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Abstract. We show how a suitable interval halving and parametrization technique can help to
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ing with solutions of nonlinear non-autonomous systems of ordinary differential equations under
integral boundary conditions.
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1. INTRODUCTION

Recently, boundary value problems (BVPs) with integral conditions for non-linear
differential equations have attracted much attention, see, e.g. [1],[2] and the ref-
erences therein. However mainly scalar non-linear differential equations of special
kinds have been studied. According to our best knowledge, there are only a few
works dealing with a constructive investigation of systems of non-linear differential
equations of a general form with linear or non-linear integral boundary restrictions.
So, in [10] the following mixed integral BVP was studied

dx.t/

dt
D f .t;x.t// ; t 2 Œ0;T � ;

Ax.0/C

TZ
0

P.s/x.s/dsCCx.T /D d:

The paper [6] deals with the problem of general form
du.t/

dt
D f .t;u.t// ; t 2 Œa;b� ;

˚.u/D d; (1.1)
where˚ WC .Œa;b� ;Rn/ is a vector functional (possibly non-linear), f W Œa;b��Rn!
Rn is a function satisfying the Caratheodory condition in a certain bounded set and
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d is a given vector. In [9] the authors investigated the problem for which the integral
boundary restrictions also depend upon the derivative of the solution

du.t/

dt
D f .t;u.t// ; t 2 Œa;b� ;

bZ
a

Œg.s;x.s//Ch.s;f .s;x.s///�ds D d (1.2)

and in [5] it was given a constructive existence analysis of solutions of the problem
above.

Note, that the investigation of the solutions of problems (1.1) and (1.2) was con-
nected with the properties of the following special sequence of functions well posed
on the interval t 2 Œa;b�

x0 .t;´;�/ WD ´C
t �a

b�a
Œ��´�D

�
1�

t �a

b�a

�
´C

t �a

b�a
�; t 2 Œa;b� ;

xm .t;´;�/ WD ´C

tZ
a

f .s;xm�1 .s;´;�//ds� (1.3)

�
t �a

b�a

bZ
a

f .s;xm�1 .s;´;�//dsC
t �a

b�a
Œ��´� ; t 2 Œa;b� ;

where ´ and � are some vector-parameters.
The aim of this paper is to show how a natural interval halving and parametri-

zation technique can help to essentially improve the sufficient convergence conditions
mentioned in papers [6], [9].

More precisely we consider the problem

du.t/

dt
D f .t;u.t// ; t 2 Œa;b� ; (1.4)

bZ
a

g .s;x.s//ds D d; (1.5)

where f W Œa;b��D ! Rn , g W Œa;b��D ! Rn are a continuous functions in a
certain bounded set D and d 2 Rn is a given vector.

We use an appropriate numerical-analytic approach and a natural interval halving
technique which was suggested in [6], [4], [7], [8],[11], [3]. At first, we reduce
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the given problem (1.4), (1.5) to two ”model-type” two-point BVPs with separated
parameterized conditions

dx

dt
D f .t;x/ ; t 2

�
a;aC

b�a

2

�
; (1.6)

x.a/D ´; x

�
aC

b�a

2

�
D � (1.7)

and

dy

dt
D f .t;y/ ; t 2

�
aC

b�a

2
;b

�
; (1.8)

y

�
aC

b�a

2

�
D �; y.b/D �; (1.9)

where ´;�;� 2 Rn are parameters. Note, that the length of the interval in problems
(1.6) ,(1.7) and (1.8), (1.9) is b�a

2
opposite to b�a in the case of original BVP (1.4),

(1.5).
To study the solutions of BVPs (1.6), (1.7) and (1.8), (1.9) we use the special mod-

ified form of parameterized successive approximations xm.t;´;�/ and ym.t;�;�/ of
type (1.3) constructed in analytic form and well defined on the intervals
t 2

h
a;aC b�a

2

i
and t 2

h
aC b�a

2
;b
i
, respectively.

We give sufficient conditions for the uniform convergence of these successive ap-
proximations to some limit functions x1.t;´;�/ and y1.t;�;�/; respectively: The
main limitation in order to guarantee the convergence of the introduced sequences
fxm.t;´;�/g

1
mD0 and fym.t;´;�/g1mD0 is that one has to assume a certain smallness

of the eigenvalue r.Q/ of the matrixQ WD 3.b�a/
20

K, whereK stands in the Lipschitz
condition jf .t;u1/�f .t;u2/j �K ju1�u2j ; provided that

r.Q/ < 1:

Note that in [6], [9], [5], [10] where the numerical-analytic approach was applied,
instead of the previous inequality the convergence condition

2r.Q/ < 1:

has appeared. Thus, the convergence condition is weakened by its half. We show
that the limit functions x1.t;´;�/ and y1.t;�;�/ are solutions of some additively
modified equations of form (1.6) and (1.8). The functional perturbation term, by
which the modified equation differs from the original one, essentially depends on the
parameters ´;�;� and generates finitely many determining equations together with
(1.5) from which the numerical values of these parameters should be found.
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2. NOTATION AND DEFINITIONS

We fix an n 2N and a bounded set D � Rn. The following symbols are used in
the sequel:

1. For vectors x D col.x1; :::;xn/ 2 Rn the obvious notation
jxj D col.jx1j ; :::; jxnj/ is used and the inequalities between vectors are understood
component-wise.

The same convention is adopted implicitly for operations 0max0;0min0;0 sup0; 0 inf0;
so that e.g. maxfh.´/ W ´ 2Qg for any h D .hi /niD1 W Q ! Rn, where Q � Rm,
m � n; is defined as the column vector with components maxfhi .´/ W ´ 2Qg, i D
1;2; : : : ;n.

