain

@f @)= @) f(@)+ f(2) =2w(@)zf'(2) f(2).

If we assume that a1 = 1, then from (2.1) and (2.3), we at once have

(Z(k —~ l)akzk) (Z(k + l)akzk)
k=1

k=1

(e (S (5

Hence, we obtain

(Z(k + 1)akz") (Z(k - 1)akz")
k=1 k=1

= (22 +3a22”> +4a3z> + - )(a22”> +2a3z> + 3asz* + -
= 2a2z3 + (4as + 3a%)z4 + (6aq + 10a2a3)Z5 + -

and

(o) (o) ()

419

2.1)

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

=2(c1z24+ 222+ 323+ )2+ 2a2z%2 +3a32° + - ) (2 +a2z® +azz® +---)

=2c¢12> + 23azcy + cz)z4 +2(4aszcy + 2a§c1 + 3aycr + C3)Z5 —+ .-

Equating now the coefficients of like powers of z in (2.6) and (2.7), we have

(@) ar =cy,
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(ii) 4asz+3a3 = 6azcy +2cz,

(iii) 6a4 + 10ara3 = 8aszcy + 4a§(:1 + 6ascy + 2c3.
It is well known that the coefficients of the bounded function w(z) satisfies the in-
equality that |cx| <1, (k = 1,2,3,...), and hence from (i), we have the first inequal-
ity of (2.2) that |az| < 1. Now, from (i) and (ii), we have

3
|[4az| =2|ca + Ec% . (2.8)
Using the estimate (see [7]) that if w(z) has the form (2.3), then
|cz—ucf|§max{1,|u|}, forall pueC, 2.9
and we obtain from (2.8) and (2.9) that
asl <
a K
=y
which gives the second inequality of of (2.2). From (iii), we find that
|6aq| = ‘—10a2a3 +8aszcy + 4a%cl +6ascy + 263‘ . (2.10)
Because a» = c1, (2.10) becomes
|6asq| = ‘—2a3c1 +4ci°’+6c1cz+2c_a,]. (2.11)
Moreover, from (i) — (ii), we have
1 3
a3 =cr+ Zc%, (2.12)
and from (2.11) and (2.12), we obtain that
|6a4| = |2 Ecz + ch c1+4ci] +6c1c242c3
J 3
=156 +5c102 +2¢3 (2.13)
5 1
=3 (cf +2c162+c3) — 53|

To find the bound for the coefficient a4, we next derive some properties of the coef-
ficients ¢ involved in (2.13). Tt is known that the function p(z) given by
1+w(z)
1—w(z)
defines a Caratheodory function with the property that SRe{p(z)} > 0 in U and that
Pl <2 (k=1,2,3,...).
Using (2.3) and equating the coefficients of like powers of z in (2.14), we get

P2 = 2(cf +¢3) and p3 = 2(cf +2c1c +¢3).

=14 pi1z+p2z*+-=:p(2) (2.14)



SOME COEFFICIENT PROPERTIES 421

Hence |c% +c¢2| <1and
i +2c1e2+e3| < 1, (2.15)
and upon using (2.13) and (2.15), we finally find that

5.3
|6as4| < 5(6‘1 +26102+C3) +

2
-2 2
which gives the third inequality of (2.2) that |a4| < 1/2. ]

Remark. We deem it worthwhile to point out here the sharpness of the estimates of
the coefficients given by (2.2) of Theorem 2. Therefore, let us consider the function

J1(z) by

V1412 41—1
fl(z)=zeXp/ fdt
0
24/1 27

3 5 1 1 49
2 3 4 5 6 7
= - — - — —z' U).
Z+z +4z +121 +6z +ZOZ +2880Z (zel)
To show that f1(z) € A*, we need to show that
7 2
{Zfl(z)} ~1] <2
f1(2)

z2f{(2)

f1(z) € 8* and e

. 2.17)

We note that
_ cost + /|2cost|cost/2 for te[0,7/2],
0 <Re {e” + Ve2it + 1} = { cost+ 4/|2cost|sint/2 for t e (nw/2,371/2],
cost — +/|2cost|cost/2 for te (3m/2,2n),

and therefore, for the above function f, we have

2 f{(2)
%{ 5

Hence, by (1.1), f1(z) € 8* and the left-hand side of the second condition in (2.17)
becomes

} =9%e{z+ 1+z2}>0 (z€U).

