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1. INTRODUCTION

This note is concerned with the following Fredholm type integral inclusion

x.t/D �.t/C

Z 1

0

f .t; s;u.s//ds; (1.1)

u.t/ 2 F.t;x.t/;G.t;x.t/// a. e. in I; (1.2)

whereX is a separable Banach space, I WD Œ0;1�, F WI �X�X!P .X/,GWI �X!
P .X/, �WI !X , and f WI �I �X !X .

When F does not depend on the last variable, (1.2) reduces to

u.t/ 2 F.t;x.t//: (1.3)

In this case, existence results for problem (1.1), (1.3) and the stability of the solution
set with respect to small perturbations of the free term are obtained via fixed point
techniques in Theorem 2.8.9 in [6] (see also references therein). In [6], the set-valued
map F is assumed to be at least closed-valued. Such an assumption is quite natural
in order to obtain good properties of the solution set, but it is also interesting to
investigate the problem when the right-hand side of (1.3) may have nonclosed values.

Following the approach in [4, 5], we consider the problem (1.1), (1.2), where F
and G are closed-valued set-valued maps, Lipschitzian with respect to the second
variable and F is contractive in the third variable. Obviously, the right-hand side of
the inclusion in (1.2) is in general neither convex nor closed. We prove the arcwise
connectedness of the solution set to (1.1), (1.2). The main tool is a result [4, 5]
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concerning the arcwise connectedness of the fixed point set of a class of nonconvex
nonclosed set-valued contractions.

This idea was already used for similar results for other classes of differential in-
clusions [1–4]. We note that a similar result for Volterra type integral inclusions is
obtained in [1], but it is well known that, in general, the results for Fredholm inte-
gral equations cannot be obtained from the corresponding results for Volterra integral
equations.

The paper is organized as follows: in Section 2, we recall some preliminary results
that we use in the sequel and, in Section 3, we prove our main result.

2. PRELIMINARIES

Let Z be a metric space with the distance dZ and let P .Z/ be the family of
all nonempty closed subsets of Z. For a 2 Z and A;B 2 P .Z/, set dZ.a;B/ D
infb2B dZ.a;b/ and d�Z.A;B/ D supa2AdZ.a;B/. Denote by DZ the Pompeiu–
Hausdorff generalized metric on P .Z/ defined by

DZ.A;B/Dmax
˚
d�Z.A;B/;d

�
Z.B;A/

	
; A;B 2P .Z/:

In what follows, when the product Z D Z1�Z2 of metric spaces Zi , i D 1;2, is
considered, it is assumed that Z is equipped with the distance

dZ
�
.´1;´2/; .´

0
1;´
0
2/
�
D

2X
iD1

dZi
.´i ;´

0
i /:

Let X be a nonempty set and let F WX ! P .Z/ be a set-valued map from X to
Z. The range of F is the set F.X/ D

S
x2X F.x/. Let .X;F / be a measurable

space. The set-valued map F WX ! P .Z/ is called measurable if F�1.˝/ 2 F for
any open set ˝ � Z, where F�1.˝/ D

˚
x 2 X IF.x/\˝ ¤ ¿

	
. Let .X;dX / be

a metric space. The set-valued map F is called Hausdorff continuous if, for any
x0 2 X and every " > 0, there exists ı > 0 such that x 2 X , dX .x;x0/ < ı implies
DZ.F.x/;F.x0// < ".

Let .T;F ;�/ be a finite, positive, nonatomic measure space and let .X; j � jX / be
a Banach space. We denote by L1.T;X/ the Banach space of all (equivalent classes
of) Bochner integrable functions uWT !X endowed with the norm

kuk1 D

Z
T

ju.t/jXd�:

A nonempty set K � L1.T;X/ is called decomposable if, for every u;v 2K and
every A 2 F , one has

�A �uC�T nA �v 2K

where �B indicates the characteristic function of B 2 F .
A metric space Z is called an absolute retract if, for any metric space X and any

nonempty closed setX0�X , every continuous function gWX0!Z has a continuous



A NONCLOSED NONCONVEX INTEGRAL INCLUSION 35

extension gWX!Z overX . It is obvious that every continuous image of an absolute
retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in the
proof of our result.

Let .T;F ;�/ be a finite, positive, nonatomic measure space, S a separable Banach
space and let .X; j � jX / be a real Banach space. To simplify the notation we write E
in place of L1.T;X/.