2. 1n is the unit matrix of dimension n.
3. 0n is the zero matrix of dimension n.
4. r.K/ is the maximal eigenvalue (in modulus) of a matrix K.

Definition 1. For any non-negative vector � 2 Rn under the component-wise
��neighborhood of a point ´ 2 Rn we understand

B.´;�/ WD f� 2 Rn W j��´j � �g : (2.1)

Similarly, for the given bounded connected set˝ �Rn;we define its componentwise
��neighborhood by putting

B.˝;�/ WD [
�2˝

B .�;�/ : (2.2)

Definition 2. For given two bounded connected sets Da � Rn and Db � Rn;
introduce the set

Da;b WD .1��/´C��; ´ 2Da;� 2Db;� 2 Œ0;1� (2.3)

and its component-wise ��neighborhood

D WD B.Da;b;�/ : (2.4)

For a setD � Rn, closed interval Œa;b�� R, continuous function f W Œa;b��D!
Rn, n�n matrix K with non-negative entries, we write

f 2 Lip.K;D/ (2.5)

if the inequality
jf .t;u/�f .t;v/j �K ju�vj (2.6)

holds for all fu;vg �D and t 2 Œa;b� :
Finally, on the base of function f W Œa;b��D! Rn we introduce the vector

ıŒa;b�;D.f / WD
1

2

�
max

.t;x/2Œa;b��D
f .t;x/� min

.t;x/2Œa;b��D
f .t;x/

�
: (2.7)
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3. PROBLEM SETTING AND REDUCTION TO MODEL-TYPE, SUBSIDIARY
STATEMENTS

Let us consider the nonlinear integral BVP (1.4), (1.5).
Let us fix certain closed bounded sets Da , DaCb

2

; Db � Rn and focus on the
continuously differentiable solutions u of problem (1.4), (1.5) with values

u.a/ 2Da; u

�
aCb

2

�
2DaCb

2

and u.b/ 2Db: (3.1)

Without loss of generality, we shall choose Da , DaCb
2

; Db to be convex.
Based on the sets Da and DaCb

2

we introduce the set

D
a;aCb

2

WD .1��/´C��; ´ 2Da; � 2DaCb
2

; � 2 Œ0;1� ; (3.2)

according to (2.3) and its component-wise �x�neighborhood

Dx WD B.D
a;aCb

2

;�x/ (3.3)

as in (2.4). Similarly, based on the sets DaCb
2

and Db we introduce the set

DaCb
2
;b
WD .1��/�C��; � 2DaCb

2

; � 2Db; � 2 Œ0;1� ; (3.4)

according to (2.3) and its component-wise �y�neighborhood

Dy WD B.DaCb
2
;b
;�y/ (3.5)

as in (2.4).
It is important to emphasize that Dx; Dy and D are bounded sets and, thus, the

Lipschitz conditions of type (2.5), (2.6) are not assumed globally. The problem is to
find a continuously differentiable solution u W Œa;b�!D of the problem (1.4), (1.5)
for which inclusions (3.1) hold.

At first we simplify the boundary integral conditions (1.5) and reduce it to some
two-point separated conditions. To replace the boundary conditions (1.5) by certain
linear two-point linear separated ones, similarly to [6], [10], [11],[9] we apply a
certain ”freezing” technique. Namely, we introduce the vectors of parameters

´D col.´1;´2; :::;´n/; �D col.�1;�2; :::;�n/; �D col.�1;�2; :::;�n/ (3.6)

by formally putting

´ WD u.a/; � WD u

�
aCb

2

�
; � WD u.b/: (3.7)

Now, instead of boundary value problem (1.4), (1.5) using a natural interval halv-
ing technique, we will consider on the intervals t 2

h
a; aCb

2

i
and t 2

h
aC b�a

2
;b
i
;

respectively, the following two ”model-type” two-point BVPs with separated para-
meterized conditions (1.6), (1.7) and (1.8), (1.9).
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The parametrization technique that we are going to use suggests that instead of the
original boundary value problem (1.4) (1.5), we study the family of parameterized
boundary value problems (1.6), (1.7) and (1.8), (1.9) where the boundary restrictions
are linear and separated. We then go back to the original problem by choosing the
values of the introduced parameters appropriately.

Remark 1. The set of solutions of the boundary value problem (1.4), (1.5) co-
incides with the set of the solutions of the parameterized problems (1.6), (1.7) and
(1.8), (1.9) with separated restrictions, satisfying additional conditions (3.7).

We recall some subsidiary statements which are needed below in the following
form.

Lemma 1 ([3], Lemma 3.13). Let f W Œ�;�CI �! Rn be a continuous function.
Then, for an arbitrary t 2 Œ�;�CI � ; the inequalityˇ̌̌̌

ˇ̌
tZ
�

24f .�/� 1
I

�CIZ
�

f .s/ds

35d�
ˇ̌̌̌
ˇ̌� ˛1.t; �;I / ıŒ�;�CI �.f / (3.8)

holds, where

˛1.t; �;I /D 2.t � �/

�
1�

t � �

I

�
; j˛1.t; �;I /j �

I

2
; t 2 Œ�;�CI � ; (3.9)

and

ıŒ�;�CI �.f /D

max
t2Œ�;�CI �

f .t/� min
t2Œ�;�CI �

f .t/

2
:

Lemma 2 ([3], Lemma 3.16). Let the sequence of continuous functions
f˛m.t; �;I /g

1
mD0 ; for t 2 Œ�;�CI � be defined by the recurrence relation

˛mC1.t; �;I /D

�
1�

t � �

I

� tZ
�

˛m.s;�;I /dsC

C
t � �

I

�CIZ
t

˛m.s;�;I /ds;mD 0;1;2; ::::; (3.10)

where
˛0.t; �;I /D 1:

Then the following estimates hold for t 2 Œ�;�CI �:

˛mC1.t; �;I /�
10

9

�
3I

10

�m
˛1.t; �;I /; m> 0; (3.11)

˛mC1.t; �;I /�
3I

10
˛m.t; �;I /;m> 2;
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where ˛1.t; �;I / is given in (3.9).