{ 2fi@) } *
f1(2)

{z+m}2—1‘

=2|z|‘z+\/1+z2‘
<2‘z+\/1+z2)
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Zf¥&)
f1(z)

which implies that f1(z) € A*. Thus, from (2.16), we see that the first and the second
estimations in (2.2) are sharp. The question is whether the third estimation |a4| < 1/2
is sharp in the class. The function (2.16) suggest the following conjecture.

’

Conjecture 1. If f(z) defined by (2.18) belongs to A*, then
5
lag] < — =0.416... .
12

In the sequel, we find somewhat weaker estimation for |a,|, for the next coeffi-
cients too by applying another method.

Theorem 3. If f(z) € A* and

o0
f@=z+) a*. zel, (2.18)
k=2

then forn =2,3,4,..., we have

n—1
(n=12lanl* <D lag)*(1+2k k). (2.19)
k=1
Proof. In view of (1.5), we have
2f'@)
© —1=+2w(z),
where
lw(z)|<1 ze U, w(z)= chzk. (2.20)
k=1
Thus, we obtain
1
— (@ f(2)— f(2) =w(2) f(2), 221
ﬁ(Zf (@)= f(2)) =w(2) f(2) (2.21)

and from (2.18) and (2.20), we at once have

1 o0 [e%e} 00
5 k=D =Y g Y e =1,
2k=1 k=1

k=1
Thus, we get

1 n 1 o0 n—1 fee
— Z(k —Dagz* + — Z (k= DagzF = w(z) Z arzk + Z agzkt
V§k:1 Vi k=1 k=n

k=n+1
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which gives

> lute Y

k=1 k=n+1

akz —ZCkaZakZ —w(Z){ZakZ }
k=1

Therefore, we can write

n k—i e} n—1
Z 7 arpzk + Z bezk = w(z) Zakzk,

k=1 k=n+1 k=1

for some by, n + 1 < k < oo, where by can be expressed in terms of the following
relation involving the coefficients a and cy:

k—1 k—n
by = ak — Z Cjag—j-
j=1
This gives
" k-1 i : ot
ILEE S T Oy S
= 2 k=n+1 k=1
(2.22)
n—1 2
k=1
where

Z 7 akzk + Z bkzk = Z dkzk
k=1 2 k=n+1 k=1

is an analytic function in the unit disc. Making use of the known formula (see, for

instance [5])
2
/

and integrating on z = rel? 0 <r <1,0<86 <2x, both the sides of (2.22), we

obtain
k
§ ( |a |2 2k E |bk|2 2k< § :la |2 2k

k=n+1

00 2
> di(re’®)*
k=1

o0
d6 =27 ) " |dn|*r?",
n=1

Therefore,

1 n n—1
5 2 k= D?aPr* < 3 CagPr?¥,
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which upon letting r — 1 gives

1 n n—1
5 2 k=Dal? < ) lail,
k=1 k=1
and this leads to the desired result (2.19). O

Theorem 4. Let f(z) defined by (2.18) belong to A*. Then for n > 3, we have
V3
n—1

lan| < (2.23)
Proof. From (2.19), we have (for n > 3)
n—1
(n=1)2an|* < > lag*(1+2k —k?)
k=1
=2la1|* + |az|> = 2|az|* — T|as|* - ...
<2lay|* + |az|?
=2+ |az|*.
Furthermore, |a2|? < 1 by Theorem 2, and we have then
(n—1)%lan|> <3
and finally we obtain (2.23). U
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