Lemma 1 ([4]). Assume that 'WS �E! P .E/ and  WS �E �E! P .E/ are
Hausdorff continuous set-valued maps with nonempty, closed, decomposable values,
satisfying the following conditions:

(a) There exists L 2 Œ0;1/ such that, for every s 2 S and every u;u0 2E,

DE .'.s;u/;'.s;u
0//� Lku�u0kE :

(b) There exists M 2 Œ0;1/ such that LCM < 1 and for every s 2 S and every
.u;v/; .u0;v0/ 2E �E,

DE . .s;u;v/; .s;u
0;v0//�M.ku�u0kE Ckv�v

0
kE /:

Set Fix
�
� .s; �/

�
D fu 2 EIu 2 � .s;u/g, where � .s;u/ D  .s;u;'.s;u//, .s;u/ 2

S �E. Then

(1) For every s 2 S the set Fix
�
� .s; �/

�
is nonempty and arcwise connected.

(2) For any si 2 S and any ui 2 Fix
�
� .s; �/

�
, i D 1; : : : ;p, there exists a con-

tinuous function 
 WS ! E such that 
.s/ 2 Fix
�
� .s; �/

�
for all s 2 S and


.si /D ui , i D 1; : : : ;p.

Lemma 2 ([4]). Let U WT ! P .X/ and V WT �X ! P .X/ be two nonempty
closed-valued set-valued maps satisfying the following conditions:

(a) U is measurable and there exists r 2L1.T;R/ such thatDX .U.t/;f0g/� r.t/
for almost all t 2 T .

(b) The set-valued map t 7! V.t;x/ is measurable for every x 2X .
(c) The set-valued map x 7! V.t;x/ is Hausdorff continuous for all t 2 T .

Let vWT !X be a measurable selection from t 7! V.t;U.t//.
Then there exists a selection u 2 L1.T;X/ such that v.t/ 2 V.t;u.t//, t 2 T .

LetX be a separable Banach space, C.I;X/ the Banach space of continuous func-
tions defined on I with values in X endowed with the norm kxkC D supt2I jx.t/j.
We consider the problem (1.1), (1.2) defined by the mappings F WI �X�X!P .X/,
GWI �X ! P .X/, �WI ! X , and f WI � I �X ! X . A function x 2 C.I;X/ is
said to be a solution of (1.1), (1.2) if there exists a function u 2 L1.I;X/ such that
(1.1), (1.2) are satisfied.

In order to study problem (1.1), (1.2) we introduce the following hypothesis.
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Hypothesis 1. Let �2C.I;X/ and F WI �X�X!P .X/,GWI �X!P .X/ be
two set-valued maps with nonempty closed values, satisfying the following assump-
tions:

(i) The set-valued maps t 7! F.t;u;v/ and t 7! G.t;u/ are measurable for all
u;v 2X .

(ii) There exist l 2 L1.I;R/ such that, for arbitrary u;u0 2X ,

D
�
G.t;u/;G.t;u0/

�
� l.t/ju�u0j a. e. in I:

(iii) There exist m 2 L1.I;R/ and � 2 Œ0;1/ such that, for arbitrary u;v;u0;v0 2
X ,

D
�
F.t;u;v/;F.t;u0;v0/

�
�m.t/ju�u0jC� jv�v0j a. e. in I:

(iv) There exist g1;g2 2 L1.I;R/ such that

d
�
f0g;F .t;f0g;f0g/

�
� g1.t/; d

�
f0g;G.t;f0g/

�
� g2.t/ a. e. in I:

(v) f WI � I �X ! X is a continuous and bounded function and there exists
a constant M > 0 such that

jf .t; s;u1/�f .t; s;u2/j �M ju1�u2j 8u1;u2 2X:

For � 2 C.I;X/, we denote by S.�/ the solution set of (1.1), (1.2). In what
follows, N.t/Dmaxfl.t/;m.t/g, t 2 I , and N � D

R 1
0 N.s/ds.

3. THE MAIN RESULT

Even if the set-valued map from the right-hand side of (1.1), (1.2) has, in general,
nonclosed nonconvex values, the solution set S.�/ has some meaningful properties,
stated in Theorem 1 below.