4. INTERVAL HALVING AND SUCCESSIVE APPROXIMATIONS

So, our approach to the integral BVP (1.4), (1.5) requires that we first study the
auxiliary problems (1.6), (1.7) and (1.8), (1.9) separately, for which purpose appro-
priate iteration processes were introduced .

Let us put that the domain of the space of variables of the problem (1.6), (1.7) is
Dx .

We suppose that f 2 Lip.Kx;Dx/ with �x satisfies the inequality

�x �
b�a

4
ıh
a;aCb

2

i
;Dx

.f / (4.1)

and

r .Qx/ < 1;Qx D
3.b�a/

20
Kx : (4.2)

Let us define for the parameterized problem (1.6), (1.7) the recurrence parameterized
sequence of functions xm W

h
a; aCb

2

i
�Rn �Rn ! Rn ; mD 0;1;2; :::; by putting

x0 .t;´;�/ WD ´C
2.t �a/

b�a
Œ��´�D (4.3)

D

�
1�

2.t �a/

b�a

�
´C

2.t �a/

b�a
�; t 2

�
a;
aCb

2

�
;

xm .t;´;�/ WD ´C

tZ
a

f .s;xm�1 .s;´;�//ds� (4.4)

�
2.t �a/

b�a

aCb
2Z
a

f .s;xm�1 .s;´;�//dsC
2.t �a/

b�a
Œ��´� ; t 2

�
a;
aCb

2

�
;

for all mD 1;2; :::;´ 2 Rn and � 2 Rn :
In a similar manner, for the parameterized problem (1.8), (1.9) on the intervalh
aCb
2
;b
i
, we put that the domain of the space variables for the problem is Dy and

suppose that f 2 Lip.Ky ;Dy/ with �y satisfying the inequality

�y �
b�a

4
ıhaCb

2
;b
i
;Dy

.f / (4.5)

and

r

�
3.b�a/

20
Ky

�
< 1: (4.6)
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Let us define for the problem (1.8), (1.9) the recurrence parameterized sequence of
functions ym W

h
aCb
2
;b
i
�Rn �Rn ! Rn ;mD 0;1;2; :::; by putting

y0 .t;�;�/ WD �C
2t �a�b

2b�a�b
Œ����D (4.7)

D

�
1�

2t �a�b

2b�a�b

�
�C

2t �a�b

2b�a�b
�; t 2

�
aCb

2
;b

�
;

ym .t;�;�/ WD �C

tZ
aCb

2

f .s;ym�1 .s;�;�//ds� (4.8)

�
2t �a�b

2b�a�b

bZ
aCb

2

f .s;ym�1 .s;´;�//dsC
2t �a�b

2b�a�b
Œ���� ; t 2

�
aCb

2
;b

�
;

for all mD 1;2; :::;� 2 Rn and � 2 Rn :
We note that all members of the sequences (4.4), (4.8) satisfy the two-point bound-

ary conditions (1.7) and (1.9) for any ´; � and � from Rn :

5. CONVERGENCE OF SUCCESSIVE APPROXIMATIONS

We would like to use the sequences xm W
h
a; aCb

2

i
�Rn �Rn !Rn ;mD 0;1;2; :::;

and ym W
h
aCb
2
;b
i
�Rn �Rn ! Rn ;mD 0;1;2; :::from (4.4) and (4.8) for the in-

vestigation of the solutions of the given boundary value problem (1.4), (1.5).
The following statement shows that the sequence (4.4) is uniformly convergent

and its limit is a solution of a certain additively perturbed problem for all .´;�/ 2
Da�DaCb

2

.

Theorem 1. Let there exist a non negative vector �x such that
f 2 Lip.Kx;D

x/ on the interval t 2
h
a; aCb

2

i
with �x satisfying the inequality

(4.7) and for the matrix

Qx WD
3.b�a/

20
Kx; (5.1)

the inequality (5.2) is satisfied
r.Qx/ < 1: (5.2)

Then, for arbitrary fixed pair of vectors .´;�/ 2Da�DaCb
2

:
1. All members of sequence (4.4) are continuously differentiable functions on the

interval t 2
h
a; aCb

2

i
satisfying the two-point separated parameterized boundary

conditions (1.7).



SUCCESSIVE APPROXIMATIONS AND INTERVAL HALVING 1137

2. The sequence of functions (4.4) in t 2
h
a; aCb

2

i
converges uniformly asm!1

to the limit function
x1 .t;´;�/D lim

m!1
xm.t;´;�/: (5.3)

3. The limit function satisfies the conditions

x1 .a;´;�/D ´; x1

�
aCb

2
;´;�

�
D �: (5.4)

4. The function x1 .t;´;�/ is a unique continuously differentiable solution of the
integral equation

x.t/D ´C

tZ
a

f .s;x.s//ds�

�
2.t �a/

b�a

aCb
2Z
a

f .s;x.s//dsC
2.t �a/

b�a
Œ��´� ; t 2

�
a;
aCb

2

�
(5.5)

in the domain Dx . In other words, x1 .t;´;�/ is a solution of the following Cauchy
problem for the modified system of integro-differential equations:

dx

dt
D f .t;x/ C

2

b�a
�.´;�/; t 2

�
a;
aCb

2

�
; (5.6)

x .a/D ´; (5.7)
where �.´;�/ WDa�DaCb

2

! Rn is a mapping given by the formula

�.´;�/D ��´�

aCb
2Z
a

f .s;x1 .s;´;�//ds: (5.8)

5. The following estimate holds:

jx1 .t;´;�/�xm .t;´;�/j6

6
10

9
˛1

�
t;a;

b�a

2

�
Qmx .1n�Qx/

�1 ıh
a;aCb

2

i
�Dx

.f /; t 2

�
a;
aCb

2

�
;m� 0;

(5.9)
where ıh

a;aCb
2

i
�Dx

.f / is given in (2.7) and ˛1.t;a; b�a2 / is defined by (3.9).

Proof. The validity of assertion 1 is verified by direct computation. To obtain the
other required properties, similarly to [6],[9] we will prove that under the condition
assumed for fixed ´2Da; �2DaCb

2

and t 2
h
a; aCb

2

i
the functions of the sequence

(4.4) are contained in the domain Dx and (4.4) is a Cauchy sequence in the Banach
space C

�h
a; aCb

2

i
;Rn

�
equipped with the standard uniform norm. Indeed, using the
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estimate (3.8) of Lemma 1 for � D a;I D b�a
2

, relation (4.4) formD 0; t 2
h
a; aCb

2

i
implies that

jx1 .t;´;�/�x0 .t;´;�/j �

�
1

2
˛1.t;a;

aCb

2
/

�
max
t2Œa;b�

f .t;x0 .t;´;�//� min
t2Œa;b�

f .t;x0 .t;´;�//

�
� ˛1

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /�
b�a

4
ıh
a;aCb

2

i
;Dx

.f /; (5.10)

which means taking into account (4.1) , that x1 .t;´;�/ 2 Dx; whenever .t;´;�/ 2h
a; aCb

2

i
�Da �DaCb

2

:

Using this and arguing by induction according to Lemma 1 we can easily establish
that

jxm .t;´;�/�x0 .t;´;�/j � ˛1

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /�

�
b�a

4
ıh
a;aCb

2

i
;Dx

.f /; mD 2;3; :::; (5.11)

which means that all functions in (4.4) are also contained in the domain Dx; for all
mD 1;2;3; ::and .t;´;�/ 2

h
a; aCb

2

i
�Da �DaCb

2

:

Now, consider the difference of functions

xmC1 .t;´;�/�xm .t;´;�/D (5.12)

D

tZ
a

Œf .s;xm .s;´;�//�f .s;xm�1 .s;´;�//�ds�

�
2.t �a/

b�a

aCb
2Z
a

Œf .s;xm .s;´;�//�f .s;xm�1 .s;´;�//�ds; mD 1;2; :::

and introduce the notation

rm.t;´;�/ WD jxm .t;´;�/�xm�1 .t;´;�/j ;mD 1;2; :::: (5.13)

According to the recurrence relation (3.10) of Lemma 2, using the Lipschitz con-
dition f 2Lip.Kx;Dx/ and estimation (3.11), formD 1 it follows from (5.12) and
(5.10) that

r2.t;´;�/�Kx

24�1� 2.t �a/
b�a

� tZ
a

˛1

�
s;a;

aCb

2

�
dsC
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C
2.t �a/

b�a

bZ
t

˛1

�
s;a;

aCb

2

�
ds

35ıh
a;aCb

2

i
;Dx

.f /� (5.14)

�Kx˛2

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /�
10

9
Qx˛1

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /;

where the matrixQx has the form given in (5.1). By induction we can easily establish
that

rmC1.t;´;�/�K
m
x ˛mC1

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /�

�
10

9
Qmx ˛1

�
t;a;

aCb

2

�
ıh
a;aCb

2

i
;Dx

.f /; (5.15)

Therefore, in view of (5.15)ˇ̌
xmCj .t;´;�/�xm.t;´;�/

ˇ̌
�

�
ˇ̌
xmCj .t;´;�/�xmCj�1.t;´;�/

ˇ̌
C
ˇ̌
xmCj�1.t;´;�/�xmCj�2.t;´;�/

ˇ̌
C :::C

CjxmC1.t;´;�/�xm.t;´;�/j D

jX
iD1

rmCi .t;´;�/�

�
10

9
˛1

�
t;a;

aCb

2

� jX
iD1

QmCi�1x ıh
a;aCb

2

i
;Dx

.f /D

D
10

9
˛1

�
t;a;

aCb

2

�
Qmx

j�1X
iD0

Qiıh
a;aCb

2

i
;Dx

.f /; (5.16)

where ıh
a;aCb

2

i
;Dx

.f / is given according to (2.7). Since, due to (5.2), the maximum

eigenvalue of the matrix Qx does not exceed the unity, we have
j�1X
iD0

Qix � .1n�Qx/
�1 ; lim

m!1
Qmx D 0n: (5.17)

Therefore, we conclude from (5.16) that, according to Cauchy criterium, the sequence
fxm .t;´;�/g

1
mD0 of the form (4.4) uniformly converges in the domain .t;´;�/ 2h

a; aCb
2

i
�Da �DaCb

2

to the limit function x1 .t;´;�/ : Since all functions of
the sequence (4.4) satisfy the boundary conditions (1.7) for all values of the intro-
duced parameters ´ 2 Da, � 2 DaCb

2

the limit function x1 .t;´;�/ also satisfies
these conditions. Passing to the limit as m!1 in equality (4.4) we show that the
limit function satisfies both the integral equation (5.5) and the Cauchy problem (5.6),
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(5.7), where �.´;�/ is given by (5.8). Passing to the limit as j !1 in (5.16) we
get the estimation (5.9): �

By analogy with Theorem 1, under similar conditions, we can establish the uni-
form convergence of sequence (5.8).