Theorem 1. Assume that Hypothesis 1 is satisfied and 2N �M C� < 1. Then:
(1) For every � 2 C.I;X/, the solution set S.�/ of (1.1), (1.2) is nonempty and

arcwise connected in the space C.I;X/.
(2) For any �i 2C.I;X/ and any xi 2 S.�i /; i D 1; : : : ;p, there exists a continu-

ous function sWC.I;X/!C.I;X/ such that s.�/2S.�/ for any �2C.I;X/
and s.�i /D xi , i D 1; : : : ;p.

(3) The set S D[�2C.I;X/S.�/ is arcwise connected in C.I;X/.

Proof. (1) For � 2 C.I;X/ and u 2 L1.I;X/, set

x�.t/D �.t/C

Z 1

0

f .t; s;u.s//ds; t 2 I:

We shall prove that the set-valued maps 'WC.I;X/�L1.I;X/! P .L1.I;X// and
 WC.I;X/�L1.I;X/�L1.I;X/!P .L1.I;X//, given by the formulas

'.�;u/D
˚
v 2 L1.I;X/I v.t/ 2G.t;x�.t// a. e. in I
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and
 .�;u;v/D

˚
w 2 L1.I;X/I w.t/ 2 F.t;x�.t/;v.t// a. e. in I

	
for � 2 C.I;X/ and u;v 2 L1.I;X/, satisfy the hypotheses of Lemma 1.

Since x� is measurable and G satisfies Hypothesis 1(i) and (ii), the set-valued
map t 7!G.t;x�.t// is measurable and nonempty closed-valued, it has a measurable
selection. Therefore, due to Hypothesis 1(iv), the set '.�;u/ is nonempty. The fact
that the set '.�;u/ is closed and decomposable follows by simple computation. In
the same way we obtain that  .�;u;v/ is a nonempty closed decomposable set.

Pick .�;u/; .�1;u1/ 2C.I;X/�L1.I;X/ and choose v 2 '.�;u/. For each " > 0
there exists v1 2 '.�1;u1/ such that, for every t 2 I , one has

jv.t/�v1.t/j �D
�
G.t;x�.t//;G.t;u�1

.t//
�
C "

�N.t/

�
j�.t/��1.t/jC

Z 1

0

M ju.s/�u1.s/jds

�
C ":

Hence
kv�v1k1 �N

�
k���1kC CN

�Mku�u1k1C "

for any " > 0.
This implies

dL1.I;X/

�
v;'.�1;u1/

�
�N �k���1kC CN

�Mku�u1k1

for all v 2 '.�;u/. Therefore,

d�
L1.I;X/

�
'.�;u/;'.�1;u1/

�
�N �k���1kC CN

�Mku�u1k1:

Consequently,

DL1.I;X/

�
'.�;u/;'.�1;u1/

�
�N �k���1kC CN

�Mku�u1k1;

which shows that ' is Hausdorff continuous and satisfies the assumptions of Lemma 1.
Let us pick .�;u;v/; .�1;u1;v1/2C.I;X/�L1.I;X/�L1.I;X/ and choosew 2

 .�;u;v/. Then, as before, for each " > 0 there exists w1 2  .�1;u1;v1/ such that

jw.t/�w1.t/j �D
�
F.t;x�.t/;v.t//;F .t;x�1

.t/;v1.t//big/C "

�N.t/

�
j�.t/��1.t/jCM

Z 1

0

ju.s/�u1.s/jds

�
C� jv.t/�v1.t/jC "

for every t 2 I . Hence

kw�w1k1 �N
�
k���1kC CN

�Mku�u1k1C�kv�v1k1C "

�N �k���1kC C .N
�M C�/.ku�u1k1Ckv�v1k1/C "

�N �k���1kC C .N
�M C�/dL1.I;X/�L1.I;X/

�
.u;v/; .u1;v1/

�
C ":



38 AURELIAN CERNEA

As above, we deduce that

DL1.I;X/

�
 .�;u;v/; .�1;u1;v1/

�
�N �k���1kC C .N

�M C�/dL1.I;X/�L1.I;X/

�
u;v/; .u1;v1

�
;

namely, the set-valued map  is Hausdorff continuous and satisfies the hypothesis of
Lemma 1.