Theorem 2. Let there exist a non negative vector �y such that
f 2 Lip.Ky ;D

y/ on the interval t 2
h
aCb
2
;b
i

with �y satisfying the inequality
(4.5) and for the matrix

Qy WD
3T

20
Ky (5.18)

the condition
r.Qy/ < 1 (5.19)

is satisfied.
Then, for arbitrary fixed pair of vectors .�;�/ 2DaCb

2

�Db:
1. All members of sequence (4.8) are continuously differentiable functions on the

interval t 2
h
aCb
2
;b
i

satisfying the two-point separated parameterized boundary
conditions (1.9).

2. The sequence of functions (4.8) in t 2
h
aCb
2
;b
i

converges uniformly asm!1
to the limit function

y1 .t;�;�/D lim
m!1

ym.t;�;�/ (5.20)

3. The limit function satisfies the conditions

y1

�
aCb

2
;�;�

�
D �; y1 .b;�;�/D �: (5.21)

4. The function y1 .t;�;�/ is a unique continuously differentiable solution of the
integral equation

y.t/D �C

tZ
aCb

2

f .s;y.s//ds�
2t �a�b

2b�a�b

bZ
aCb

2

f .s;y.s//dsC

C
2t �a�b

2b�a�b
Œ���� ; t 2

�
aCb

2
;b

�
(5.22)

in the domain Dy . In other words,y1 .t;�;�/ is a solution of the following Cauchy
problem for the modified system of integro-differential equations:

dy

dt
D f .t;y/ C

2

2b�a�b
H.�;�/; t 2

�
aCb

2
;b

�
(5.23)
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y

�
aCb

2

�
D �; (5.24)

where H.�;�/ WDaCb
2

�Db! Rn is a mapping given by the formula

H.�;�/D ����

bZ
aCb

2

f .s;y1 .s;�;�//ds: (5.25)

5. The following estimate holds

jy1 .�;�;�/�ym .�;�;�/j (5.26)

6
10

9
˛1

�
t;
aCb

2
;
b�a

2

�
Qmy

�
1n�Qy

��1
ıhaCb

2
;b
i
�Dy

.f /;

t 2

�
aCb

2
;b

�
;m� 0;

where ıhaCb
2
;b
i
�Dy

.f /is given in (2.7) and ˛1.t; aCb2 ; b�a
2
/ is defined by (3.9).

Proof. The proof can be carried out similarly to the proof of Theorem 1. �

6. LIMIT FUNCTIONS AND DETERMINING EQUATIONS

It is natural to expect that the limit functions x1 .t;´;�/ and y1 .t;�;�/ of the
iterations (4.4) and (4.8) on the half-intervals will help one to formulate criteria of
solvability of the integral BVP (1.4), (1.5). It turns out that the functions

�.´;�/ WDa�DaCb
2

! Rn and H.�;�/ WDaCb
2

�Db! Rn (6.1)

defined according to equalities (5.8) and (5.25) provide such conclusion.
Indeed, Theorems 1 and 2 guarantee that under the conditions assumed, the func-

tions

x1 .t;´;�/ W

�
a;
aCb

2

�
! Rn and y1 .t;�;�/ W

�
aCb

2
;b

�
! Rn (6.2)

are well defined for all .´;�/ 2 Da�DaCb
2

and .�;�/ 2 DaCb
2

�Db: Therefore, by
putting

u1.t;´;�;�/ WD

8<: x1 .t;´;�/ ; if t 2
h
a; aCb

2

i
y1 .t;�;�/ ; if t 2

h
aCb
2
;b
i (6.3)

we obtain a function u1.�;´;�;�/ W Œa;b�! Rn; which is well defined for the same
values .´;�/ 2 Da �DaCb

2

and .�;�/ 2 DaCb
2

�Db: This function is obviously
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continuous, because at the point t D aCb
2

we have

x1

�
aCb

2
;´;�

�
D y1

�
aCb

2
;�;�

�
D �: (6.4)

Along with equations (1.6) and (1.8) defined on the intervals
h
a; aCb

2

i
and

h
aCb
2
;b
i

respectively, consider the following equations with the additive perturbation of the
right side

dx

dt
D f .t;x/ C

2

b�a
�x; t 2

�
a;
aCb

2

�
(6.5)

with initial condition
x.a/D ´; (6.6)

and
dy

dt
D f .t;y/ C

2

2b�a�b
�y ; t 2

�
aCb

2
;b

�
(6.7)

with initial condition

y

�
aCb

2

�
D �; (6.8)

where
�x D col

�
�x1 ; :::;�

x
n

�
; �y D col

�
�
y
1 ; :::;�

y
n

�
2 Rn (6.9)

are some control parameters.

Theorem 3. Let ´ 2 Da and � 2 DaCb
2

be fixed. Suppose that all conditions of
Theorems 1,2 hold.

Then, for the solutions x .�;a;´/ and y.�; aCb
2
;�/ of the Cauchy problems (6.5),

(6.6) and (6.7),(6.8), to have the properties

x

�
aCb

2
;a;´

�
D � (6.10)

and

y

�
b;
aCb

2
;�

�
D � (6.11)

respectively, by other words, to satisfy the parameterized separated two-point bound-
ary conditions (1.7) and (1.9), respectively, it is necessary and sufficient that the
control parameters �x and �y be given by the formulas

�x WD ��´�

aCb
2Z
a

f .s;x1 .s;´;�//ds (6.12)



SUCCESSIVE APPROXIMATIONS AND INTERVAL HALVING 1143

and

�y WD ����

bZ
aCb

2

f .s;y1 .s;�;�//ds; (6.13)

where x1 .�;´;�/ and y1 .�;�;�/ are the limit functions of the sequences (4.4) and
(4.8), respectively. Moreover, in this case

x .�;a;´/D x1 .�;´;�/ (6.14)

and

y

�
�;
aCb

2
;�

�
D y1 .�;�;�/ : (6.15)

Proof. The proof can be carried out similarly to the proof of Theorem 2 from
[9]. �

The following theorem establishes a relation of function (6.3) to the solution of
integral BVP (1.4), (1.5) in terms of the zeros of functions �.´;�/ WDa �DaCb

2

!

Rn and H.�;�/ WDaCb
2

�Db! Rn; defined according to (5.8) and (5.25).

Theorem 4. Let the conditions of Theorem 1,2 hold. Then :
1. The function u1 .�;´;�;�/ W Œa;b�! Rn defined by (6.3) is a continuously

differentiable solution of the boundary value problem (1.4), (1.5) if and only if the
triplet (´;�;�) satisfies the system of 3n algebraic equations

�.´;�/D ��´�

aCb
2Z
a

f .s;x1 .t;´;�//ds D 0; (6.16)

H.�;�/D ����

bZ
aCb

2

f .s;y1 .s;�;�//ds D 0; (6.17)

P.´;�;�/ WD

aCb
2Z
a

g .s;x1 .s;´;�//dsC

bZ
aCb

2

g .s;y1 .s;�;�//ds�d D 0: (6.18)

2. For every solution U.�/ of problem (1.4), (1.5) with
�
U .a/ ;U

�
aCb
2

�
;U.b/

�
2Da �DaCb

2

�Db , there exist a triplet .´0;�0;�0/ such that U.�/D u1.t;´0;�0,
�0/; where the function u1.t;´0;�0;�0/ is given in (6.3).
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Proof. The proof can be carried out similarly to the proof of Theorem 4 from
[4]. The continuous differentiability of the solution u1 .�;´;�;�/ W Œa;b��Rn�Rn�
Rn! Rn at the point t D aCb

2
follows from the equations (6.4), (5.6), (5.23), (6.16),

(6.17) and the continuous differentiability of this function at other points is obvious
from its definition. �

Equations (6.16) are usually referred to as determining or bifurcation equations
because their roots determine solutions of the original problem.

7. APPROXIMATE DETERMINING EQUATIONS

Although Theorem 4 provides a theoretical answer to the question on the con-
struction of a solution of the boundary value problem (1.4), (1.5), its application
faces difficulties due to the fact that the explicit form of x1 .t;´;�/, y1 .t;�;�/ and
the functions

�.´;�/ WDa�DaCb
2

! Rn; H.�;�/ WDaCb
2

�Db! Rn;

P.´;�;�/ WDa�DaCb
2

�Db! R;

appearing in (6.16), (6.17), (6.18) are usually unknown. This complication can be
overcome by using xm .s;´;�/ ; ym .s;�;�/ for a fixed m, which will lead one to the
so-called approximate determining equations:

�m.´;�/D ��´�

aCb
2Z
a

f .s;xm .t;´;�//ds D 0; (7.1)

Hm.�;�/D ����

bZ
aCb

2

f .s;ym .s;�;�//ds D 0; (7.2)

Pm.´;�;�/ WD

aCb
2Z
a

g .s;xm .s;´;�//dsC

bZ
aCb

2

g .s;ym .s;�;�//ds�d D 0: (7.3)

Note that, unlike system (6.16), (6.17), (6.18), the m-th approximate determining
system (7.1), (7.2), (7.3) contains only terms involving the functions xm .�;´;�/ ;
ym .�;�;�/ ; and thus it is known explicitly.

It is natural to expect that approximations to the unknown solution of problems
(1.4), (1.5) can be obtained by using the function

um.t;´;�;�/ WD

8<: xm .t;´;�/ ; if t 2
h
a; aCb

2

i
ym .t;�;�/ ; if t 2

h
aCb
2
;b
i (7.4)
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which is an ”approximate ” version of (6.3) and well defined for all t 2 Œa;b� and
.´;�/ 2Da�DaCb

2

,.�;�/ 2DaCb
2

�Db:

Lemma 3. If ´ ,� and � satisfy equations (7.1), (7.2) and (7.3) for a certainm, then
the function um.t;´;�;�/ determined by equality (7.4) is continuously differentiable
on Œa;b� :

Proof. We recall that the functions of the sequences (4.4) and (4.8) have the prop-
erty

xm

�
aCb

2
;´;�

�
D ym

�
aCb

2
;�;�

�
D �: (7.5)

It follows immediately from (4.4), (4.8) that

dxmC1

�
aCb
2
;´;�

�
dt

D f

�
aCb

2
;xm

�
aCb

2
;´;�

��
�

�
2

b�a

aCb
2Z
a

f .s;xm .s;´;�//dsC
2

b�a
Œ��´� (7.6)

and
dymC1

�
aCb
2
;�;�

�
dt

D f

�
aCb

2
;ym

�
aCb

2
;�;�

��
�

�
2

2b�a�b

bZ
aCb

2

f .s;ym .s;´;�//dsC
2

2b�a�b
Œ���� : (7.7)

In view of (7.1) and (7.2) it follows from (7.6) and (7.7) that

dxmC1

�
aCb
2
;´;�

�
dt

D f

�
aCb

2
;xm

�
aCb

2
;´;�

��
(7.8)

and
dymC1

�
aCb
2
;�;�

�
dt

D f

�
aCb

2
;ym

�
aCb

2
;�;�

��
: (7.9)

In view of (7.5) it follows from (7.8), (7.9) that

dxmC1

�
aCb
2
;´;�

�
dt

D

dymC1

�
aCb
2
;�;�

�
dt

and therefore according to (7.4) dumC1.�;´;�;�/

dt
is continuous at aCb

2
: The continu-

ous differentiability of the function um.�;´;�;�/ in other points is obvious from its
definition. �
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8. APPROXIMATION OF THE SOLUTIONS