Let us put � .�;u/ D  .�;u;'.�;u//, .�;u/ 2 C.I;X/�L1.I;X/. According
to Lemma 1, the set Fix.� .s; �// D

˚
u 2 EIu 2 � .s;u/

	
is nonempty and arcwise

connected in L1.I;X/. Moreover, for fixed �i 2 C.I;X/ and ui 2 Fix.� .�i ; �//,
i D 1; : : : ;p, there exists a continuous function 
 WC.I;X/! L1.I;X/ such that


.�/ 2 Fix.� .�; �//; 8� 2 C.I;X/ (3.1)

and

.�i /D ui ; i D 1; : : : ;p: (3.2)

We shall prove that

Fix.� .�; �//D
˚
u 2 L1.I;X/I u.t/ 2 F.t;x�.t/;G.t;x�.t/// a. e. in I

	
: (3.3)

Denote by A.�/ the right-hand side of (3.3). If u 2 Fix.� .�; �//, then there is v 2
'.�;v/ such that u 2  .�;u;v/. Therefore, v.t/ 2G.t;x�.t// and

u.t/ 2 F.t;x�.t/;v.t//� F.t;u�.t/;G.t;u�.t/// a. e. in I;

so that Fix.� .�; �//� A.�/.
Let now u 2 A.�/. By Lemma 2, there exists a selection v 2 L1.I;X/ of the

set-valued map t !G.t;x�.t/// satisfying

u.t/ 2 F.t;x�.t/;v.t// a. e. in I:

Hence, v 2 '.�;v/, u 2  .�;u;v/ and thus u 2 � .�;u/, which completes the proof
of (3.3).

We next note that, taking into account Hypothesis 1(v), the function T WL1.I;X/!
C.I;X/,

T .u/.t/ WD

Z 1

0

f .t; s;u.s//ds; t 2 I;

is continuous and one has

S.�/D �CT .Fix.� .�; �///; � 2 C.I;X/: (3.4)

Since Fix.� .�; �// is nonempty and arcwise connected in L1.I;X/, the set S.�/
has the same properties in C.I;X/.

(2) Let �i 2 C.I;X/ and let xi 2 S.�i /, i D 1; : : : ;p be fixed. By (3.4), there
exists vi 2 Fix.� .�i ; �// such that

xi D �i CT .vi /; i D 1; : : : ;p:
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If 
 WC.I;X/! L1.I;X/ is a continuous function satisfying (3.1) and (3.2), we de-
fine, for every � 2 C.I;X/,

s.�/D �CT .
.�//:

Obviously, the function sWC.I;X/! C.I;X/ is continuous, s.�/ 2 S.�/ for all � 2
C.I;X/, and

s.�i /D �i CT .
.�i //D �i CT .vi /D xi ; i D 1; : : : ;p:

(3) Let x1;x2 2 S D[�2C.I;X/S.�/ and choose �i 2 C.I;X/, i D 1;2 such that
xi 2 S.�i /, i D 1;2. From the conclusion of (2) we deduce the existence of a contin-
uous function sWC.I;X/! C.I;X/ satisfying s.�i /D xi , i D 1;2 and s.�/ 2 S.�/,
� 2 C.I;X/. Let hW Œ0;1�! C.I;X/ be a continuous mapping such that h.0/D �1
and h.1/D �2. Then the function s ıh W Œ0;1�! C.I;X/ is continuous and satisfies
the relations

s ıh.0/D u1; s ıh.1/D u2;

and
s ıh.�/ 2 S.h.�//� S; � 2 Œ0;1�:

The proof is complete. �
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sions,” in Proceedings of the Centennial “G. Vrănceanu” and the Annual Meeting of the Faculty of
Mathematics (Bucharest, 2000), vol. 49, no. 2, 2000, pp. 123–131.

[2] A. Cernea, “On the set of solutions of some nonconvex nonclosed hyperbolic differential inclu-
sions,” Czechoslovak Math. J., vol. 52(127), no. 1, pp. 215–224, 2002.

[3] A. Cernea, “On the solution set of a nonconvex nonclosed second order differential inclusion,”
Fixed Point Theory, vol. 8, no. 1, pp. 29–37, 2007.

[4] S. A. Marano and V. Staicu, “On the set of solutions to a class of nonconvex nonclosed differential
inclusions,” Acta Math. Hungar., vol. 76, no. 4, pp. 287–301, 1997.

[5] S. A. Marano, “Fixed points of multivalued contractions with nonclosed, nonconvex values,” Atti
Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., vol. 5, no. 3, pp. 203–212,
1994.
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