Theorem 4 can be complemented by the following natural observation. Let
(é;e�;e�)2Da �DaCb

2

�Db be a root of the approximate determining system (7.1),
(7.2), (7.3) for a certain m: Then the function

Um.t/D um.t;é;e�;e�/ WD
8<: xm

�
t;é;e�� ; if t 2

h
a; aCb

2

i
ym

�
t;e�;e�� ; if t 2

h
aCb
2
;b
i ; (8.1)

defined according to (7.4) can be regarded as the m�th approximation to a solution
of the two-point boundary value problem (1.4), (1.5). This is justified by Lemma 3.
The following estimates follow directly from Theorems 1,2

jex1.t;é;e�/�xm�t;é;e�� j �
�
10

9
˛1

�
t;a;

b�a

2

�
Qmx .1n�Qx/

�1 ıh
a;aCb

2

i
�Dx

.f /; t 2

�
a;
aCb

2

�
; (8.2)

jey1.t;e�;e�/�ym�t;e�;e�� j �
�
10

9
˛1

�
t;
aCb

2
;
b�a

2

�
Qmy

�
1n�Qy

��1
ıhaCb

2
;b
i
�Dy

.f /; t 2

�
a;
aCb

2

�
:

(8.3)

9. EXAMPLE

Let us apply the numerical-analytic approach described above to the system of
differential equations�

x01 .t/D
t
4
x22.t/�

7t
2
x1.t/C

27
64
t3C 3

5
t;

x02 .t/D t
2x1.t/�

t
4
x2.t/�

1
8
t4� 3

80
t2C 1

4
; t 2 Œ0; 1� ;

(9.1)

considered with the integral boundary conditions( R 1
0 sx1.s/x2.s/ds D

7
480R 1

0 s
2x22.s/ds D

1
80

: (9.2)

Clearly, (9.1) is a particular case of (1.4), (1.5) with a WD 0, b WD 1,

f .t;x1;x2/ WD

0B@
t

4
x22 �

7t

2
x1C

27

64
t3C

3

5
t;

t2x1�
t

4
x2�

�
1

8
t2�

3

80

�
t2C

1

4

1CA ;
g.t;x1;x2/ WD

�
tx1x2

t2x2
2

�
, and d WD

�
7=480
1=80

�
:
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It is easy to check that

x�1 .t/D
t2

8
C
1

10
; x�2 .t/D

t

4
(9.3)

is a continuously differentiable solution of the problem (9.1), (9.2).
Following (1.7) and (1.9), introduce parameters

´ WD x.0/D col.x1.0/;x2.0//D col.´1;´2/;

� WD x

�
1

2

�
D col

�
x1

�
1

2

�
;x2

�
1

2

��
D col .�1;�2/ ; (9.4)

� WD x.1/D col .x1 .1/ ;x2 .1//D col .�1;�2/ :

Let us choose the sets Da and DaCb
2

, where one looks for the values x.a/ and

x.aCb
2
/, as follows:

Da DDaCb
2

D f.x1;x2/ W 0:001� x1 � 0:14; �0:1� x2 � 0:14g :

Let us choose the sets DaCb
2

and Db , where one looks for the values x.aCb
2
/ and

x.b/ and as follows:

DaCb
2

DDb D f.y1;y2/ W 0:12� y1 � 0:23; 0:1� y2 � 0:26g :

In this case, a convex linear combination Dx of form (3.1) of vectors ´ 2 Da and
� 2DaCb

2

will be Dx DDa DDaCb
2

:

In this case, a convex linear combination Dy of form (3.3) of vectors � 2DaCb
2

and � 2Db will be Dy DDaCb
2

DDb:

For �x;�y involved in (3.3), (3.5) and (4.1), (4.5) we choose the value

�x D �y WD col .0:7I 0:7/ :

Consequently �x�neighbourhood Dx of the set D
a;aCb

2

is given as follows

Dx D f.x1;x2/ W �0:701� x1 � 0:84; �0:8� x2 � 0:84g

Consequently �y�neighbourhood Dy of the set DaCb
2
;b

is given as follows

Dy D f.y1;y2/ W �0:58� y1 � 0:93; �0:6� y2 � 0:96g :

Direct computations show that the Lipschitz condition (2.5) for the right hand side in
(9.1) in the domain D holds with matrix

K D

�
7=2 1=8

1 1=4

�
and

QD
3

10

�
7=2 1=8

1 1=4

�
; r.Q/D 1:061405 > 1;
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Qx WD
3

20
Kx D

3

20

�
7=4 1=32

1=4 1=8

�
; r.Qx/D 0:2632 < 1;

Qy WD
3

20
Ky D

3

20

�
7=2 1=8

1 1=4

�
; r.Qy/D 0:5307 < 1;

ı
Œa;aCb

2
�;Dx .f / WD

1

2

"
max

.t;x/2Œ0; 1
2 ��D

x

f .t;x/� min
.t;x/2Œ0; 1

2 ��D
x

f .t;x/

#

D

�
1:392475;

0:295125

�
;

�x D

�
0:7

0:7

�
�
b�a

4
ı
Œa;aCb

2
�;Dx .f /D

�
0:34811875;

0:07378125

�
:

ı
ŒaCb

2
;b�;Dy .f / WD

1

2

"
max

.t;x/2Œ 1
2
;1��Dy

f .t;x/� min
.t;x/2Œ 1

2
;1��Dy

f .t;x/

#

D

�
2:7577;

0:95

�
;

�y D

�
0:7

0:7

�
�
b�a

4
ı
ŒaCb

2
;b�;Dy .f /D

�
0:689425;

0:2375

�
:

So, we check that all conditions of Theorems 1, 2 are fulfill, and the sequence of
functions (4.1) for this example is convergent.

Using (4.4),(4.7) and applying Maple 14 at the first iteration (m D 1) we obtain
the following results for the first and the second component:

x11.t;´;�/ WD ´1C1=4.1=4.�2´2C2�2/
2
C27=64/t4C1=3.7´1�7�1C

C1=2´2.�2´2C2�2//t
3
C1=2.1=4´22C3=5�7=2´1/t

2
�2t..1=256/�

.�2´2C2�2/
2
C1671=20480� .7=48/´1� .7=24/�1C

C .1=48/´2.�2´2C2�2/C .1=32/´
2
2/C2t.�1�´1/;

x12.t;´;�/ WD ´2C1=4t �1=40t
5
C1=4.�2´1C2�1/t

4
C

C1=3.1=2´2�1=2�2C´1�3=80/t
3
�1=8´2t

2
�2t.157=1280C

C .1=96/´1C .1=32/�1� .1=96/´2� .1=48/�2/C2t.�2�´2/; (9.5)

y11.t;�;�/ WD �1C1=4.1=4.�2�2C2�2/
2
C27=64/.t4�1=16/C

C1=3.7�1�7�1C1=2.2�2��2/.�2�2C2�2//t
3
�1=8C .1=2..1=4/�

.2�2��2/
2
C3=5�7�1C .7=2/�1//.t

2
�1=4/� .2t �1/..15=256/.�2�2C
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C2�2/
2
C6633=20480� .7=12/�1� .35=48/�1C .7=48.2�2��2//�

.�2�2C2�2/C .3=32/.2�2��2/
2/C .2t �1/.�1��1/;

y12.t;�;�/ WD �2C1=4t �159=1280�1=40t
5
C1=4.�2�1C2�1/.t

4
�1=16/C

C1=3.1=2�2�1=2�2C2�1��1�3=80/.t
3
�1=8/C

C .1=2.�.1=2/�2C .1=4/�2//.t
2
�1=4/� .2t �1/.23=256C .11=96/�1C

C .17=96/�1� .1=24/�2� .5=96/�2/C .2t �1/.�2��2/:

The numerical computations show that the components of the solution of equations
(7.1)–(7.3) for mD 1 are:

´1 WD ´11 � 0:1000871447; ´2 WD ´12 ��0:00003539691;

�1 WD �11 � 0:1312562435; �2 WD �12 � 0:1250395576;

�1 WD �11 � 0:2248977438; �2 WD �12 � 0:2500433008:

(9.6)

By putting (9.6) into (9.5), we obtain the first and the second components of the first
approximation to the solution of the given integral BVP (9.1), (9.2).

The graphs of the first approximation and the exact solution (9.3) of the original
boundary-value problem are shown on Figure 1.

FIGURE 1. The components of the exact solution (solid line) and its
first approximation (drawn with dots)

The number of the solutions of the algebraic determined system (5.23) is coincide
with the number of the solutions of the given integral BVP.
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Let us choose the sets Da and DaCb
2

, where one looks for the values x.a/ and

x.aCb
2
/ as follows:

Da DDaCb
2

D f.x1;x2/ W �0:47� x1 � �0:2; �0:36� x2 � �0:23g :

Let us choose the sets DaCb
2

and, Db where one looks for the values x.aCb
2
/ and

x.b/ and as follows:

DaCb
2

DDb D f.y1;y2/ W �0:23� y1 � 0:13; �0:25� y2 � �0:12g :

Dx DDa DDaCb
2

; Dy DDaCb
2

DDb:

Consequently �x�neighhourhood Dx of the set D
a;aCb

2

is given as follows

Dx D f.x1;x2/ W �1:17� x1 � 0:5; �1:06� x2 � 0:47g :

Consequently �y�neighhourhood Dy of the set DaCb
2
;b

is given as follows

Dy D f.y1;y2/ W �0:93� y1 � 0:83; �0:95� y2 � 0:58g ;

ı
Œa;aCb

2
�;Dx .f / WD

1

2

"
max

.t;x/2Œ0; 1
2 ��D

x

f .t;x/� min
.t;x/2Œ0; 1

2 ��D
x

f .t;x/

#

D

�
1:531475;

0:30437

�
;

�x D

�
0:7

0:7

�
�
b�a

4
ı
Œa;aCb

2
�;Dx .f /D

�
0:3828687;

0:07609375

�
;

ı
ŒaCb

2
;b�;Dy .f / WD

1

2

"
max

.t;x/2Œ 1
2
;1��Dy

f .t;x/� min
.t;x/2Œ 1

2
;1��Dy

f .t;x/

#

D

�
2:6678125

0:92125

�
;

�y D

�
0:7

0:7

�
�
b�a

4
ı
ŒaCb

2
;b�;Dy .f /D

�
0:6669531250;

0:2303125

�
:

Computations show that the approximate determined system of algebraic equa-
tions (7.1)–(7.3) side by side with the solution (9.6) formD 1 has an another solution

Ó1 WD ´11 ��0:4600459223; Ó2 WD ´12 ��0:3588100487;

O�1 WD �11 ��0:2288301475; O�2 WD �12 ��0:2405391230;

O�1 WD �11 � 0:1278495443; O�2 WD �12 ��0:1346356173:

(9.7)

By substituting (9.7) into first approximation (9.5) we obtain the first approxima-
tion to the second solution of given integral BVP (9.1), (9.2).
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By analogy we obtain the second, third and fourth approximations (m D 2;m D
3;mD 4)

The graphs of the first and the fourth approximations to the second solution of the
given BVP are shown on Figure 2.

FIGURE 2. The components of the first .ı/ and the fourth (solid
line) approximations to the second solution
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1152 M. RONTÓ AND Y. VARHA
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Department of Analysis, University of Miskolc, 3515, Miskolc-Egyetemváros
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